中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2373-2385 DOI: 10.7536/PC220409 Previous Articles   Next Articles

• Review •

MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis

Yuanju Jing1, Chun Kang1, Yanxin Lin2, Jie Gao3, Xinbo Wang1,4()   

  1. 1 School of Environmental Science and Engineering, Shandong University,Qingdao 266237, China
    2 Qingdao Hengyuan Thermoelectricity Co., Ltd,Qingdao 266510, China
    3 School of Innovation and Entrepreneurship, Shandong University,Qingdao 266237, China
    4 Shenzhen Graduate School of Shandong University,Shenzhen 518000, China
  • Received: Revised: Online: Published:
  • Contact: Xinbo Wang
  • Supported by:
    National Natural Science Foundation of China(21908018); National Natural Science Foundation of China(22078174); Guangdong Basic and Applied Basic Research Foundation(2022A1515011856); Youth Innovation Program of Universities in Shandong Province(2019KJD007); State Key Laboratory of Fine Chemicals, Dalian University of Technology(KF2114)
Richhtml ( 60 ) PDF ( 882 ) Cited
Export

EndNote

Ris

BibTeX

Single-atom catalysts (SACs) have been attracting ever-increasing interest in the fields of both fundamental research and industry applications, for their unique advantages such as high atomic utilization efficiency, high activity, and high selectivity. On the other hand, the preparation of SCAs is still quite challenging. A proper carrier of the active atoms is crucial for the preparation of SCAs, which affects the stability, electron structure, and thus reactivity. MXene, a novel series of two-dimensional inorganic materials with large specific surface area, adjustable bandgap, superior electronic conductivity, as well as abundant anchor sites have emerged as an ideal platform for confining single atoms. Herein, the structural superiority and synthetic strategies of MXene as SCAs support are reviewed. The unique structure and property of MXene based SACs make the material superior for electrochemical catalysis. Here the reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), nitrogen reduction reaction (NRR), carbon dioxide reduction reaction (CRR), as well as battery energy storage are highlighted. Finally, the challenges and opportunities of MXene based SACs in the fields of research and practical applications are summarized and prospected. It is hoped that this review article could provide insights for the development of advanced MXene-based SCAs.

Contents

1 Introduction

2 Advantages of MXene as carrier material

2.1 Easy preparation

2.2 Easily controllable electronic energy band and conductivity

3 Synthesis of MXene-based single-atom catalysts

3.1 Defect vacancy anchoring

3.2 Strong metal-support interaction

3.3 Selective atomic substitution

4 Application of MXene-based single-atom catalysts

4.1 Hydrogen evolution reaction

4.2 Oxygen electrode reaction

4.3 Nitrogen reduction reaction

4.4 Electrocatalytic reduction of carbon dioxide

4.5 Used as a battery electrode

5 Conclusion and outlook

Fig. 1 Schematic illustration of the fabrication mechanism of RuSA-Mo2CTx[67].Copyright 2020, Wiley-VCH
Fig.2 (a)Schematic illustration of the RuSA-N-S-Ti3C2Tx catalyst synthetic route; (b)HAADF-STEM image of RuSA-N-S-Ti3C2Tx[75]. Copyright ? 1999-2022 John Wiley & Sons, Inc.
Fig. 3 (a)Schematic diagram of the structure of Ti3C2Tx-PtSA; (b)HER performance comparison of Ti3C2Tx-PtSA and commercial HER catalyst Pt/C[81]. Copyright ?2022, American Chemical Society
Fig. 4 (a)Schematic illustration of a rechargeable Zn-air battery; (b)Charge and discharge polarization curves of the rechargeable Zn-air batteries based on the Ti3C2Tx-CoBDC + Pt-C and the IrO2 + Pt-C configurations.; (c)Charge and discharge cycling curves of the rechargeable Zn-air batteries at a current density of 0.8mA·cm-2; (d)Photograph of a red LED powered by the fabricated Zn-air battery based on the Ti3C2Tx-CoBDC + Pt-C pair[85]. Copyright ? 2017, American Chemical Society
Fig. 5 Synthesis process of single zinc atoms immobilized on MXene layers (Zn-MXene)for the Li nucleation and growth.[94] Copyright ? 2022, American Chemical Society
[1]
Afewerki S, Cordova A. Topics in Current Chemistry, 2019, 377(6).
[2]
Dong X Q, Zhao Q Y, Li P, Chen C Y, Zhang X M. Org. Chem. Front., 2015, 2(10): 1425.

doi: 10.1039/C5QO00226E
[3]
Zhong C, Shi X D. Eur. J. Org. Chem., 2010, 2010(16): 2999.

doi: 10.1002/ejoc.201000004
[4]
Zhou W J, Zhang Y H, Gui Y Y, Sun L, Yu D G. Synthesis-Stuttgart, 2018, 50(17): 3359.

doi: 10.1055/s-0037-1610222
[5]
Dinesh S, Thirugnanam N, Anandan M, Barathan S, Anandhan N. J. Mater. Sci. Mater. Electron., 2016, 27(12): 12786.

doi: 10.1007/s10854-016-5411-7
[6]
Feng L L, Zhao W, Liu Y, Jiao L, Li X G. Acta Phys-Chim Sin, 2009, 25(7): 1347.

doi: 10.3866/PKU.WHXB20090707
[7]
Lang R, Xi W, Liu J C, Cui Y T, Li T B, Lee A F, Chen F, Chen Y, Li L, Li L, Lin J, Miao S, Liu X Y, Wang A Q, Wang X D, Luo J, Qiao B T, Li J, Zhang T. Nat Commun, 2019, 10: 10.

doi: 10.1038/s41467-018-07709-6
[8]
Cheng N C, Zhang L, Doyle-Davis K, Sun X L. Electrochem. Energy Rev., 2019, 2(4): 539.

doi: 10.1007/s41918-019-00050-6
[9]
Enterkin J A, Kennedy R M, Lu J L, Elam J W, Cook R E, Marks L D, Stair P C, Marshall C L, Poeppelmeier K R. Top. Catal., 2013, 56(18/20): 1829.

doi: 10.1007/s11244-013-0118-y
[10]
Huang M H, Madasu M. Nano Today, 2019, 28: 100768.

doi: 10.1016/j.nantod.2019.100768
[11]
Zhang M M, Lai C, Li B S, Liu S Y, Huang D L, Xu F H, Liu X G, Qin L, Fu Y K, Li L, Yi H, Chen L. Small, 2021, 17(29): 2007113.

doi: 10.1002/smll.202007113
[12]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

doi: 10.1038/nchem.1095
[13]
Liang S X, Hao C, Shi Y T. ChemCatChem, 2015, 7(17): 2559.

doi: 10.1002/cctc.201500363
[14]
Wang Y, Mao J, Meng X G, Yu L, Deng D H, Bao X H. Chem. Rev., 2019, 119(3): 1806.

doi: 10.1021/acs.chemrev.8b00501
[15]
Chen Y J, Ji S F, Chen C, Peng Q, Wang D S, Li Y D. Joule, 2018, 2(7): 1242.

doi: 10.1016/j.joule.2018.06.019
[16]
Jeong H, Kwon O, Kim B S, Bae J, Shin S, Kim H E, Kim J, Lee H. Nat. Catal., 2020, 3(4): 368.

doi: 10.1038/s41929-020-0427-z
[17]
Wang H, Liu J X, Allard L F, Lee S, Liu J L, Li H, Wang J Q, Wang J, Oh S H, Li W, Flytzani-Stephanopoulos M, Shen M Q, Goldsmith B R, Yang M. Nat. Commun., 2019, 10: 3808.

doi: 10.1038/s41467-019-11856-9 pmid: 31444350
[18]
Yao Y G, Huang Z N, Xie P F, Wu L P, Ma L, Li T Y, Pang Z Q, Jiao M L, Liang Z Q, Gao J L, He Y, Kline D J, Zachariah M R, Wang C M, Lu J, Wu T P, Li T, Wang C, Shahbazian-Yassar R, Hu L B. Nat. Nanotechnol., 2019, 14(9): 851.

doi: 10.1038/s41565-019-0518-7
[19]
Zhang Z L, Zhu Y H, Asakura H, Zhang B, Zhang J G, Zhou M X, Han Y, Tanaka T, Wang A Q, Zhang T, Yan N. Nat. Commun., 2017, 8: 16100.

doi: 10.1038/ncomms16100
[20]
Lang R, Du X R, Huang Y K, Jiang X Z, Zhang Q, Guo Y L, Liu K P, Qiao B T, Wang A Q, Zhang T. Chem. Rev., 2020, 120(21): 11986.

doi: 10.1021/acs.chemrev.0c00797 pmid: 33112599
[21]
Fu J W, Wang S D, Wang Z H, Liu K, Li H, Liu H, Hu J H, Xu X W, Li H M, Liu M. Front. Phys., 2020, 15(3): 33201.

doi: 10.1007/s11467-019-0950-z
[22]
Dhanasekaran S, Gnanamoorthy R. Mater. Des., 2007, 28(4): 1135.

doi: 10.1016/j.matdes.2006.01.030
[23]
Dong X Y, Si Y N, Wang Q Y, Wang S, Zang S Q. Adv. Mater., 2021, 33(33): 2101568.

doi: 10.1002/adma.202101568
[24]
Fu Q, Draxl C. Phys. Rev. Lett., 2019, 122(4): 046101.

doi: 10.1103/PhysRevLett.122.046101
[25]
Wang X B, Ling E A P, Guan C, Zhang Q G, Wu W T, Liu P X, Zheng N F, Zhang D L, Lopatin S, Lai Z P, Huang K W. ChemSusChem, 2018, 11(20): 3543.

doi: 10.1002/cssc.201802327
[26]
Wang X B, Min S X, Das S K, Fan W, Huang K W, Lai Z P. J. Catal., 2017, 355: 101.

doi: 10.1016/j.jcat.2017.08.030
[27]
He T, Chen S M, Ni B, Gong Y, Wu Z, Song L, Gu L, Hu W P, Wang X. Angew. Chem. Int. Ed., 2018, 57(13): 3493.

doi: 10.1002/anie.201800817
[28]
Song Q Q, Li J Q, Wang L, Qin Y, Pang L Y, Liu H. J. Catal., 2019, 370: 176.

doi: 10.1016/j.jcat.2018.12.021
[29]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306
[30]
Li J, Li X, van der Bruggen B. Environ. Sci.: Nano, 2020, 7(5): 1289.
[31]
Liu A M, Liang X Y, Ren X F, Guan W X, Gao M F, Yang Y N, Yang Q Y, Gao L G, Li Y Q, Ma T L. Adv. Funct. Mater., 2020, 30(38): 2003437.

doi: 10.1002/adfm.202003437
[32]
Im J K, Sohn E J, Kim S, Jang M, Son A, Zoh K D, Yoon Y. Chemosphere, 2021, 270: 129478.

doi: 10.1016/j.chemosphere.2020.129478
[33]
LÓpez-Polín G, GÓmez-Navarro C, Parente V, Guinea F, Katsnelson M I, Pérez-Murano F, GÓmez-Herrero J. Nat. Phys., 2015, 11(1): 26.

doi: 10.1038/nphys3183
[34]
Vicarelli L, Heerema S J, Dekker C, Zandbergen H W. ACS Nano, 2015, 9(4): 3428.

doi: 10.1021/acsnano.5b01762 pmid: 25864552
[35]
Bourrellier R, Meuret S, Tararan A, Stéphan O, Kociak M, Tizei L H G, Zobelli A. Nano Lett., 2016, 16(7): 4317.

doi: 10.1021/acs.nanolett.6b01368 pmid: 27299915
[36]
Liu Y Y, Zou X L, Yakobson B I. ACS Nano, 2012, 6(8): 7053.

doi: 10.1021/nn302099q
[37]
Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Nano Lett., 2013, 13(6): 2615.

doi: 10.1021/nl4007479 pmid: 23659662
[38]
Luo J C, Gao S J, Luo H, Wang L, Huang X W, Guo Z, Lai X J, Lin L W, Li R K Y, Gao J F. Chem. Eng. J., 2021, 406: 126898.

doi: 10.1016/j.cej.2020.126898
[39]
Wu X Y, Han B Y, Zhang H B, Xie X, Tu T X, Zhang Y, Dai Y, Yang R, Yu Z Z. Chem. Eng. J., 2020, 381: 122622.

doi: 10.1016/j.cej.2019.122622
[40]
Zhong Q, Li Y, Zhang G K. Chem. Eng. J., 2021, 409: 128099.

doi: 10.1016/j.cej.2020.128099
[41]
Oral A, Grimble R A, Özer H Ö, Pethica J B. Rev. Sci. Instrum., 2003, 74(8): 3656.

doi: 10.1063/1.1593786
[42]
Yu R, Hu L H, Cheng Z Y, Li Y D, Ye H Q, Zhu J. Phys. Rev. Lett., 2010, 105(22): 226101.

doi: 10.1103/PhysRevLett.105.226101
[43]
Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, dal Corso A, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S. J. Phys.: Condens. Matter, 2017, 29(46): 465901.
[44]
Kim M C, Sim E, Burke K. Phys. Rev. Lett., 2013, 111(7): 073003.

doi: 10.1103/PhysRevLett.111.073003
[45]
Fu B, Sun J X, Wang C, Shang C, Xu L J, Li J B, Zhang H. Small, 2021, 17(11): 2170048.

doi: 10.1002/smll.202170048
[46]
Wei Y, Zhang P, Soomro R A, Zhu Q Z, Xu B. Adv. Mater., 2021, 33(39): 2103148.

doi: 10.1002/adma.202103148
[47]
Shi H H, Zhang P P, Liu Z C, Park S, Lohe M R, Wu Y P, Shaygan Nia A, Yang S, Feng X L. Angew. Chem. Int. Ed., 2021, 60(16): 8689.

doi: 10.1002/anie.202015627
[48]
Maleski K, Mochalin V N, Gogotsi Y. Chem Mat, 2017, 29(4): 1632.

doi: 10.1021/acs.chemmater.6b04830
[49]
Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S. J Mater Chem C, 2017, 5(10): 2488.

doi: 10.1039/C7TC00140A
[50]
Huang K, Li Z J, Lin J, Han G, Huang P. Chem. Soc. Rev., 2018, 47(14): 5109.

doi: 10.1039/c7cs00838d pmid: 29667670
[51]
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W. ACS Nano, 2015, 9(10): 9507.

doi: 10.1021/acsnano.5b03591 pmid: 26208121
[52]
Anasori B, Shi C Y, Moon E J, Xie Y, Voigt C A, Kent P R C, May S J, Billinge S J L, Barsoum M W, Gogotsi Y. Nanoscale Horiz, 2016, 1(3): 227.

doi: 10.1039/c5nh00125k pmid: 32260625
[53]
Bu F X, Zagho M M, Ibrahim Y, Ma B, Elzatahry A, Zhao D Y. Nano Today, 2020, 30: 100803.

doi: 10.1016/j.nantod.2019.100803
[54]
Zhang C J, Kim S J, Ghidiu M, Zhao M Q, Barsoum M W, Nicolosi V, Gogotsi Y. Adv. Funct. Mater., 2016, 26(23): 4143.

doi: 10.1002/adfm.201600682
[55]
Enyashin A N, Ivanovskii A L. J. Phys. Chem. C, 2013, 117(26): 13637.

doi: 10.1021/jp401820b
[56]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L Å, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W. Chem. Mater., 2014, 26(7): 2374.

doi: 10.1021/cm500641a
[57]
Le T A, Bui Q V, Tran N Q, Cho Y, Hong Y, Kawazoe Y, Lee H. ACS Sustainable Chem. Eng., 2019, 7(19): 16879.

doi: 10.1021/acssuschemeng.9b04470
[58]
Hart J L, Hantanasirisakul K, Lang A C, Anasori B, Pinto D, Pivak Y, van Omme J T, May S J, Gogotsi Y, Taheri M L. Nat. Commun., 2019, 10: 522.

doi: 10.1038/s41467-018-08169-8
[59]
Hu T, Zhang H, Wang J M, Li Z J, Hu M M, Tan J, Hou P X, Li F, Wang X H. Sci. Rep., 2015, 5: 16329.

doi: 10.1038/srep16329
[60]
Zhang X, Zhao X D, Wu D H, Jing Y, Zhou Z. Nanoscale, 2015, 7(38): 16020.

doi: 10.1039/c5nr04717j pmid: 26370829
[61]
Liu L C, Corma A. Nat. Rev. Mater., 2021, 6(3): 244.

doi: 10.1038/s41578-020-00250-3
[62]
Xing J, Chen J F, Li Y H, Yuan W T, Zhou Y, Zheng L R, Wang H F, Hu P, Wang Y, Zhao H J, Wang Y, Yang H G. Chem. Eur. J., 2014, 20(8): 2138.

doi: 10.1002/chem.201303366
[63]
Liu J C, Wang Y G, Li J. J. Am. Chem. Soc., 2017, 139(17): 6190.

doi: 10.1021/jacs.7b01602
[64]
Tang N F, Cong Y, Shang Q H, Wu C T, Xu G L, Wang X D. ACS Catal., 2017, 7(9): 5987.

doi: 10.1021/acscatal.7b01816
[65]
Wan J W, Chen W X, Jia C Y, Zheng L R, Dong J C, Zheng X S, Wang Y, Yan W S, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(11): 1705369.

doi: 10.1002/adma.201705369
[66]
Zhang J, Wu X, Cheong W C, Chen W X, Lin R, Li J, Zheng L R, Yan W S, Gu L, Chen C, Peng Q, Wang D S, Li Y D. Nat. Commun., 2018, 9: 1002.

doi: 10.1038/s41467-018-03380-z pmid: 29520021
[67]
Peng W, Luo M, Xu X D, Jiang K, Peng M, Chen D C, Chan T S, Tan Y W. Adv. Energy Mater., 2020, 10(25): 2070110.

doi: 10.1002/aenm.202070110
[68]
Zhao D, Chen Z, Yang W J, Liu S J, Zhang X, Yu Y, Cheong W C, Zheng L R, Ren F Q, Ying G B, Cao X, Wang D S, Peng Q, Wang G X, Chen C. J Am Chem Soc, 2019, 141(9): 4086.

doi: 10.1021/jacs.8b13579 pmid: 30699294
[69]
Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S, Han C P, Li Y D, Gogotsi Y, Wang G X. Nat. Catal., 2018, 1(12): 985.

doi: 10.1038/s41929-018-0195-1
[70]
Tauster S J, Fung S C, Garten R L. J. Am. Chem. Soc., 1978, 100(1): 170.

doi: 10.1021/ja00469a029
[71]
Han B, Guo Y L, Huang Y K, Xi W, Xu J, Luo J, Qi H F, Ren Y J, Liu X Y, Qiao B T, Zhang T. Angew. Chem. Int. Ed., 2020, 59(29): 11824.

doi: 10.1002/anie.202003208
[72]
Dong J H, Fu Q, Jiang Z, Mei B B, Bao X H. J. Am. Chem. Soc., 2018, 140(42): 13808.

doi: 10.1021/jacs.8b08246
[73]
Li Z, Cui Y R, Wu Z W, Milligan C, Zhou L, Mitchell G, Xu B, Shi E Z, Miller J T, Ribeiro F H, Wu Y. Nat. Catal., 2018, 1(5): 349.

doi: 10.1038/s41929-018-0067-8
[74]
Li Z, Xiao Y, Chowdhury P R, Wu Z W, Ma T, Chen J Z, Wan G, Kim T H, Jing D P, He P L, Potdar P J, Zhou L, Zeng Z H, Ruan X L, Miller J T, Greeley J P, Wu Y, Varma A. Nat. Catal., 2021, 4(10): 882.

doi: 10.1038/s41929-021-00686-y
[75]
Ramalingam V, Varadhan P, Fu H C, Kim H, Zhang D L, Chen S M, Song L, Ma D, Wang Y, Alshareef H N, He J H. Adv. Mater., 2019, 31(48): 1903841.

doi: 10.1002/adma.201903841
[76]
Kuznetsov D A, Chen Z X, Kumar P V, Tsoukalou A, Kierzkowska A, Abdala P M, Safonova O V, Fedorov A, Müller C R. J. Am. Chem. Soc., 2019, 141(44): 17809.

doi: 10.1021/jacs.9b08897 pmid: 31540549
[77]
Kuznetsov D A, Chen Z X, Abdala P M, Safonova O V, Fedorov A, Müller C R. J. Am. Chem. Soc., 2021, 143(15): 5771.

doi: 10.1021/jacs.1c00504
[78]
Kan D X, Wang D S, Zhang X L, Lian R Q, Xu J, Chen G, Wei Y J. J. Mater. Chem. A, 2020, 8(6): 3097.

doi: 10.1039/C9TA12255A
[79]
Chen G, Ding M M, Zhang K, Shen Z, Wang Y T, Ma J, Wang A, Li Y P, Xu H. ChemSusChem, 2022, 15(3): e202200040.
[80]
Wang L, Sofer Z, Pumera M. Nanoscale, 2019, 11(23): 11083.

doi: 10.1039/c9nr03557e pmid: 31144694
[81]
Zhang J J, Wang E Q, Cui S Q, Yang S B, Zou X L, Gong Y J. Nano Lett., 2022, 22(3): 1398.

doi: 10.1021/acs.nanolett.1c04809
[82]
Lin W J, Lu Y R, Peng W, Luo M, Chan T S, Tan Y W. J. Mater. Chem. A, 2022, 10(18): 9878.

doi: 10.1039/D2TA00550F
[83]
Shang H S, Sun W M, Sui R, Pei J J, Zheng L R, Dong J C, Jiang Z L, Zhou D N, Zhuang Z B, Chen W X, Zhang J T, Wang D S, Li Y D. Nano Lett., 2020, 20(7): 5443.

doi: 10.1021/acs.nanolett.0c01925
[84]
Zhang J T, Zhang T, Ma J, Wang Z, Liu J H, Gong X Z. Carbon, 2021, 172: 556.

doi: 10.1016/j.carbon.2020.10.075
[85]
Zhao L, Dong B L, Li S Z, Zhou L J, Lai L F, Wang Z W, Zhao S L, Han M, Gao K, Lu M, Xie X J, Chen B, Liu Z D, Wang X J, Zhang H, Li H, Liu J Q, Zhang H, Huang X, Huang W. ACS Nano, 2017, 11(6): 5800.

doi: 10.1021/acsnano.7b01409 pmid: 28514161
[86]
Ma N G, Wang Y H, Zhang Y Q, Liang B C, Zhao J, Fan J. Appl. Surf. Sci., 2022, 596: 153574.

doi: 10.1016/j.apsusc.2022.153574
[87]
Li L, Wang X Y, Guo H R, Yao G, Yu H B, Tian Z Q, Li B H, Chen L. Small Methods, 2019, 3(11): 1900337.

doi: 10.1002/smtd.201900337
[88]
Huang B, Li N, Ong W J, Zhou N G. J. Mater. Chem. A, 2019, 7(48): 27620.

doi: 10.1039/c9ta09776g
[89]
Niu K F, Chi L F, Rosen J, Björk J. J. Phys. Chem. Lett., 2022, 13(12): 2800.

doi: 10.1021/acs.jpclett.2c00195
[90]
Li Z D, Attanayake N H, Blackburn J L, Miller E M. Energy Environ. Sci., 2021, 14(12): 6242.

doi: 10.1039/D1EE03211A
[91]
Posada-Pérez S, Ramírez P J, Gutiérrez R A, Stacchiola D J, Viñes F, Liu P, Illas F, Rodriguez J A. Catal. Sci. Technol., 2016, 6(18): 6766.

doi: 10.1039/C5CY02143J
[92]
Zhao Q, Zhang C, Hu R M, Du Z G, Gu J N, Cui Y, Chen X, Xu W J, Cheng Z J, Li S M, Li B, Liu Y F, Chen W H, Liu C T, Shang J X, Song L, Yang S B. ACS Nano, 2021, 15(3): 4927.

doi: 10.1021/acsnano.0c09755 pmid: 33617242
[93]
Li N, Peng J H, Shi Z H, Zhang P, Li X. Chin. J. Catal., 2022, 43(7): 1906.

doi: 10.1016/S1872-2067(21)64018-4
[94]
Gu J N, Zhu Q, Shi Y Z, Chen H, Zhang D, Du Z G, Yang S B. ACS Nano, 2020, 14(1): 891.

doi: 10.1021/acsnano.9b08141
[95]
Zhang K, Chen Z X, Ning R Q, Xi S B, Tang W, Du Y H, Liu C B, Ren Z Y, Chi X, Bai M H, Shen C, Li X, Wang X W, Zhao X X, Leng K, Pennycook S J, Li H P, Xu H, Loh K P, Xie K Y. ACS Appl Mater Interfaces, 2019, 11(28): 25147.

doi: 10.1021/acsami.9b05628
[96]
Zhang D, Wang S, Hu R M, Gu J N, Cui Y, Li B, Chen W H, Liu C T, Shang J X, Yang S B. Adv. Funct. Mater., 2020, 30(30): 2002471.

doi: 10.1002/adfm.202002471
[97]
Guo X, Gao H, Wang S J, Yang G, Zhang X Y, Zhang J Q, Liu H, Wang G X. Nano Lett., 2022, 22(3): 1225.

doi: 10.1021/acs.nanolett.1c04389
[98]
Aamir I, Junpyo H, Tae Y K, Chong M K. Nano Convergene, 2021, 8(1): 1.
[1] Qiyao Guo, Jialong Duan, Yuanyuan Zhao, Qingwei Zhou, Qunwei Tang. Hybrid Energy Harvesting Solar Cells―From Principles to Applications [J]. Progress in Chemistry, 2023, 35(2): 318-329.
[2] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[3] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[4] Changle Yue, Wenjing Bao, Jilei Liang, Yunqi Liu, Daofeng Sun, Yukun Lu. Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water [J]. Progress in Chemistry, 2022, 34(5): 1061-1075.
[5] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[6] Yi Zeng, Yongsheng Ren, Wenhui Ma, Hui Chen, Shu Zhan, Jing Cao. Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method [J]. Progress in Chemistry, 2022, 34(4): 926-949.
[7] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[8] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[9] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[10] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[11] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[12] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[13] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[14] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[15] Yin Xie, Liyang Zhang, Peijin Ying, Jiacheng Wang, Kuan Sun, Meng Li. Intensified Field-Effect of Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(9): 1571-1585.