中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (10): 1665-1672 DOI: 10.7536/PC140637 Previous Articles   Next Articles

• Review •

Direct Oxidation of Liquid Benzene to Phenol with Molecular Oxygen

Wang Weitao*1, Yao Min2, Ma Yangmin1, Zhang Jin1   

  1. 1. Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry of Ministry of Education, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China;
    2. Xi'an Catalyst Chemical Co., Ltd, Xi'an 710016, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the Doctoral Starting up Foundation of Shaanxi University of Science & Technology (No. BJ13-26, BJ12-26)

PDF ( 2281 ) Cited
Export

EndNote

Ris

BibTeX

Phenol is a kind of important chemical materials, which is mainly produced from isopropylbenzene oxidation process. The drawbacks of the process include long synthesis process, consuming propylene and forming byproducts. Directly oxidation of benzene to phenol with molecular oxygen, possessing the advantages of less steps, low cost and environmental friendly, has become the research hotspot in green preparation of phenol. In this review, the progress of oxidation of liquid benzene to phenol with oxygen is summarized systematically. The reaction system, including the reaction mechanism, catalysts, and reductant is reviewed. The effects of reaction temperature, oxygen pressure, reductant and solvent on the yields of phenol are also discussed. Furthermore, the current research problems and future research perspectives are also suggested.

Contents
1 Introduction
2 Reaction mechanism
3 Catalysts
3.1 Vanadium-based catalysts
3.2 Copper-based catalysts
3.3 Heteropolyacids-based catalysts
3.4 Other catalysts
4 Reductants
5 The effects of reaction conditions
5.1 Reaction temperature
5.2 Reaction pressure
5.3 The account of reductant
5.4 Solvents
6 Conclusion and outlook

CLC Number: 

[1] 伯仁(Bo R). 精细化工原料及中间体(Fine Chemical Industrial Raw Materials & Intermediates), 2012, 8 (144): 30.
[2] 刘洁(Liu J), 梅来宝(Mei L B). 精细石油化工进展(Advances in Fine Petrochemicals), 2007, 8 (8): 41.
[3] Lücke B, Narayana K V, Martin A, Jähnisch K. Adv. Synth. Catal., 2004, 346 (12): 1407.
[4] 任永利(Ren Y L), 王莅(Wang L), 张香文(Zhang X W). 化学进展(Progress in Chemistry), 2003, 15 (5): 420.
[5] 尹双凤(Yin S F), 伍水生(Wu S S), 代威力(Dai W L), 李文生(Li W S), 黄孟光(Huang M G), 周小平(Zhou X P). 化学进展(Progress in Chemistry), 2007, 19 (5): 735.
[6] Jiang T, Wang W T, Han B X. New J. Chem., 2013, 37: 1654.
[7] Bianchi D, Bortolo R, Tassinari R, Ricci M, Vignola R. Angew. Chem. Int. Ed., 2000, 112 (23): 4491.
[8] Borah P, Ma X, Nguyen K T, Zhao Y L. Angew. Chem. Int. Ed., 2012, 51 (31): 7756.
[9] Kamata K, Yamaura T, Mizuno N. Angew. Chem. Int. Ed., 2012, 51 (29): 7275.
[10] Tang D Y, Zhu L F, Hu C W. RSC Adv., 2012, 2 (6): 2329.
[11] Xia H A, Sun K Q, Sun K J, Feng Z C, Li W X, Li C. J. Phys. Chem. C, 2008, 112 (24): 9001.
[12] Yamanaka H, Hamada R, Nibuta H, Nishiyama S, Tsuruya S. J. Mol. Catal. A: Chem., 2002, 178 (1): 89.
[13] Kato C N, Hasegawa M, Sato T, Yoshizawa A, Inoue T, Mori W. J. Catal., 2005, 230 (1): 226.
[14] Kharitonov A S, Sobolev V I, Panov G I. Russ. Chem. Rev., 1992, 61: 1130.
[15] 高肖汉(Gao X H), 吕雪川(Lv X C), 徐杰(Xu J). 分子催化(Journal of Molecular Catalysis (China)), 2008, 22 (4): 379.
[16] 陈练洪(Chen L H), 李稳宏(Li W H), 李冬(Li D), 韩枫(Han F). 化工进展(Chemical Industry and Engineering Progress), 2005, 24 (3): 236.
[17] Roduner E, Kaim W, Sarkar B, Urlacher V B, Pleiss J, Gläser R, Einicke W D, Sprenger G A, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu S F, Plietker B, Laschat S. Chem. Cat. Chem., 2013, 5 (1): 82.
[18] Kubacka A, Wang Z, Sulikowski B, Cortés Corberán V. J. Catal., 2007, 250 (1): 184.
[19] Bal R, Tada M, Sasaki T, Iwasawa Y. Angew. Chem. Int. Ed., 2005, 45 (3): 448.
[20] Masumoto Y K, Hamada R, Yokota K, Nishiyama S, Tsuruya S. J. Mol. Catal. A: Chem., 2002, 184 (1/2): 215.
[21] Ishida M A, Masumoto Y, Hamada R, Nishiyama S, Tsuruya S, Masai M. J. Chem. Soc., Perkin Trans. 2, 1999, (4): 847.
[22] Miyahara T, Kanzaki H, Hamada R, Kuroiwa S, Nishiyama S, Tsuruya S. J. Mol. Catal. A: Chem., 2001, 176 (1): 141.
[23] Chen J Q, Gao S, Li J, Lv Y. Chin. J. Catal., 2011, 32 (9/10): 1446.
[24] Gao X H, Lv X C, Xu J. Chin. J. Chem., 2009, 27 (11): 2155.
[25] Gu Y Y, Zhao X H, Zhang G R, Ding H M, Shan Y K. Appl. Catal. A: Gen., 2007, 328 (2): 150.
[26] Gao X H, Xu J. Catal. Lett., 2006, 111 (3): 203.
[27] Gao X H, Lv X C, Xu J. Kinet. Catal., 2010, 51 (3): 394.
[28] Zhao L N, Dong Y L, Zhan X L, Cheng Y, Zhu Y J, Yuan F L, Fu H G. Catal. Lett., 2012, 142: 619.
[29] Wang W T, Ding G D, Jiang T, Zhang P, Wu T B, Han B X. Green Chem., 2013, 15 (5): 1150.
[30] Ohtani T, Nishiyama S, Tsuruya S, Masai M. J. Catal., 1995, 155 (1): 158.
[31] Okamura J, Nishiyama S, Tsuruya S, Masai M. J. Mol. Catal. A: Chem., 1998, 135 (2): 133.
[32] Kitamura T, Kanzaki H, Hamada R, Nishiyama S, Tsuruya S. Can. J. Chem., 2004, 82 (11): 1597.
[33] Tani M, Sakamoto T, Mita S, Sakaguchi S, Ishii Y. Angew. Chem. Int. Ed., 2005, 44 (17): 2586.
[34] Liu Y Y, Murata K, Inaba M. Catal. Commun., 2005, 6 (10): 679.
[35] Ge H Q, Leng Y, Zhang F M, Zhou C J, Wang J. Catal. Lett., 2008, 124 (3): 250.
[36] Ge H Q, Leng Y, Zhou C J, Wang J. Catal. Lett., 2008, 124 (3): 324.
[37] Ge H Q, Leng Y, Zhang F M, Piao J R, Zhou C J, Wang J. Sci. China B, 2009, 52 (8): 1264.
[38] Zhou C J, Wang J, Leng Y, Ge H Q. Catal. Lett., 2010, 135 (1): 120.
[39] Zhou C J, Ge H Q, Leng Y, Wang J. Chin. J. Catal., 2010, 31 (6): 623.
[40] Long Z Y, Zhou Y, Chen G J, Zhao P P, Wang J. Chem. Eng. J., 2014, 239: 19.
[41] Wu Q, Yang H, Cheng H W, Liu Z G, You W S, Gao S. J. Mol. Struct., 2012, 1030: 83.
[42] Yang H, Li J, Wang L Y, Dai W, Lv Y, Gao S. Catal. Commun., 2013, 35: 101.
[43] Ichihashi Y, Taniguchi T, Amano H, Atsumi T, Nishiyama S, Tsuruya S. Top. Catal., 2008, 47 (3): 98.
[44] Laufer W, Niederer J P M, Hoelderich W F. Adv. Synth. Catal., 2002, 344 (10): 1084.
[45] Orita H, Hayakawa T, Shimizu M, Takehira K. J. Mol. Catal., 1987, 42 (1): 99.
[46] Liu Y Y, Murata K, Inaba M. J. Mol. Catal. A: Chem., 2006, 256 (1/2): 247.
[47] Burton H A, Kozhevnikov I V. J. Mol. Catal. A: Chem., 2002, 185 (1/2): 285.
[48] Sumimoto S, Tanaka C, Yamaguchi S, Ichihashi Y, Nishiyama S, Tsuruya S. Ind. Eng. Chem. Res., 2006, 45 (22): 7444.
[49] Yang H, Chen J Q, Li J, Lv Y, Gao S. Appl. Catal. A: Gen., 2012, 415/416: 22.
[50] Guo C, Du W D, Chen G, Shi L, Sun Q. Catal. Commun., 2013, 37: 19.
[51] Bortolotto L, Dittmeyer R. Sep. Purif. Technol., 2010, 73 (1): 51.
[52] Ehrich H, Berndt H, Pohl M M, Jähnisch K, Baerns M. Appl. Catal. A: Gen., 2002, 230 (1): 271.
[53] Sakamoto T, Takagaki T, Sakakura A, Obora Y, Sakaguchi S, Ishii Y. J. Mol. Catal. A: Chem., 2008, 288 (1): 19.
[54] Yamaguchi S, Sumimoto S, Ichihashi Y, Nishiyama S, Tsuruya S. Ind. Eng. Chem. Res., 2005, 44 (1): 1.
[55] Kanzaki H, Kitamura T, Hamada R, Nishiyama S, Tsuruya S. J. Mol. Catal. A: Chem., 2004, 208 (1): 203.
[56] Balducci L, Bianchi D, Bortolo R, D'Aloisio R, Ricci M, Tassinari R, Ungarelli R. Angew. Chem. Int. Ed., 2003, 115 (40): 5087.
[57] Peng J J, Shi F, Gu Y L, Deng Y Y. Green Chem., 2003, 5(2): 224.

[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[6] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[7] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[8] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[9] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[10] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[11] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[12] Jia Liu, Jun Shi, Kun Fu, Chao Ding, Sicheng Gong, Huiping Deng. Heterogeneous Catalytic Persulfate Oxidation of Organic Pollutants in the Aquatic Environment: Nonradical Mechanism [J]. Progress in Chemistry, 2021, 33(8): 1311-1322.
[13] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[14] Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan. Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers [J]. Progress in Chemistry, 2021, 33(6): 914-925.
[15] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.