中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (07): 1158-1165 DOI: 10.7536/PC121158 Previous Articles   Next Articles

Oxidation of Tetrahydrofuran

Wang Meng, Hui Yonghai, Zhang Xuehua, Wei Yana, Shi Minshan, Wang Jide*   

  1. Key Lab of Oil & Gas Fine Chemicals, Ministry of Education, Xinjiang University, Urumqi 830046, China
  • Received: Revised: Online: Published:
PDF ( 3075 ) Cited
Export

EndNote

Ris

BibTeX

The oxidation of tetrahydrofuran is an important organic oxidation reaction, the studies of the oxidation of tetrahydrofuran would provide the references and theoretical basis of the α C-H selective activation to other organic matters. Tetrahydrofuran is also a kind of organic chemical raw materials and fine chemical raw materials, therefore the study of tetrahydrofuran oxidation is of very important significance in the field of organic synthesis and industrial production applications. In this paper, the recent progress on the oxidation of tetrahydrofuran is reviewed and the catalytic oxidations of tetrahydrofuran by dioxygen and hydrogen peroxide are introduced with emphasis. Electrochemical oxidation of tetrahydrofuran and several other catalytic oxidation methods of tetrahydrofuran are also summarized. Furthermore, the possible oxidation mechanisms of some important reactions are discussed. Based on the development trends related to the oxidation of tetrahydrofuran in recent years, the hotspots of future research are proposed. Contents
1 Introduction
2 Oxidation of tetrahydrofuran
2.1 Catalytic oxidation of tetrahydrofuran by oxygen
2.2 Catalytic oxidation of tetrahydrofuran by hydrogen peroxide
2.3 Catalytic oxidation of tetrahydrofuran by bromate
2.4 Oxidation of tetrahydrofuran by electrochemical methods
3 Conclusion and outlook

CLC Number: 

[1] Roduner E, Kaim W, Sarkar B, Urlacher V B, Pleiss J, Gläser R, Einicke W D, Sprenger G A, Beifu U, Klemm E, Liebner C, Hieronymus H, Hsu S F, Plietker B, Laschat S. ChemCatChem, 2012, 5: 82-112
[2] Conejero S, Paneque M, Poveda M L, Santos L L, Carmona E. Acc. Chem. Res., 2010, 43: 572-580
[3] 陈清元(Chen Q Y), 陈中华(Chen Z H), 綦书银(Qi S Y), 程时远(Chen S Y). 弹性体(China Elastomerics), 1994, 4(2): 1-5
[4] 王勤旺(Wang Q W). 精细与专用化学品(Fine and Special Chemicals), 2002, (20): 7-9
[5] 何春(He C), 唐亚文(Tang Y W), 李刚(Li G), 周涛(Zhou T). 甘肃科技(Gansu Science and Technology), 2007, 23(11): 95-97
[6] 邱娅男(Qiu Y N). 科技情报开发与经济(Sci-Tech Information Development & Economy ), 2008, 18(34): 83-84
[7] Bamoharram F F, Heravi M M, Roshani M, Gharib A, Jahangir M. J. Mol. Catal. A: Chem., 2006, 252: 90-95
[8] Hwang D W, Kashinathan P, Lee J M, Lee J H, Lee U h, Hwang J S, Hwang Y K, Chang J S. Green Chem., 2011, 13: 1672-1675
[9] Li X, Cui Y, Yang X, Dai W L, Fan K. Appl. Catal., A, 2013, 458: 63-70
[10] Sommovigo M, Alper H. J. Mol. Catal., 1994, 88: 151-158
[11] Fazlur-Rahman A K, Tsai J C, Nicholas K M. J. Chem. Soc., 1992, 1334-1335
[12] Heyns K, Buchholz H. Chem. Ber., 1976, 109: 3707-3727
[13] Shi M. J. Chem. Res., 1998, 592-593
[14] Hata E, Takai T, Mukaiyama T. Chem. Lett., 1993, 22: 1513-1516
[15] Reetz M T, Töllner K. Tetrahedron Lett., 1995, 36: 9461-9464
[16] 雷亮(Lei L), 熊国宣(Xiong G X), 王银柱(Wang Y Z). 化工新型材料(New Chemical Materials), 2012, 40(2): 16-20
[17] Sun C, Hu B, Liu Z. Heteroat. Chem., 2012, 23: 295-303
[18] Bench B A, Brennessel W W, Lee H J, Gorun S M. Angew. Chem., 2002, 114: 776-780
[19] Mandal A K, Khanna V, Iqbal J. Tetrahedron Lett., 1996, 37: 3769-3772
[20] Mandal A K, Iqbal J. Tetrahedron, 1997, 53: 7641-7648
[21] Niederhoffer E C, Timmons J H, Martell A E. Chem. Rev., 1984, 84: 137-203
[22] Simándi L I. Catalytic Oxidations Using Cobalt(Ⅱ) Complexes. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003. 265-328
[23] Wang J D, Shi M S, Zhang Q, Xie Z F, Song N, Lei H Q. CN102093203A, 2011
[24] Straub T, Koskinen A M P. Inorg. Chem. Commun., 2002, 1052-1055
[25] Straub T, Koskinen A. WO2004033391, 2004
[26] Denisova T O, Golubnichaya M A, Nefedov S E. Russ. Chem. Bull., 2003, 52: 2760-2763
[27] Saito K, Arai T, Takahashi N, Tsukuda T, Tsubomura T. Dalton Trans., 2006, 4444-4448
[28] Zazybin A, Osipova O, Khusnutdinova U, Aristov I, Solomonov B, Sokolov F, Babashkina M, Zabirov N. J. Mol. Catal., 2006, 253: 234-238
[29] Kitajima N, Moro-oka Y. Chem. Rev., 1994, 94: 737-757
[30] Itoh S. Curr. Opin. Chem. Biol., 2006, 10: 115-122
[31] Punniyamurthy T, Rout L. Coord. Chem. Rev., 2008, 252: 134-154
[32] Luckay R C, Sheng X, Strasser C E, Raubenheimer H G, Safin D A, Babashkina M G, Klein A. New J. Chem., 2010, 34: 2835-2840
[33] Wang T J, Ma Z H, Huang M Y, Jiang Y Y. Polym. Adv. Technol., 1996, 7: 88-91
[34] Hay M T, Hainaut B J, Geib S J. Inorg. Chem. Commun., 2003, 6: 431-434
[35] Hay M T, Geib S J, Pettner D A. Polyhedron, 2009, 28: 2183-2186
[36] Moreira R F, Tshuva E Y, Lippard S J. Inorg. Chem., 2004, 43: 4427-4434
[37] Aresta M, Fragale C, Quaranta E, Tommasi I. J. Chem. Soc., 1992, 315-317
[38] 任水英(Ren S Y), 解正峰(Xie Z F), 谢晓鹏(Xie X P), 秦高飞(Qin G F), 王吉德(Wang J D). 化学进展(Progress in Chemistry), 2009, 21(4): 663-671
[39] Amati A, Dosualdo G, Zhao L, Bravo A, Fontana F, Minisci F, Bjørsvik H R. Org. Process Res. Dev., 1998, 2: 261-269
[40] Taramasso M, Perego G, Notari B. US4410501, 1983
[41] Sasidharan M, Suresh S, Sudalai A. Tetrahedron Lett., 1995, 36: 9071-9072
[42] Sasidharan M, Bhaumik A. J. Mol. Catal. A: Chem., 2011, 338: 105-110
[43] Salavati-Niasari M, Bazarganipour M. Inorg. Chem. Commun., 2006, 9: 332-336
[44] Salavati-Niasari M, Najafian H. J. Chem. Res. Synop., 2003, 538-539
[45] Salavati-Niasari M. J. Mol. Catal. A: Chem., 2004, 217: 87-92
[46] Salavati-Niasari M, Amiri A. J. Mol. Catal. A: Chem., 2005, 235: 114-121
[47] Salavati-Niasari M, Amiri A. Transition Met. Chem., 2005, 30: 720-725
[48] Salavati-Niasari M. Inorg. Chem. Commun., 2006, 9: 628-633
[49] Salavati-Niasari M, Mir N. J. Incl. Phenom. Macro., 2007, 59: 223-230
[50] Salavati-Niasari M. Inorg. Chem. Commun., 2005, 8: 174-177
[51] Salavati-Niasari M, Rezai-Adaryani M, Heydarzadeh S. Transition Met. Chem., 2005, 30: 445-450
[52] Ernst S. Zeolite-Entrapped Metal Complexes. Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 614-631
[53] Li G, Chen L, Bao J, Li T, Mei F. Appl. Catal., A, 2008, 346: 134-139
[54] Potowicz J, Pamin K, Tabor E, Haber J, Adamski A, Sojka Z. Appl. Catal. A, 2006, 299: 235-242
[55] Madadi M, Rahimi R. Mech. Cat., 2012, 107: 215-229
[56] Salavati-Niasari M. J. Mol. Catal. A: Chem., 2009, 310: 51-58
[57] Kajigaeshi S, Nakagawa T, Nagasaki N, Yamasaki H, Fujisaki S. Bull. Chem. Soc. Jpn., 1986, 59: 747-750
[58] Uyanik M, Fukatsu R, Ishihara K. Chem. Asian J., 2010, 5: 456-460
[59] Joshi G, Patil R D, Adimurthy S. RSC Advances, 2012, 2: 2235-2239
[60] Metsger L, Bittner S. Tetrahedron, 2000, 56: 1905-1910
[61] Wermeckes B, Beck F, Schulz H. Tetrahedron, 1987, 43: 577-583
[62] Kirsanova A I, Smirnova M G. Elektrokhimiya, 1979, 43: 557
[63] Horányi G, Rizmayer E M. Electrochim. Acta, 1985, 30: 767-772
[64] Avgousti C, Georgolios N, Kyriacou G, Ritzoulis G. Electrochim. Acta, 1999, 44: 3295-3301
[65] Ogata Y, Tomizawa K, Ikeda T. J. Org. Chem., 1979, 44: 2362-2364
[66] Ogata Y, Tomizawa K, Ikeda T. J. Org. Chem., 1980, 45: 1320-1322
[67] Griffith W. Ruthenium Oxidation Complexes. Springer Netherlands, 2011. 227-252
[68] Plietker B. Synthesis, 2005, 15: 2453-2472
[69] Smith A B, Scarborough R M. Synth. Commun., 1980, 10: 205-211
[70] Carlsen P H J, Katsuki T, Martin V S, Sharpless K B. J. Org. Chem., 1981, 46: 3936-3938

[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[5] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[6] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[7] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[8] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[9] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[10] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[11] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[12] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[13] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[14] Siyan Yu, Long Zheng, Pengfei Meng, Xiudong Shi, Shijun Liao. M-N/C Electrocatalysts Derived from MOFs for Oxygen Reduction Reaction [J]. Progress in Chemistry, 2021, 33(10): 1693-1705.
[15] Yu Du, Depei Liu, Shicheng Yan, Tao Yu, Zhigang Zou. NiFe Layered Double Hydroxides for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2020, 32(9): 1386-1401.
Viewed
Full text


Abstract

Oxidation of Tetrahydrofuran