中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1770-1783 DOI: 10.7536/PC171239 Previous Articles   Next Articles

• Review •

Potential Applications of Metal Organic Framework-Based Materials for Proton Exchange Membrane Fuel Cells

Xi Liang1, Cheng Wang1*, Yijie Lei1, Yadi Liu1, Bo Zhao2, Feng Liu2   

  1. 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21773136, 21573122, 2016YFB0101208), and the Beijing Municipal Science & Technology Commission (No. Z181100004518004, Z171100002017024).
PDF ( 748 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs), also called porous coordination networks (PCNs), are new types of porous crystalline materials, which have quite a few advantages, such as the structural design, functional modification of pore walls, high crystallinity, large specific surface area and excellent conductivity. It has attracted great attention in energy conversion and storage. This paper describes in detail the research of the new MOFs-based proton conductors and the electrocatalyst in the field of fuel-cell, and also concludes some important progress in MOFs-based proton exchange membrane and oxygen-reduction electrocatalyst. For example, the conductivity of one kind of MOFs proton exchange membrane can be as high as 1.82 S·cm-1 (70℃, 90% RH). A membrane electrode assembly (MEA) using the electrocatalyst with MOFs at the cathode can produce a peak power density of 0.91 W·cm-2. This paper also points out the deficiencies in this field, which provides new approaches for the development of high conductive proton exchange membrane and high catalytic activity electrocatalys in the future.
Contents
1 Introduction
2 Study of MOFs in proton exchange membranes
2.1 MOFs proton conductivity mechanism
2.2 Proton conductivity of MOFs in water system
2.3 Proton conductivity of MOFs in nonaqueous conditions
3 Study of MOFs on oxygen reduction (ORR) electrocatalysts
3.1 Non-precious metal ORR catalysts based on MOFs
3.2 Non-metallic ORR catalysts based on MOFs
4 Conclusion and outlook

CLC Number: 

[1] Rachuri Y, Bisht K K, Parmar B, Suresh E. Solid State Chem., 2015, 223:23.
[2] Zhang X, Wang Z J, Chen S G, Shi Z Z, Chen J X, Zheng H G. Dalton Trans., 2017, 46:2332.
[3] Lian X, Yan B A. Dalton Trans., 2016, 45:18668.
[4] Kumar P, Kim K H, Bansal V, Paul A K, Deep A. Microchem. J., 2016, 128:10.
[5] Daniel D S, Jarad A, Mason B D, James C H, Jeffrey R, Long M V. Energy & Fuel, 2017, 31:2024.
[6] Jiang J C, Furukawa H, Zhang Y B, Yaghi O M. J. Am. Chem. Soc., 2016, 138:10244.
[7] Sun L, Park S S, Sheberla D, Dincǎ M. J. Am. Chem. Soc., 2016, 138:14772.
[8] Mitra R, Saha A. ACS Sustainable Chem. Eng., 2017, 5:604.
[9] Wang C, Xie Z G, Dekrafft K E, Lin W L. J. Am. Chem. Soc., 2011, 133:13445.
[10] Rimoldi M, Howarth A J, DeStefano M R, Lin L, Goswami S, Li P, Hupp J T, Farha O K. ACS Catal., 2017, 7:997.
[11] Zen J M, Kumar A S. Acc. Chem. Res., 2001, 34:772.
[12] Gayen P, Chaplin B P. ACS Appl. Mater. Inter., 2016, 8:1615.
[13] Jiang B, Yu L H, Wu L T, MuD, Liu L, Xi J Y, Qiu S P. ACS Appl. Mater. Inter., 2016, 8:12228.
[14] Kim Y, Ketpang K, Jaritphun S, Parkb J S, Shanmugam S. J. Mater. Chem. A, 2015, 3:8148.
[15] Dong X Y, Li J J, Han Z, Duan P G, Li L K, Zang S Q. J. Mater. Chem. A, 2017, 5:3464.
[16] Meng X, Wang H N, Song S Y, Zhang H J. Chem. Soc. Rev., 2017, 46:464.
[17] Wang R, Dong X Y, Xu H, Pei R B, Ma Ming L, Zang S Q, Hou H W, Thomas C W M. Chem. Commun., 2014, 50:9153.
[18] Liang X, Li B, Wang M H, Wang J, Liu R L, Li G. ACS Appl. Mater. Inter., 2017, 9:25082.
[19] Dong X Y, Hu X P, Yao H C, Zang S Q, Hou H W, Mak T C W. Inorg. Chem., 2014, 53:12050.
[20] Thomas M, Illathvalappi R, Kurungot S, Nair B N, Mohamed A A P, Anilkumar G M, Yamaguchi T, Hareesh U S. ACS Appl. Mater. Inter., 2016, 8:29373.
[21] 罗琼(Luo Q). 大连理工大学硕士论文(Master's dissertation of Dalian Institute of Technology), 2016.
[22] Ni B, Ouyang C, Xu X B, Zhuang J, Wang X. J. Adv. Mater., 2017, 29:1701354.
[23] Zhao X, Mao C M, Bu X H, Feng P Y. Chem. Mater., 2014, 26:2492.
[24] Nagarkar S S, Unni S M, Sharma A, Sreekumar K, Ghosh S K. Angew. Chem. Int. Ed., 2014, 53:2638.
[25] Dybtsev D N, Ponomareva V G, Aliev S B, Chupakhin A P, Gallyamov M R, Moroz N K, Kolesov B A, Kovalenko K A, Shutova E S, Fedin V P. ACS Appl. Mater. Inter., 2014, 6, 5161.
[26] Li X M, Dong L Z, Li S L, Xu G, Liu J, Zhang F M, Lu L S, Qian Y L. ACS Energy Lett., 2017, 2:2313.
[27] Phang W J, Jo H, Lee W R, Song J H, Yoo K, Kim B S, Hong C S. Angew. Chem. Int. Ed., 2015, 54:5142.
[28] Wu B, Ge L, Lin X C, Wu L, Luo J Y, Xu T W. Mem. Sci., 2014, 458:86.
[29] Rao Z, Feng K, Tang B B, Wu P Y. Mem. Sci., 2017, 533:160.
[30] Umeyama D, Horike S, Inukai M, Kitagawa S. J. Am. Chem. Soc., 2013, 135:11345.
[31] Umeyama D, Horike S, Inukai M, Hijikata Y, Kitagawa S. Angew. Chem. Int. Ed., 2011, 50:11706.
[32] Ye Y X, Wu X Z, Yao Z Z, Wu L, Zhang Z J, Xiang S C. J. Mater. Chem. A, 2016, 4:4062.
[33] Jeong N C, Samanta B, Lee C Y, Farha O K, Hupp J T. J. Am. Chem. Soc., 2012, 134:51.
[34] Kim S, Dawson K W, Gelfand B S, Taylor J M, Shimizu G K H. Am. Chem. Soc., 2013, 135:963.
[35] Hurd J A, Vaidhyanathan R, Thangadurai V, Ratcliffe C I, Moudrakovski I L, Shimizu G K. Nat. Chem., 2009, 1:705.
[36] Joarder B, Lin J B, Romero Z, Shimizu G K H. Am. Chem. Soc., 2017, 139:7176.
[37] Ye Y X, Zhang L Q, Peng Q F, Wang G E, Shen Y C, Li Z Y, Wang L H, Ma X L, Chen Q H, Zhang Z J, Xiang S C. Am. Chem. Soc., 2015, 137:193.
[38] Sun H Z, Tang B B, Wu P Y. ACS Appl. Mater. Inter., 2017, 9:35075.
[39] Kreuer K D, Rabenau A, Weppner W. Angew. Chem. Int. Ed., 1982, 21:208.
[40] Agmon N. "The Grotthuss Mechanism" Chem. Phys. Lett., 1995, 244:456.
[41] 孙延俊(Sun Y J). 吉林大学硕士论文(Master's dissertation of Jilin University), 2016.
[42] Bao S S, Liao Y, Su Y H, Liang X, Hu F C, Sun Z H, Zheng L M, Wei S Q, Alberto R, Li Y Z, Ma J. Angew. Chem., 2011, 123:5618.
[43] Rao Z, Feng K, Tang B B, Wu P Y. Membrane Sci., 2017, 533:160.
[44] Dong X Y, Wang R, Wang J Z, Zang S Q, Thomas C W M. J. Mater. Chem. A, 2015, 3:641.
[45] Bao S S, Otsubo K, Taylor J M, Jiang Z, Zheng L M, Kitagawa H. J. Am. Chem. Soc., 2014, 136:9292.
[46] Umeyama D, Horike S, Inukai M, Itakura T, Kitagawa S. J. Am. Chem. Soc., 2012, 134, 12780.
[47] Wei Y S, Hu X P, Han Z, Dong X Y, Zang S Q, Thomas C W M. J. Am. Chem. Soc., 2017, 139:3505.
[48] Borges D D, Devautour V S, Jobic H, Ollivier J, Nouar F, Semino R, Devic T, Serre C, Paesani F, Maurin G. Angew. Chem., Int. Ed., 2016, 55:3919.
[49] Liu M, Chen L, Lewis S, Chong S Y, Little M A, Hasell T, Aldous I M, Brown C M, Smith M W, Morrison C A, Hardwick L J, Cooper A I. Nat. Commun., 2016, 7:12750
[50] Dong X Y, Wang R, Li J B, Zang S Q, Hou H W, Thomas C W M. Chem. Commun., 2013, 49:10590.
[51] Sadakiyo M, Yamada T, Honda K, Matsui H, Kitagawa H. J. Am. Chem. Soc., 2014, 136:7701.
[52] Sadakiyo M, Yamada T, Kitagawa H. J. Am. Chem. Soc., 2014, 136:13166.
[53] Bao S S, Li N Z, Taylor J M, Shen Y, Kitagawa H, Zheng L M. Chem. Mater., 2015, 27:8116.
[54] Zhoua H C J, Kitagawa S. Chem. Soc. Rev., 2014, 43:5415.
[55] Taylor J M, Dawson K W, Shimizu G K H. Am. Chem. Soc., 2013, 135:1193.
[56] Cai K, Sun F X, Liang X Q, Liu C, Zhao N, Zou X Q, Zhu G S. J. Mater. Chem. A, 2017, 5:12943.
[57] Xiang S C, Zhang Z J, Ye Y X, Yao Z Z. Crystal Engineering (Eds. Chinese Chemical Society). China:Chinese Meeting, 2016. 30.
[58] Li X M, Dong L Z, Li S L, Xu G, Liu J, Zhang F M, Lu L S, Lan Y Q. ACS Energy Lett., 2017, 2:2313.
[59] Ye Y X, Zhang L Q, Peng Q F, Wang G E, Shen Y C, Zhang Z J, Xiang S C. Am. Chem. Soc., 2015, 137:913.
[60] 王晓湘(Wang X X). 河南师范大学硕士论文(Master's Dissertation of Henan Normal University)
[61] Zhang F M, Dong L Z, Qin J S, Guan W, Liu J, Li S L, Lu M, Lan Y Q, Su Z M, Zhou H C. J. Am. Chem. Soc., 2017, 139:6183.
[62] Hurd J A, Vaidhyanathan R, Thangadurai V, Ratcliffe C I, Moudrakovski I L, Shimizu G K H. Nat. Chem., 2009, 2755.
[63] Li S W, Zhou Z, Liu M L, Li W, Ukai J, Hase K, Nakanishi M. Electrochim. Acta, 2006, 51:1351.
[64] Wang J T, Savinell R F, Wainright J, Litt M, Yu H. Electrochim. Acta, 1996, 41:193.
[65] Liu S C, Yue Z F, Liu Y. Dalton Trans., 2015, 44:12976.
[66] Zomoza B, Martinez J K, Serra C P, Coronas J, Kapteijn F. Chem. Commun., 2011, 47:9522.
[67] Kreuer K D, Paddison S J, Spohr E, Schuster M. Chem. Rev., 2004, 104:4637.
[68] Wu B, Ge L, Lin X C, Wu L, Luo J Y, Xu T W. J. Membrane Sci., 2014, 86:458.
[69] Rao C N R, Natarajan S, Vaidhyanathan R. Angew. Chem. Int. Ed., 2004, 43:1466.
[70] Wu B, Pan J F, Ge L, Wu L, Wang H T, Xu T W. Sci. Rep., 2014, 4:4334.
[71] Hu M, Reboul J, Furukawa S, Torad N L,Ji Q M, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y. J. Am. Chem. Soc., 2012, 134:2864.
[72] Liu B, Shioyama H, Akita N T, Xu Q. Am. Chem. Soc., 2008, 130:5390.
[73] Sun Y H, Zhao J C, Zhou H H, B H J, Gu Y Q, Tang A M, Liao C M, Xu J L. Adv. Mat. Res., 2011, 1010:239.
[74] Yan X L, Li X J, Yan Z F, Komarneni S. Appl. Sur. Sci., 2014, 308:306.
[75] Kenneth I O, Chen S W. Nanomaterials for Fuel Cell Catalysis. 1st ed. GER:Springer, 2016. 367.
[76] Patel H A, Mansor N, Gadipell Si, Brett D J L, Guo Z X. ACS Appl. Mater. Inter., 2016,8:30687.
[77] Jasinski R. Nat., 1964, 201:1212.
[78] Guan B Y, Yu L, Lou X W. Adv. Sci., 2017, 4:1700247.
[79] Zhang P, Guan B Y, Yu L, Lou X W. Chem., 2018, 4:162.
[80] Guan B Y, Yu L, Lou X W. Energy Environ. Sci., 2016, 9:3092.
[81] Ma S Q, Goenaga G A, Call A V, Liu D J. Chem. Eur., 2011, 17:2063.
[82] Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J,Herranz J, Dodelet J P. Nat. Comm., 2011, 2.
[83] Zheng R P, Liao S J, Hou S Y, Qiao X C, Wang G H, Liu L N, Shu T, Du L. J. Mater. Chem. A, 2016, 4:7859.
[84] Morozan A, Sougrati M T, Goellner V, Jones D, Stievano L, Jaouen F. Electrochimica Acta, 2014, 119:192.
[85] Zhao S, Yin H, Du L, He L, Zhao K, Chang L, Yin G, Zhao H, Liu S, Tang Z. ACS Nano, 2014, 8:12660.
[86] Shimbori Y, Shiroishi H, Ono R, Kosaka, S, Saito M, Yoshida T, Katagiri H, Miyazawa K, Tanaka Y. Mat. Sci. Eng. B, 2018, 228:190.
[87] Wang H, Yin F X, Chen B H, He X B, Lv P L, Ye C Y, Liu D J. Appl. Catal. B-Enviro., 2016, 205:55.
[88] Chen Y Z, Wang C M, Wu Z Y, Xiong Y J, Xu Q, Yu S H, Jiang H L. Adv. Mater., 2015, 27:5010.
[89] Palaniselvam T, Biswal B P, Banerjee R, Kurungot S, Chem. Eur. J., 2013, 19:9335.
[90] Ma S, Goenaga G A, Call A V, Liu D J, Chem. Eur. J., 2011, 17:2063.
[91] Zhang L J, Su Z X, Jiang F L, Yang L L, Qian J J, Zhou Y F, Lia W M, Hong M C. Nano., 2014, 6:6590.
[92] Zhang W, Wu Z Y, Jiang H L, Yu S H. J. Am. Chem. Soc., 2014, 136:14385.
[93] Luo Q, Chen L Y, Duan B H, Gu Z Z, Liu J, Xu M L, Duan C Y. RSC Adv., 2016, 6:12467.
[94] Zhang E H, Xie Y, Ci S Q, Jia J C, Cai P W, Yia L C, Wen Z H. J. Mater. Chem. A, 2016, 4:17288.
[95] Yang L J, Larouche N, Chenitz R, Zhang G X, Lefevre M, Dodelet J P. Electrochimica Acta, 2015, 159:184.
[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[5] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[6] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[7] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[8] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[9] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[10] Yang Zhang, Min Zhang, Hailei Zhao. Double Perovskite Material as Anode for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2022, 34(2): 272-284.
[11] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[12] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[13] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[14] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[15] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.