中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (2/3): 174-191 DOI: 10.7536/PC140925 Previous Articles   Next Articles

• Review •

Advanced Functional Materials Derived from Metal-Organic Frameworks

Zhang Hui1, Zhou Yajing2, Song Xiaokai*1   

  1. 1. School of Chemical & Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China;
    2. Changzhou Entry-Exit Inspection and Quarantine Bureau, Changzhou 213003, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21401083).

PDF ( 124784 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs) are a class of crystalline coordination-based compounds in which metal ions (or metal clusters) are bridged via multitopic organic ligands to form infinite network structures. The organic ligands and metal clusters in the structures of MOFs could be served as carbon source and metal source, respectively. Fabrication of advanced functional materials from MOF precursors becomes one of the most popular research topics in MOFs chemistry and functional materials field. In this paper, the research progress of advanced functional materials derived from MOFs in recent years is reviewed. Synthesis methods of carbon materials (e.g. nanoporous carbon, carbon nanodots, carbon nanotubes), metal oxide nanomaterials (e.g. monometal oxide: Fe2O3, ZnO, Co3O4, MgO, In2O3, multimetal oxide nanocomposites: Gd2O3/Eu2O3, Fe2O3@TiO2), and metal oxide/carbon nanocomposites (e.g. Fe2O3/C, ZnO/C) derived from MOFs are introduced. The applications of these advanced functional materials in the fields such as supercapacitor, oxygen reduction reaction (ORR) catalyst, hydrogen storage, CO2 capture and photocatalyst of photocatalytic hydrogen production are presented. Besides, an outlook for future development of advanced functional materials derived from MOFs is given.

Contents
2 Synthesis methods and applications of advanced functional materials derived from MOFs
2.1 Carbon materials derived from MOFs
2.2 Metal oxide nanomaterials derived from MOFs
2.3 Metal oxide/carbon nanocomposites derived from MOFs
3 Conclusion

CLC Number: 

[1] Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38: 1213.
[2] Suh M P, Park H J, Prasad T K, Lim D W. Chem. Rev., 2012, 112: 782.
[3] Murray L J, Dinca M, Long J R. Chem. Soc. Rev., 2009, 38: 1294.
[4] Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R. Chem. Rev., 2012, 112: 724.
[5] Férey G, Serre C, Devic T, Maurin G, Jobic H, Llewellyn P L, de Weireld G, Vimont A, Daturi M, Chang J S. Chem. Soc. Rev., 2011, 40: 550.
[6] Li J R, Sculley J, Zhou H C. Chem. Rev., 2012, 112: 869.
[7] Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38: 1477.
[8] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2012, 112: 1196.
[9] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
[10] Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, Férey G, Morris R E, Serre C. Chem. Rev., 2012, 112: 1232.
[11] Della Rocca J, Liu D, Lin W. Acc. Chem. Res., 2011, 44: 957.
[12] DeKrafft K E, Xie Z, Cao G, Tran S, Ma L, Zhou O Z, Lin W. Angew. Chem. Int. Ed., 2009, 48: 9901.
[13] Liu D, Huxford R C, Lin W. Angew. Chem. Int. Ed., 2011, 50: 3696.
[14] Kreno L E, Leong K, Farha O K, Allendorf M, van Duyne R P, Hupp J T. Chem. Rev., 2012, 112: 1105.
[15] Lu Z Z, Zhang R, Li Y Z, Guo Z J, Zheng H G. J. Am. Chem. Soc., 2011, 133: 4172.
[16] Kurmoo M. Chem. Soc. Rev., 2009, 38: 1353.
[17] Shen L, Yang S W, Xiang S, Liu T, Zhao B, Ng M F, Göettlicher J, Yi J, Li S, Wang L, Ding J, Chen B, Wei S H, Feng Y P. J. Am. Chem. Soc., 2012, 134: 17286.
[18] Chaikittisilp W, Ariga K, Yamauchi Y. J. Mater. Chem. A, 2013, 1: 14.
[19] Masoomi M Y, Morsali A. Coord. Chem. Rev., 2012, 256: 2921.
[20] Lee J, Kim J, Hyeon T. Adv. Mater., 2006, 18: 2073.
[21] Liang C, Li Z, Dai S. Angew. Chem. Int. Ed., 2008, 47: 3696.
[22] Davis M E. Nature, 2002, 417: 813.
[23] Grosso D, Boissière C, Smarsly B, Brezesinski T, Pinna N, Albouy P A, Amenitsch H, Antonietti M, Sanchez C. Nat. Mater., 2004, 3: 787.
[24] Ren Y, Ma Z, Bruce P G. Chem. Soc. Rev., 2012, 41: 4909.
[25] Buonsanti R, Pick T E, Krins N, Richardson T J, Helms B A, Milliron D J. Nano Lett., 2012, 12: 3872.
[26] Buser H J, Schwarzenbach D, Petter W, Ludi A. Inorg. Chem., 1977, 16(11): 2704.
[27] 宋肖锴(Song X K), 周雅静(Zhou Y J), 李亮(Li L). 化学进展(Progress in Chemistry), 2014, 26(2/3): 424.
[28] Li H, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402: 276.
[29] Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proc. Nat. Acad. Sci.U.S.A., 2006, 103: 10186.
[30] Comotti A, Bracco S, Sozzani P, Horike S, Matsuda R, Chen J, Takata M, Kubota Y, Kitagawa S. J. Am. Chem. Soc., 2008, 130: 13664.
[31] Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130: 5390.
[32] Liu B, Shioyama H, Jiang H, Zhang X, Xu Q. Carbon, 2010, 48: 456.
[33] Jiang H L, Liu B, Lan Y Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q. J. Am. Chem. Soc., 2011, 133: 11854.
[34] Almasoudi A, Mokaya R. J. Mater. Chem., 2012, 22: 146.
[35] Almasoudi A, Mokaya R. J. Mater. Chem. A, 2014, 2: 10960.
[36] Pachfule P, Biswal B P, Banerjee R. Chem. Eur. J., 2012,18: 11399.
[37] Radhakrishnan L, Reboul J, Furukawa S, Srinivasu P, Kitagawa S, Yamauchi Y. Chem. Mater., 2011, 23: 1225.
[38] Yuan D, Chen J, Tan S, Xia N, Liu Y. Electrochem. Commun., 2009, 11: 1191.
[39] Hu J, Wang H, Gao Q, Guo H. Carbon, 2010, 48: 3599.
[40] Zhang P, Sun F, Shen Z, Cao D. J. Mater. Chem. A, 2014, 2: 12873.
[41] Wu Z, Webley P A, Zhao D. J. Mater. Chem., 2012, 22: 11379.
[42] Hu M, Reboul J, Furukawa S, Radhakrishnan L, Zhang Y, Srinivasu P, Iwai H, Wang H, Nemoto Y, Suzuki N, Kitagawa S, Yamauchi Y. Chem. Commun., 2011, 47: 8124.
[43] Aijaz A, Fujiwara N, Xu Q. J. Am. Chem. Soc., 2014, 136: 6790.
[44] Pandiaraj S, Aiyappa H B, Banerjee R, Kurungot S. Chem. Commun., 2014, 50: 3363.
[45] Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet J P. Nat. Commun., 2011, 2: 416.
[46] Palaniselvam T, Biswal B P, Banerjee R, Kurungot S. Chem. Eur. J., 2013, 19: 9335.
[47] Zhao D, Shui J L, Chen C, Chen X, Reprogle B M, Wang D, Liu D J. Chem. Sci., 2012, 3: 3200.
[48] Rettig S J, Storr A, Summers D A, Thompson R C, Trotter J. J. Am. Chem. Soc., 1997, 119: 8675.
[49] Zhao D, Shui J L, Grabstanowicz L R, Chen C, Commet S M, Xu T, Lu J, Liu D J. Adv. Mater., 2014, 26: 1093.
[50] Afsahi F, Kaliaguine S. J. Mater. Chem. A, 2014, 2: 12270.
[51] Xu G, Ding B, Shen L, Nie P, Han J, Zhang X. J. Mater. Chem. A, 2013, 1: 4490.
[52] Wu H B, Wei S, Zhang L, Xu R, Hng H H, Lou X W. Chem. Eur. J., 2013, 19: 10804.
[53] Li J, Chen Y, Tang Y, Li S, Dong H, Li K, Han M, Lan Y Q, Bao J, Dai Z. J. Mater. Chem. A, 2014, 2: 6316.
[54] Li J S, Li S L, Tang Y J, Li K, Zhou L, Kong N, Lan Y Q, Bao J C, Dai Z H. Sci. Rep., 2014, 4: 5130.
[55] Aijaz A, Akita T, Yang H, Xu Q. Chem. Commun., 2014, 50: 6498.
[56] Ma S, Goenaga G A, Call A V, Liu D J. Chem. Eur. J., 2011, 17: 2063.
[57] Su P, Jiang L, Zhao J, Yan J, Li C, Yang Q. Chem. Commun., 2012, 48: 8769.
[58] Yang S J, Kim T, Im J H, Kim Y S, Lee K, Jung H, Park C R. Chem. Mater., 2012, 24: 464.
[59] Feldblyum J I, Liu M, Gidley D W, Matzger A J. J. Am. Chem. Soc., 2011, 133: 18257.
[60] Song X, Zou Y, Liu X, Oh M, Lah M S. New J. Chem., 2010, 34: 2396.
[61] Lim S, Suh K, Kim Y, Yoon M, Park H, Dybtsev D N, Kim K. Chem. Commun., 2012, 48: 7447.
[62] Aiyappa H B, Pachfule P, Banerjee R, Kurungot S. Cryst. Growth Des., 2013, 13: 4195.
[63] Wang W, Yuan D. Sci. Rep., 2014, 4: 5711.
[64] Hu M, Reboul J, Furukawa S, Torad N L, Ji Q, Srinivasu P, Ariga K, Kitagawa S, Yamauchi Y. J. Am. Chem. Soc., 2012, 134: 2864.
[65] Chaikittisilp W, Hu M, Wang H, Huang H S, Fujita T, Wu K C W, Chen L C, Yamauchi Y, Ariga K. Chem. Commun., 2012, 48: 7259.
[66] Torad N L, Hu M, Kamachi Y, Takai K, Imura M, Naitoa M, Yamauchi Y. Chem. Commun., 2013, 49: 2521.
[67] Torad N L, Salunkhe R R, Li Y, Hamoudi H, Imura M, Sakka Y, Hu C C, Yamauchi Y. Chem. Eur. J., 2014, 20: 7895.
[68] Wang X, Zhou J, Fu H, Li W, Fan X, Xin G, Zheng J, Li X. J. Mater. Chem. A, 2014, 2: 14064.
[69] Li R, Ren X, Feng X, Li X, Hu C, Wang B. Chem. Commun., 2014, 50: 6894.
[70] Wang Q, Xia W, Guo W, An L, Xia D, Zou R. Chem. Asian J., 2013, 8: 1879.
[71] Amali A J, Sun J K, Xu Q. Chem. Commun., 2014, 50: 1519.
[72] Yu G, Zou X, Wang A, Sun J, Zhu G. J. Mater. Chem. A, 2014, 2: 15420.
[73] Zhao X, Zhao H, Zhang T, Yan X, Yuan Y, Zhang H, Zhao H, Zhang D, Zhu G, Yao X. J. Mater. Chem. A, 2014, 2: 11666.
[74] Amali A J, Hoshino H, Wu C, Ando M, Xu Q. Chem. Eur. J., 2014, 20: 8279.
[75] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chem. Rev., 2006, 106: 1105.
[76] Chen L Y, Bai J, Wang C Z, Pan Y, Scheer M, You X Z. Chem. Commun., 2008, 1581.
[77] Shen Y, Bai J. Chem. Commun., 2010, 46: 1308.
[78] Su P, Xiao H, Zhao J, Yao Y, Shao Z, Li C, Yang Q. Chem. Sci., 2013, 4: 2941.
[79] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559.
[80] Li Q, Xu P, Gao W, Ma S, Zhang G, Cao R, Cho J, Wang H-L, Wu G. Adv. Mater., 2014, 26: 1378.
[81] Zhang J, Su C Y. Coord. Chem. Rev., 2013, 257: 1373.
[82] Hu Y, Fan Y, Huang Z, Song C, Li G. Chem. Commun., 2010, 46: 3966.
[83] Nune S K, Thallapally P K, McGrail B P. J. Mater. Chem., 2010, 20: 7623.
[84] Xia W, Qiu B, Xia D, Zou R. Sci. Rep., 2013, 3: 1935.
[85] Wang X S, Ma S, Forster P M, Yuan D, Eckert J, López J L, Murphy B J, Parise J B, Zhou H C. Angew. Chem. Int. Ed., 2008, 47: 7263.
[86] Wang L J, Deng H, Furukawa H, Gándara F, Cordova K E, Peri D, Yaghi O M. Inorg. Chem., 2014, 53: 5881.
[87] Parast M S Y, Morsali A. Inorg. Chem. Commun., 2011, 14: 645.
[88] Cho W, Lee Y H, Lee H J, Oh M. Chem. Commun., 2009, 4756.
[89] Cho W, Lee H J, Oh M. J. Am. Chem. Soc., 2008, 130: 16943.
[90] Lee H J, Cho W, Jung S, Oh M. Adv. Mater., 2009, 21: 674.
[91] Zboril R, Machala L, Mashlan M, Sharma V. Cryst. Growth Des., 2004, 4: 1317.
[92] Hu M, Jiang J S, Zeng Y. Chem. Commun., 2010, 46: 1133.
[93] Hu M, Belik A A, Imura M, Mibu K, Tsujimoto Y, Yamauchi Y. Chem. Mater., 2012, 24: 2698.
[94] Zhang L, Wu H B, Madhavi S, Hng H H, Lou X W. J. Am. Chem. Soc., 2012, 134: 17388.
[95] Zhang L, Wu H B, Xu R, Lou X W. CrystEngComm, 2013, 15: 9332.
[96] Cho W, Park S, Oh M. Chem. Commun., 2011, 47: 4138.
[97] Xu X, Cao R, Jeong S, Cho J. Nano Lett., 2012, 12: 4988.
[98] Su C Y, Goforth A M, Smith M D, Pellechia P J, zur Loye H C. J. Am. Chem. Soc., 2004, 126: 3576.
[99] Jung S, Cho W, Lee H J, Oh M. Angew. Chem. Int. Ed., 2009, 48: 1459.
[100] Park S, Cho W, Oh M. CrystEngComm, 2010, 12: 1060.
[101] Kundu T, Sahoo S C, Banerjee R. Cryst. Growth Des., 2012, 12: 2572.
[102] Kimitsuka Y, Hosono E, Ueno S, Zhou H, Fujihara S. Inorg. Chem., 2013, 12: 2572.
[103] Li Y, Che Z, Sun X, Dou J, Wei M. Chem. Commun., 2014, 50: 9769.
[104] Chen L, Zhao C, Wei Z, Wang S, Gu Y. Mater. Lett., 2011, 65: 446.
[105] Wu R, Qian X, Yu F, Liu H, Zhou K, Wei J, Huang Y. J. Mater. Chem. A, 2013, 1: 11126.
[106] Nayak S, Malik S, Indris S, Reedijk J, Powell A K. Chem. Eur. J., 2010, 16: 1158.
[107] Peng L, Zhang J, Xue Z, Han B, Li J, Yang G. Chem. Commun., 2013, 49: 11695.
[108] Lee J H, Sa Y J, Kim T K, Moon H R, Joo S H. J. Mater. Chem. A, 2014, 2: 10435.
[109] Liu B, Zhang X, Shioyama H, Mukai T, Sakai T, Xu Q. J. Power Sources, 2010, 195: 857.
[110] Li C, Yin X, Chen L, Li Q, Wang T. Chem. Eur. J., 2010, 16: 5215.
[111] Zhang F, Hao L, Zhang L, Zhang X. Int. J. Electrochem. Sci., 2011, 6: 2943.
[112] Meng F, Fang Z, Li Z, Xu W, Wang M, Liu Y, Zhang J, Wang W, Zhao D, Guo X. J. Mater. Chem. A, 2013, 1: 7235.
[113] Lee K J, Kim T H, Kim T K, Lee J H, Song H K, Moon H R. J. Mater. Chem. A., 2014, 2: 14393.
[114] Shao J, Wan Z, Liu H, Zheng H, Gao T, Shen M, Qu Q, Zheng H. J. Mater. Chem. A, 2014, 2: 12194.
[115] Lü Y, Zhan W, He Y, Wang Y, Kong X, Kuang Q, Xie Z, Zheng L. ACS Appl. Mater. Interfaces, 2014, 6: 4186.
[116] Jiang Z, Lu W, Li Z, Ho K H, Li X, Jiao X, Chen D. J. Mater. Chem. A., 2014, 2: 8603.
[117] Kim T K, Lee K J, Cheon J Y, Lee J H, Joo S H, Moon H R. J. Am. Chem. Soc., 2013, 135: 8940.
[118] McDonald T M, Lee W R, Mason J A, Wiers B M, Hong C S, Long J R. J. Am. Chem. Soc., 2012, 134: 7056.
[119] Wang D, Ni W, Pang H, Lu Q, Huang Z, Zhao J. Electrochim. Acta, 2010, 55: 6830.
[120] Wang Z, Li X, Xu H, Yang Y, Cui Y, Pan H, Wang Z, Chen B, Qian G. J. Mater. Chem. A, 2014, 2: 12571.
[121] Park J U, Lee H J, Cho W, Jo C, Oh M. Adv. Mater., 2011, 23: 3161.
[122] Wang M, Wang F, Ma J, Xu J. J. Mater. Chem. A, 2014, 2: 15480.
[123] Maiti S, Pramanik A, Mahanty S. Chem. Commun., 2014, 50: 11717.
[124] Hu M, Yamauchi Y. Chem. Asian. J., 2011, 6: 2282.
[125] Hu M, Belik A A, Sukegawa H, Nemoto Y, Imura M, Yamauchi Y. Chem. Asian. J., 2011, 6: 3195.
[126] Zhao J, Wang F, Su P, Li M, Chen J, Yang Q, Li C. J. Mater. Chem., 2012, 22: 13328.
[127] Zhang Z, Chen Y, He S, Zhang J, Xu X, Yang Y, Nosheen F, Saleem F, He W, Wang X. Angew. Chem. Int. Ed., 2014, 53: 12517.
[128] Lee H J, Park J U, Choi S, Son J, Oh M. Small, 2013, 9: 561.
[129] Zhang L, Wu H B, Lou X W. J. Am. Chem. Soc., 2013, 135: 10664.
[130] Cho W, Lee Y H, Lee H J, Oh M. Adv. Mater., 2011, 23: 1720.
[131] DeKrafft K E, Wang C, Lin W. Adv. Mater., 2012, 24: 2014.
[132] Huang G, Zhang F, Du X, Wang J, Yin D, Wang L. Chem. Eur. J., 2014, 20: 11214.
[133] Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L. J. Mater. Chem. A, 2014, 2: 8048.
[134] Banerjee A, Gokhale R, Bhatnagar S, Jog J, Bhardwaj M, Lefez B, Hannoyer B, Ogale S. J. Mater. Chem., 2012, 22: 19694.
[135] Yang S J, Nam S, Kim T, Im J H, Jung H, Kang J H, Wi S, Park B, Park C R. J. Am. Chem. Soc., 2013, 135: 7394.
[136] Han Y, Qi P, Li S, Feng X, Zhou J, Li H, Su S, Li X, Wang B. Chem. Commun., 2014, 50: 8057.
[137] Zou F, Hu X, Li Z, Qie L, Hu C, Zeng R, Jiang Y, Huang Y. Adv. Mater., 2014, 26: 6622.
[138] Liu L, Guo H, Liu J, Qian F, Zhang C, Li T, Chen W, Yang X, Guo Y. Chem. Commun., 2014, 50: 9485.
[139] Wang Z, Li X, Yang Y, Cui Y, Pan H, Wang Z, Chen B, Qian G. J. Mater. Chem. A, 2014, 2: 7912.
[140] Chaikittisilp W, Torad N L, Li C, Imura M, Suzuki N, Ishihara S, Ariga K, Yamauchi Y. Chem. Eur. J., 2014, 20: 4217.
[141] Zhang G, Li C, Liu J, Zhou L, Liu R, Han X, Huang H, Hu H, Liu Y, Kang Z. J. Mater. Chem. A, 2014, 2: 8184.
[142] Kumar R, Jayaramulu K, Maji T K, Rao C N R. Chem. Commun., 2013, 49: 4947.
[143] Cao X, Zheng B, Rui X, Shi W, Yan Q, Zhang H. Angew. Chem. Int. Ed., 2014, 53: 1404.
[144] Kim J, Neumann G T, McNamara N D, Hicks J C. J. Mater. Chem. A, 2014, 2: 14014.
[145] Kim J, McNamara N D, Her T H, Hicks J C. ACS Appl. Mater. Interfaces, 2013, 5: 11479.
[146] Hou Y, Huang T, Wen Z, Mao S, Cui S, Chen J. Adv. Energy Mater., doi: 10.1002/aenm.201400337
[147] Das R, Pachfule P, Banerjee R, Poddar P. Nanoscale, 2012, 4: 591.
[148] Chen L, Shen Y, Bai J, Wang C. J. Solid State Chem., 2009, 182: 2298.
[149] Afsahi F, Vinh-Thang H, Mikhailenko S, Kaliaguine S. J. Power Sources, 2013, 239: 415.
[150] Bloch E D, Britt D, Lee C, Doonan C J, Uribe-Romo F J, Furukawa H, Long J R, Yaghi O M. J. Am. Chem. Soc., 2010, 132: 14382.

[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[3] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[4] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[5] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[6] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[7] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[8] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[9] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[10] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[11] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[12] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[13] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[14] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[15] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.