中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (2/3): 232-243 DOI: 10.7536/PC150804 Previous Articles   Next Articles

• Review and comments •

Metal-Organic Frameworks for Catalytic Oxidation

Guo Ruimei, Bai Jinquan*, Zhang Heng, Xie Yabo, Li Jianrong*   

  1. Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21271015, 21322601, U1407119).
PDF ( 4698 ) Cited
Export

EndNote

Ris

BibTeX

The use of metal-organic frameworks (MOFs) as heterogeneous catalyst for oxidation reactions developed in recent years is reviewed. Because of their unique structural features and outstanding physical/chemical properties, including metal or organic active sites in pore surface, high porosity, large surface areas, and tailorable pore properties, MOFs are promising and favorable for application in various catalytic reactions. In this review, the applications of MOFs in catalytic oxidation as catalysts or as supports of catalytic active species are discussed. Catalytic MOFs with coordinatively unsaturated metal active sites and MOFs supported metal nanoparticles (MNPs), polyoxometalates (POMs), and metalloporphyrins are emphasized. Catalytic oxidization of varieties of organic molecules, including alkanes, benzylic hydrocarbons, olefins, alcohols, phenols, and sulfur compounds, as well as small inorganic molecules, including CO and water in MOFs and/or MOFs supported catalysts are summarized. In addition, the application of MOFs in the oxidation of organic dyes and biomimetic catalysis is also discussed. Catalytic performances of these MOFs and MOFs supported catalysts are evaluated from the stability, heterogeneity, and shape/size selectivity, as well as precipitation of the active species aspects. Finally, the development trend of MOFs in the catalytic applications is prospected.

Contents
1 Introduction
2 Catalytic oxidation by MOFs
2.1 Oxidation of alkanes
2.2 Oxidation of benzylic hydrocarbons
2.3 Oxidation of olefins
2.4 Oxidation of alcohols
2.5 Oxidation of phenols
2.6 Oxidation of sulfur compounds
2.7 Photocatalytic oxidative degradation of organic dyes
2.8 Other oxidation reactions
3 Catalytic oxidation by MOFs supported catalysts
3.1 Oxidation of CO
3.2 Oxidation of H2O
3.3 Oxidation of olefins
3.4 Oxidation of alcohols
3.5 Oxidation of sulfur compounds
3.6 Other oxidation reactions
4 Conclusion and outlook

CLC Number: 

[1] Hoskins B F, Robson R. J. Am. Chem. Soc., 1989, 111:5962.
[2] Yaghi O M, Li G, Li H. Nature, 1995, 378:703.
[3] Morris R E, Wheatley P S. Angew. Chem. Int. Ed., 2008, 47:4966.
[4] Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112:869.
[5] Zhao M, Ou S, Wu C D. Acc. Chem. Res., 2014, 47:1199.
[6] Dhakshinamoorthy A, Asiri A M, Garcia H. Chem. Soc. Rev., 2015, 44:1922.
[7] Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C Y. Chem. Soc. Rev., 2014, 43:6011.
[8] Zhang T, Lin W. Chem. Soc. Rev., 2014, 43:5982.
[9] Dhakshinamoorthy A, Garcia H. Chem. Soc. Rev., 2014, 43:5750.
[10] Dhakshinamoorthy A, Garcia H. Chem. Soc. Rev., 2012, 41:5262.
[11] Keskin S, Kizilel S. Ind. Eng. Chem. Res., 2011, 50:1799.
[12] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112:1196.
[13] Llabrés i Xamena F X, Abad A, Corma A, Garcia H. J. Catal., 2007, 250:294.
[14] Tonigold M, Lu Y, Bredenkötter B, Rieger B, Bahnmiiller S, Hitzbleck J, Langstein G, Volkmer D. Angew. Chem. Int. Ed., 2009, 48:7546.
[15] Maksimchuk N V, Kovalenko K A, Fedin V P, Kholdeeva O A. Chem. Commun., 2012, 48:6812.
[16] Farha O K, Shultz A M, Sarjeant A A, Nguyen S T, Hupp J T. J. Am. Chem. Soc., 2011, 133:5652.
[17] Meng L, Cheng Q, Kim C, Gao W Y, Wojtas L, Chen Y S, Zaworotko M J, Zhang X P, Ma S. Angew. Chem. Int. Ed., 2012, 51:10082.
[18] Wang X S, Chrzanowski M, Wojtas L, Chen Y S, Ma S. Chem. Eur. J., 2013, 19:3297.
[19] Feng D, Jiang H L, Chen Y P, Gu Z Y, Wei Z, Zhou H C. Inorg. Chem., 2013, 52:12661.
[20] Santiago Portillo A, Navalón S, Cirujano F G, Xamena F X L, Alvaro M, Garcia H. ACS Catal., 2015, 5:3216.
[21] Ramos-Fernandez E V, Garcia-Domingos M, Juan-Alcañiz J, Gascon J, Kapteijn F. Appl. Catal. A, 2011, 391:261.
[22] Kim J, Bhattacharjee S, Jeong K E, Jeong S Y, Ahn W S. Chem. Commun., 2009, 3904.
[23] Dhakshinamoorthy A, Alvaro M, Garcia H. J. Catal., 2009, 267:1.
[24] Wang S, Li L, Zhang J, Yuan X, Su C Y. J. Mater. Chem., 2011, 21:7098.
[25] Song G Q, Lu Y X, Zhang Q, Wang F, Ma X K, Huang X F, Zhang Z H. RSC Adv., 2014, 4:30221.
[26] Llabrés i Xamena F X, Casanova O, Tailleur R G, Garcia H, Corma A. J. Catal., 2008, 255:220.
[27] Luz I, León A, Boronat M, Llabrés i Xamena F X, Corma A. Catal. Sci. Technol., 2013, 3:371.
[28] Shi D, Ren Y, Jiang H, Lu J, Cheng X. Dalton Trans., 2013, 42:484.
[29] Biswas S, Maes M, Dhakshinamoorthy A, Feyand M, Vos D E D, Garcia H, Stock N. J. Mater. Chem., 2012, 22:10200.
[30] Hamidipour L, Farzaneh F. React. Kinet. Mech. Catal., 2013, 109:67.
[31] Yang X L, Xie M H, Zou C, He Y, Chen B, O'Keeffe M, Wu C D. J. Am. Chem. Soc., 2012, 134:10638.
[32] Zou C, Zhang Z, Xu X, Gong Q, Li J, Wu C D. J. Am. Chem. Soc., 2012, 134:87.
[33] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309:2040.
[34] Tonigold M, Lu Y, Mavrandonakis A, Puls A, Staudt R, Möllmer J, Sauer J, Volkmer D. Chem. Eur. J., 2011, 17:8671.
[35] Leus K, Vandichel M, Liu Y Y, Muylaert I, Musschoot J, Pyl S, Vrielinck H, Callens F, Marin G B, Detavernier C, Wiper P V, Khimyak Y Z, Waroquier M, Speybroeck V V, Voort P V D. J. Catal., 2012, 285:196.
[36] Cancino P, Paredes-García V, Aguirre P, Spodine E. Catal. Sci. Technol., 2014, 4:2599.
[37] Tuci G, Giambastiani G, Kwon S, Stair P C, Snurr R Q, Rossin A. ACS Catal., 2014, 4:1032.
[38] Leus K, Muylaert I, Vandichel M, Marin G B, Waroquier M, Speybroeck V V, Voort P V D. Chem. Commun., 2010, 46:5085.
[39] Lu Y, Tonigold M, Bredenkötter B, Volkmer D, Hitzbleck J, Langstein G. Z. Anorg. Allg. Chem., 2008, 634:2411.
[40] Jiang D, Mallat T, Meier D M, Urakawa A, Baiker A. J. Catal., 2010, 270:26.
[41] Xie M H, Yang X L, Wu C D. Chem. Commun., 2011, 47:5521.
[42] Xie M H, Yang X L, He Y, Zhang J, Chen B, Wu C D. Chem. Eur. J., 2013, 19:14316.
[43] Zou C, Zhang T, Xie M H, Yan L, Kong G Q, Yang X L, Ma A, Wu C D. Inorg. Chem., 2013, 52:3620.
[44] Cho S H, Ma B, Nguyen S T, Hupp J T, Albrecht-Schmitt T E. Chem. Commun., 2006, 2563.
[45] Shultz A M, Farha O K, Adhikari D, Sarjeant A A, Hupp J T, Nguyen S T. Inorg. Chem., 2011, 50:3174.
[46] Song F, Wang C, Falkowski J M, Ma L, Lin W. J. Am. Chem. Soc., 2010, 132:15390.
[47] Song F, Wang C, Lin W. Chem. Commun., 2011, 47:8256.
[48] Huang Y, Liu T, Lin J, Lü J, Lin Z, Cao R. Inorg. Chem., 2011, 50:2191.
[49] Shi D, Ren Y, Jiang H, Cai B, Lu J. Inorg. Chem., 2012, 51:6498.
[50] Kholdeeva O A, Skobelev I Y, Ivanchikova I D, Kovalenko K A, Fedin V P, Sorokin A B. Catal. Today, 2014, 238:54.
[51] Saedi Z, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I. Catal. Commun., 2012, 17:18.
[52] Qi Y, Luan Y, Yu J, Peng X, Wang G. Chem. Eur. J., 2015, 21:1589.
[53] Sun J, Yu G, Huo Q, Kan Q, Guan J. RSC Adv., 2014, 4:38048.
[54] Navarro J A R, Barea E, Salas J M, Masciocchi N, Galli S, Sironi A, Ania C O, Parra J B. Inorg. Chem., 2006, 45:2397.
[55] Xie M H, Yang X L, Wu C D. Chem. Eur. J., 2011, 17:11424.
[56] Llabrés i Xamena F X, Corma A, Garcia H. J. Phys. Chem. C, 2007, 111:80.
[57] Xie M H, Yang X L, Zou C, Wu C D. Inorg. Chem., 2011, 50:5318.
[58] Feng D, Gu Z Y, Li J R, Jiang H L, Wei Z, Zhou H C. Angew. Chem. Int. Ed., 2012, 51:10307.
[59] Chen Y, Hoang T, Ma S. Inorg. Chem., 2012, 51:12600.
[60] Wang K, Feng D, Liu T F, Su J, Yuan S, Chen Y P, Bosch M, Zou X, Zhou H C. J. Am. Chem. Soc., 2014, 136:13983.
[61] Dhakshinamoorthy A, Alvaro M, Garcia H. Chem. Commun., 2010, 46:6476.
[62] Johnson J A, Zhang X, Reeson T C, Chen Y S, Zhang J. J. Am. Chem. Soc., 2014, 136:15881.
[63] Dybtsev D N, Nuzhdin A L, Chun H, Bryliakov K P, Talsi E P, Fedin V P, Kim K. Angew. Chem. Int. Ed., 2006, 45:916.
[64] Hwang Y K, Hong D Y, Chang J S, Seo H, Yoon M, Kim J, Jhung S H, Serre C, Férey G. Appl. Catal., 2009, 358:249.
[65] Du J J, Yuan Y P, Sun J X, Peng F M, Jiang X, Qiu L G, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 190:945.
[66] Laurier K G M, Vermoortele F, Ameloot R, Vos D E D, Hofkens J, Roeffaers M B J. J. Am. Chem. Soc., 2013, 135:14488.
[67] Wen L, Zhao J, Lv K, Wu Y, Deng K, Leng X, Li D. Cryst. Growth Des., 2012, 12:1603.
[68] Gao J, Miao J, Li P Z, Teng W Y, Yang L, Zhao Y, Liu B, Zhang Q. Chem. Commun., 2014, 50:3786.
[69] Bala S, Bhattacharya S, Goswami A, Adhikary A, Konar S, Mondal R. Cryst. Growth Des., 2014, 14:6391.
[70] Phan N T S, Nguyen T T, Vu P H L. ChemCatChem, 2013, 5:3068.
[71] Phan N T S, Vu P H L, Nguyen T T. J. Catal., 2013, 306:38.
[72] Luz I, Corma A, Llabrés i Xamena F X. Catal. Sci. Technol., 2014, 4:1829.
[73] Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proceedings of the National Academy of Science U.S.A., 2006, 103:10186.
[74] Jiang H L, Liu B, Akita T, Haruta M, Sakurai H, Xu Q. J. Am. Chem. Soc., 2009, 131:11302.
[75] Aijaz A, Karkamkar A, Choi Y J, Tsumori N, Rönnebro E, Autrey T, Shioyama H, Xu Q. J. Am. Chem. Soc., 2012, 134:13926.
[76] El-Shall M S, Abdelsayed V, Khder A E R S, Hassan H M A, El-Kaderi H M, Reich T E. J. Mater. Chem., 2009, 19:7625.
[77] Wang W, Li Y, Zhang R, He D, Liu H, Liao S. Catal. Commun., 2011, 12:875.
[78] Ramos-Fernandez E V, Pieters C, van der Linden B, Juan-Alcañiz J, Serra-Crespo P, Verhoeven M W G M, Niemantsverdriet H, Gascon J, Kapteijn F. J. Catal., 2012, 289:42.
[79] Fateeva A, Chater P A, Ireland C P, Tahir A A, Khimyak Y Z, Wiper P V, Darwent J R, Rosseinsky M J. Angew. Chem. Int. Ed., 2012, 51:7440.
[80] Clough A J, Yoo J W, Mecklenburg M H, Marinescu S C. J. Am. Chem. Soc., 2015, 137:118.
[81] Wang C, Xie Z, deKrafft K E, Lin W. J. Am. Chem. Soc., 2011, 133:13445.
[82] Wang C, Wang J L, Lin W. J. Am. Chem. Soc., 2012, 134:19895.
[83] Nepal B, Das S. Angew. Chem. Int. Ed., 2013, 52:7224.
[84] Ingleson M J, Barrio J P, Guilbaud J B, Khimyak Y Z, Rosseinsky M J. Chem. Commun., 2008, 2680.
[85] Bhattacharjee S, Yang D A, Ahn W S. Chem. Commun., 2011, 47:3637.
[86] Tang J, Dong W, Wang G, Yao Y, Cai L, Liu Y, Zhao X, Xu J, Tan L. RSC Adv., 2014, 4:42977.
[87] Leus K, Liu Y Y, Meledina M, Turner S, Tendeloo G V, Voort P V D. J. Catal., 2014, 316:201.
[88] Maksimchuk N V, Timofeeva M N, Melgunov M S, Shmakov A N, Chesalov Y A, Dybtsev D N, Fedin V P, Kholdeeva O A. J. Catal., 2008, 257:315.
[89] Zhang Z, Zhang L, Wojtas L, Eddaoudi M, Zaworotko M J. J. Am. Chem. Soc., 2012, 134:928.
[90] Zhang Z, Zhang L, Wojtas L, Nugent P, Eddaoudi M, Zaworotko M J. J. Am. Chem. Soc., 2012, 134:924.
[91] Ishida T, Nagaoka M, Akita T, Haruta M. Chem. Eur. J., 2008, 14:8456.
[92] Esken D, Turner S, Lebedev O I, Tendeloo G V, Fischer R A. Chem. Mater., 2010, 22:6393.
[93] Liu H, Liu Y, Li Y, Tang Z, Jiang H. J. Phys. Chem. C, 2010, 114:13362.
[94] Müller M, Turner S, Lebedev O I, Wang Y, van Tendeloo G, Fischer R A. Eur. J. Inorg. Chem., 2011, 1876.
[95] Proch S, Herrmannsdörfer J, Kempe R, Kern C, Jess A, Seyfarth L, Senker J. Chem. Eur. J., 2008, 14:8204.
[96] Zhou Y X, Chen Y Z, Cao L, Lu J, Jiang H L. Chem. Commun., 2015, 51:8292.
[97] Song J, Luo Z, Britt D K, Furukawa H, Yaghi O M, Hardcastle K I, Hill C L. J. Am. Chem. Soc., 2011, 133:16839.
[98] Nguyen H G T, Weston M H, Farha O K, Hupp J T, Nguyen S T. CrystEngComm, 2012, 14:4115.
[99] Alkordi M H, Liu Y, Larsen R W, Eubank J F, Eddaoudi M. J. Am. Chem. Soc., 2008, 130:12639.
[100] Kockrick E, Lescoue T, Kudrik E V, Sorokin A B, Farrusseng D. Chem. Commun., 2011, 47:1562.
[101] Zalomaeva O V, Kovalenko K A, Chesalov Y A, Mel'gunov M S, Zaikovskii V I, Kaichev V V, Sorokin A B, Kholdeeva O A, Fedin V P. Dalton Trans., 2011, 40:1441.
[102] Larsen R W, Wojtas L, Perman J, Musselman R L, Zaworotko M J, Vetromile C M. J. Am. Chem. Soc., 2011, 133:10356.
[1] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[2] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[3] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[4] Jinghao Liu, Xueqian Wu, Yufeng Wu, Jiamei Yu. Computational Study on Adsorption and Separation of C2 and C3 Hydrocarbons by Metal-Organic Frameworks [J]. Progress in Chemistry, 2020, 32(1): 133-144.
[5] Zhe Liu, Xiaolan Zhang, Ting Cai, Jing Yua, Kunfeng Zhao, Dannong He. Catalytic Oxidation of Formaldehyde over Manganese-Based Catalysts and the Influence of Synergistic Effect [J]. Progress in Chemistry, 2019, 31(2/3): 311-321.
[6] Xi Liang, Cheng Wang, Yijie Lei, Yadi Liu, Bo Zhao, Feng Liu. Potential Applications of Metal Organic Framework-Based Materials for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(11): 1770-1783.
[7] Zhao Qian, Ge Yunli, Ji Na, Song Chunfeng, Ma Degang, Liu Qingling. Removal of Volatile Organic Compounds by Catalytic Oxidation Technology [J]. Progress in Chemistry, 2016, 28(12): 1847-1859.
[8] Zhang Hui, Zhou Yajing, Song Xiaokai. Advanced Functional Materials Derived from Metal-Organic Frameworks [J]. Progress in Chemistry, 2015, 27(2/3): 174-191.
[9] Wang Weitao, Yao Min, Ma Yangmin, Zhang Jin. Direct Oxidation of Liquid Benzene to Phenol with Molecular Oxygen [J]. Progress in Chemistry, 2014, 26(10): 1665-1672.
[10] Song Xiaokai, Zhou Yajing, Li Liang. Synthesis of Core-Shell Metal-Organic Frameworks [J]. Progress in Chemistry, 2014, 26(0203): 424-435.
[11] Wang Meng, Hui Yonghai, Zhang Xuehua, Wei Yana, Shi Minshan, Wang Jide*. Oxidation of Tetrahydrofuran [J]. Progress in Chemistry, 2013, 25(07): 1158-1165.
[12] Fu Yanyan, Yan Xiuping*. Metal-Organic Framework Composites [J]. Progress in Chemistry, 2013, 25(0203): 221-232.
[13] Liu Bing, Jie Suyun*, Li Bogeng*. Metal-Organic Frameworks for Heterogeneous Catalysis [J]. Progress in Chemistry, 2013, 25(01): 36-45.
[14] Ren Fangfang, Jiang Fengxing, Zhou Weiqiang, Du Yukou, Xu Jingkun. Application of Conducting Polymers/Metal Composites for C1 Molecules Electrooxidation [J]. Progress in Chemistry, 2012, (9): 1818-1836.
[15] Zhang Jun, Chen Jing, Huang Xinsong, Li Guangshe. Recent Research Progress and Applications of Nano Catalytic Materials for CO Oxidation [J]. Progress in Chemistry, 2012, 24(07): 1245-1251.