中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 311-321 DOI: 10.7536/PC180435 Previous Articles   Next Articles

Catalytic Oxidation of Formaldehyde over Manganese-Based Catalysts and the Influence of Synergistic Effect

Zhe Liu1, Xiaolan Zhang1, Ting Cai1,2, Jing Yua2,3,**(), Kunfeng Zhao2, Dannong He1,2,**()   

  1. 1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. National Engineering Research Center for Nanotechnology, Shanghai 200241, China
    3. Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
  • Received: Online: Published:
  • Contact: Jing Yua, Dannong He
  • About author:
    ** E-mail: (Jing Yuan);
    (Dannong He)
  • Supported by:
    National Natural Science Foundation of China(21607098); Shanghai Youth Science and Technology Rising-Star Project(17QB1402800)
Richhtml ( 18 ) PDF ( 899 ) Cited
Export

EndNote

Ris

BibTeX

Formaldehyde is one of the major indoor pollutants and has threatened the human health seriously. The treatment of formaldehyde has attracted broad attention. Catalytic oxidation is one of the most effective and environment-friendly technology. Presently, the catalytic deep oxidation of formaldehyde over manganese-based catalysts has become the research hotspot owing to the structure flexibility and good oxidation ability of manganese oxides(MnOx). The review mainly summarizes the recent progress in formaldehyde oxidation over manganese-based catalysts from four perspectives: pure MnOxcatalysts, manganese-based composite oxides, MnOx immobilization on porous material and MnOx supported noble-metal catalysts. Catalytic mechanisms are elaborated based on Mars-van Krevelen mechanism. Specified surface oxygen species and active sites in variety of catalysts produce corresponding intermediates during the catalytic oxidation of formaldehyde and consequently induce different reaction pathways. The influence of synergistic catalytic effect is emphatically discussed between catalyst components. The synergistic effect of manganese-based catalysts is achieved through one component activation by the other between two catalytic components for enhanced activity, or successional catalytic functioning of two components in catalytic reactions probably involving multi-step for enhanced activity and/or selectivity. Finally, the challenges and outlook are featured based on such catalysts in the application of HCHO removal.

Fig. 1 Different MnO2 structures:(a)pyrolusite β-MnO2;(b)ramsdellite;(c)birnessite δ-MnO2;(d)spinel λ-MnO2[18]. ?Electrochemical Society.
Table 1 Catalytic oxidation of formaldehyde on pure MnOx catalysts
Catalyst Reaction condition HCHO conversion/removal ref
Cryptomelane-type MnO2 nanorods 50 mg catalyst, 100 ppm HCHO, 20% O2, 50 000/h 295.1% at 140 ℃ 20
Birnessite-type MnO2 nanospheres 50 mg catalyst, 100 ppm HCHO, 20% O2, 50 000/h 2100% at 140 ℃ 20
Ramsdellite MnO2 nanorods 50 mg catalyst, 100 ppm HCHO, 20% O2, 50 000/h 287.2% at 140 ℃ 20
Monoclinic MnOOH 50 mg catalyst, 100 ppm HCHO, 20% O2, 50 000/h 290.1% at 140 ℃ 20
Pyrolusite 200 mg catalyst, 400 ppm HCHO, 10% O2,18 000 mL/(g h) 1100% at 180 ℃ 21
Cryptomelane 200 mg catalyst, 400 ppm HCHO, 10% O2,18 000 mL/(g h) 1100% at 140 ℃ 21
Todorokite 200 mg catalyst, 400 ppm HCHO, 10% O2,18 000 mL/(g h) 1100% at 160 ℃ 21
Cocoon-like MnO2 100 mg catalyst, 460 ppm HCHO, air, 20 000 mL/(g h) 1100% over 200 ℃ 22
Urchin-like MnO2 100 mg catalyst, 460 ppm HCHO, air, 20 000 mL/(g h) 1100% over 200 ℃ 22
Nest-like MnO2 100 mg catalyst, 460 ppm HCHO, air, 20 000 mL/(g h) 1100% at 200 ℃ 22
α-MnO2 60 mg catalyst, 170 ppm HCHO, 20% O2, 100 000 mL/(g h) 1100% at 125 ℃ 23
β-MnO2 60 mg catalyst, 170 ppm HCHO, 20% O2, 100 000 mL/(g h) 1100% at 200 ℃ 23
γ-MnO2 60 mg catalyst, 170 ppm HCHO, 20% O2, 100 000 mL/(g h) 1100% at 150 ℃ 23
δ-MnO2 60 mg catalyst, 170 ppm HCHO, 20% O2, 100 000 mL/(g h) 1100% at 80 ℃ 23
MnO2 / 299% at 25 ℃ 24
MnOx 100 mg catalyst, air, 30 000 mL/(g h) 1100% at 40 ℃ 25
MnO2 / 299% at 25 ℃ 26
3D-MnO2 200 mg catalyst, 400 ppm HCHO,20% O2, 30 000 mL/(g h) 1100% at 130 ℃ 27
α-MnO2 nanorods 200 mg catalyst, 400 ppm HCHO,20% O2, 30 000 mL/(g h) 1100% at 140 ℃ 27
β-MnO2 nanorods 200 mg catalyst, 400 ppm HCHO,20% O2, 30 000 mL/(g h) 1100% at 180 ℃ 27
Ag-OMS-2 / 280% at 25 ℃ 28
Ag-OMS-2 200 mg catalyst, 400 ppm HCHO,10% O2 190% at 100 ℃ 29
K-OMS-2 nanorods 100 mg catalyst, 460 ppm HCHO, 21% O2, 30 000 mL/(g h) 1100% at 200 ℃ 30
K-OMS-2 nanoparticles 100 mg catalyst, 460 ppm HCHO, 21% O2, 30 000 mL/(g h) 154% at 200 ℃ 30
Table 2 Catalytic oxidation of formaldehyde on manganese-based composite oxides
Table 3 Catalytic oxidation of formaldehyde on MnOx immobilization on porous material
Table 4 Catalytic oxidation of formaldehyde on MnOx supported noble-metal catalysts
Fig. 2 The possible mechanism of catalytic oxidation of HCHO to CO2 on MnOx under dry condition[67] . ?Elsevier.
Fig. 3 A possible reaction pathway of HCHO oxidation over Pd/Mn/Beta catalyst[72]. ?Elsevier.
[1]
Hakim M, Broza Y Y, Barash O, Peled N, Phillips M, Amann A, Haick H . Chem. Rev., 2012,112:5949. https://www.ncbi.nlm.nih.gov/pubmed/22991938

doi: 10.1021/cr300174a pmid: 22991938
[2]
Chen D, Qu Z, Sun Y, Wang Y . Colloid. Surface A, 2014,441:433.
[3]
Le Y, Guo D, Cheng B, Yu J . Appl. Surf. Sci., 2013,274:110.
[4]
Yu J, Wang S, Low J, Xiao W . Phys. Chem. Chem. Phys., 2013,15:16883. https://www.ncbi.nlm.nih.gov/pubmed/23999576

doi: 10.1039/c3cp53131g pmid: 23999576
[5]
Liang W J, Li J, Li J X, Zhu T, Jin Y Q . J. Hazard Mater., 2010,175:1090. https://www.ncbi.nlm.nih.gov/pubmed/19896770

doi: 10.1016/j.jhazmat.2009.10.034 pmid: 19896770
[6]
Huang H, Leung D Y C . J. Catal., 2011,280:60.
[7]
Zhang C, Liu F, Zhai Y, Ariga H, Yi N, Liu Y, Asakura K, Flytzani-Stephanopoulos M, He H . Angew. Chem. Int. Ed. Engl., 2012,51:9628. https://www.ncbi.nlm.nih.gov/pubmed/22930519

doi: 10.1002/anie.201202034 pmid: 22930519
[8]
Tang X, Chen J, Huang X, Xu Y, Shen W . Appl.Catal.B:Environ., 2008,81:115.
[9]
Nie L, Yu J, Jaroniec M, Tao F F . Catal. Sci. Technol., 2016,6:3649.
[10]
Yan Z, Xu Z, Yu J, Jaroniec M . Environ. Sci. Technol., 2015,49:6637. https://www.ncbi.nlm.nih.gov/pubmed/25961411

doi: 10.1021/acs.est.5b00532 pmid: 25961411
[11]
Yan Z, Xu Z, Cheng B, Jiang C . Appl. Surf. Sci., 2017,404:426.
[12]
Nie L, Yu J, Li X, Cheng B, Liu G, Jaroniec M . Environ. Sci. Technol., 2013,47:2777. https://www.ncbi.nlm.nih.gov/pubmed/23438899

doi: 10.1021/es3045949 pmid: 23438899
[13]
Ma L, Wang D, Li J, Bai B, Fu L, Li Y . Appl.Catal.B: Environ., 2014,148/149:36.
[14]
Huang Y, Li H, Balogun M S, Yang H, Tong Y, Lu X, Ji H . RSC Adv., 2015,5:7729.
[15]
Zeng L, Song W, Li M, Zeng D, Xie C . Appl. Catal. B: Environ., 2014,147:490.
[16]
Ma C, Wang D, Xue W, Dou B, Wang H, Hao Z . Environ. Sci. Technol., 2011,45:3628. https://www.ncbi.nlm.nih.gov/pubmed/21375237

doi: 10.1021/es104146v pmid: 21375237
[17]
田华(Tian H), 贺军辉(He J H) . 化学通报 (Chemistry), 2013,76(2):100.
[18]
Brousse T, Toupin M, Dugas R, Athouёl L, Crosnier O, Bélanger D . J. Electrochem. Soc., 2006,153:A2171.
[19]
Sekine Y . Atmos. Environ., 2002,36(35):5543.
[20]
Zhou L, Zhang J, He J, Hu Y, Tian H . Mater. Res. Bull., 2011,46:1714.
[21]
Chen T, Dou H, Li X, Tang X, Li J, Hao J . Micropor. Mesopor.Mater., 2009,122:270.
[22]
Yu X, He J, Wang D, Hu Y, Tian H, He Z . J. Phys. Chem. C, 2011,116:851.
[23]
Zhang C, Zhang J, Li Y, Wang L, He H . Catal. Sci. Technol., 2015,5:2305.
[24]
程海军(Cheng H J), 丁欣宇(Ding X Y), 沈拥军(Shen Y J), 蔡再生(Cai Z S), 景晓辉(Jing X H) . 印染助剂 (Textile Auxiliaries), 2016,33(8):5.
[25]
赵艳磊(Zhao Y L), 田华(Tian H), 贺军辉(He J H), 杨巧文(Yang Q W) . 应用化工 (Applied Chemical Industry), 2017,46(5):814.
[26]
李国涵(Li G H), 丁欣宇(Ding X Y), 沈拥军(Shen Y J), 景晓辉(Jing X H) . 针织工业 (Knitting Industries), 2017, (7):39.
[27]
Bai B, Qiao Q, Li J, Hao J . Chin. J. Catal., 2016,37:27.
[28]
韩瑛玉(Han Y Y), 张华(Zhang H) . 化工新型材料 (New Chemical Materials), 2014,(9):135.
[29]
曹青青(Cao Q Q) . 复旦大学博士论文(Doctoral Dissertation of Fudan University), 2011.
[30]
Tian H, He J, Liu L, Wang D . Ceram. Int., 2013,39:315.
[31]
Li J, Zhang P, Wang J, Wang M . J. Phys. Chem. C, 2016,120:24121.
[32]
Lu L, Tian H, He J, Yang Q . J. Phys. Chem. C, 2016,120:23660.
[33]
唐幸福(Tang X F), 黄秀敏(Huang X M), 邵建军(Shao J J), 刘俊龙(Liu J L), 李永刚(Li Y G), 徐奕德(Xu Y D), 申文杰(Shen W J) . 催化学报 (Chinese Journal of Catalysis), 2006,27(2):97.
[34]
Iyer A, Galindo H, Sithambaram S, King’ondu C, Chen C H, Suib S L . Appl. Catal. A: Gen., 2010,375:295.
[35]
Chen X, Shen Y F, Suib S L, O’Young C L . Chem. Mater., 2002,14:940.
[36]
余林(Yu L), 孙明(Sun M), 余坚(Yu J), 余倩(Yu Q), 郝志峰(Hao Z F), 李朝圣(Li C S) . 催化学报 (Chinese Journal of Catalysis), 2008,29(11):1127.
[37]
Liu B, Liu Y, Li C, Hu W, Jing P, Wang Q, Zhang J . Appl.Catal. B: Environ., 2012,127:47.
[38]
Bai B, Arandiyan H, Li J . Appl. Catal. B: Environ., 2013,142/143:677.
[39]
Nie L, Meng A, Yu J, Jaroniec M . Sci. Rep., 2013,3:3215. https://www.ncbi.nlm.nih.gov/pubmed/24225532

doi: 10.1038/srep03215 pmid: 24225532
[40]
Luo M, Ma J, Lu J, Song Y, Wang Y . J. Catal., 2007,246:52. https://www.ncbi.nlm.nih.gov/pubmed/14335787

pmid: 14335787
[41]
Ding Z Y, Li L, Wade D, Gloyna E F . Ind. Eng. Chem. Res., 1998,37:1707.
[42]
Lou Y, Cao X M, Lan J, Wang L, Dai Q, Guo Y, Ma J, Zhao Z, Guo Y, Hu P, Lu G . Chem. Commun., 2014,50:6835.
[43]
Quiroz J, Giraudon J M, Gervasini A, Dujardin C, Lancelot C, Trentesaux M, Lamonier J F . ACS Catal., 2015,5:2260.
[44]
Zhu L, Wang J, Rong S, Wang H, Zhang P . Appl.Catal.B: Environ., 2017,211:212.
[45]
Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W . Appl. Catal. B: Environ., 2006,62:265.
[46]
Li J W, Pan K L, Yu S J, Yan S Y, Chang M B . J. Environ. Sci., 2014,26:2546. https://www.ncbi.nlm.nih.gov/pubmed/25499503

doi: 10.1016/j.jes.2014.05.030 pmid: 25499503
[47]
Lu S, Li K, Huang F, Chen C, Sun B . Appl. Surf. Sci., 2017,400:277.
[48]
Shi C, Wang Y, Zhu A, Chen B, Au C . Catal. Commun., 2012,28:18. https://www.ncbi.nlm.nih.gov/pubmed/19216794

doi: 10.1186/1756-9966-28-18 pmid: 19216794
[49]
陈猛(Chen M), 李一倬(Li Y Z), 范泽云(Fan Z Y), 施建伟(Shi J W), 陈铭夏(Chen M X), 刘震炎(Liu Z Y), 上官文峰(Shangguan W F) . 分子催化 (Journal of Molecular Catalysis), 2015,29(6):545.
[50]
Zheng Y, Wang W, Jiang D, Zhang L . Chem. Eng. J., 2016,284:21.
[51]
Wang Y, Zhu A, Chen B, Crocker M, Shi C . Catal. Commun. 2013,36:52.
[52]
Wen Y, Tang X, Li J, Hao J, Wei L, Tang X . Catal. Commun. 2009,10:1157. https://linkinghub.elsevier.com/retrieve/pii/S1566736708005669

doi: 10.1016/j.catcom.2008.12.033
[53]
Yi Y, Li C, Zhao L, Du X, Gao L, Chen J, Zhai Y, Zeng G . Environ. Sci. Pollut. Res. Int., 2018,25:4761. http://link.springer.com/10.1007/s11356-017-0855-8

doi: 10.1007/s11356-017-0855-8
[54]
李玮(Li W), 黄丽丽(Huang L L), 翟友存(Zhai Y C), 宁晓宇(Ning X Y), 邹克华(Zou K H) . 化工进展 (Chemical Industry and Engineering Progress), 2015,(1):127. b263d73b-0a22-435b-a355-93bdde73aa25http://www.hgjz.com.cn/CN/abstract/abstract17027.shtml
[55]
Wang Z, Pei J, Zhang J . Build. Environ., 2013,65:49. 7e8d98ec-4d59-439c-8525-c61b3cd48cc7http://dx.doi.org/10.1016/j.buildenv.2013.03.007

doi: 10.1016/j.buildenv.2013.03.007
[56]
Kim M, Park E, Jurng J . Powder. Technol., 2018,325:368. https://linkinghub.elsevier.com/retrieve/pii/S0032591017308288

doi: 10.1016/j.powtec.2017.10.031
[57]
陈海川(Chen H C) . 资源节约与环保 (Resources Economization and Environment Protection), 2017,(4):106.
[58]
Park S M, Jeon S W, Kim S H . Catal. Lett., 2014,144:756. http://link.springer.com/10.1007/s10562-014-1207-7

doi: 10.1007/s10562-014-1207-7
[59]
Aguilera D A, Perez A, Molina R, Moreno S . Appl.Catal.B: Environ., 2011,104:144. https://linkinghub.elsevier.com/retrieve/pii/S0926337311000890

doi: 10.1016/j.apcatb.2011.02.019
[60]
Fang R, Huang H, Ji J, He M, Feng Q, Zhan Y, Leung D Y C . Chem. Eng. J., 2018,334:2050. https://linkinghub.elsevier.com/retrieve/pii/S1385894717320983

doi: 10.1016/j.cej.2017.11.176
[61]
Dai Z, Yu X, Huang C, Li M, Su J, Guo Y, Xu H, Ke Q . RSC Adv., 2016,6:97022. http://xlink.rsc.org/?DOI=C6RA15463H

doi: 10.1039/C6RA15463H
[62]
周昕彦(Zhou X Y), 张芃(Zhang P), 蒋文(Jiang W), 杨文韬(Yang W T), 林莉莉(Lin L L), 张巍(Zhang W) . 环境工程学报 (Chinese Journal of Environmental Engineering), 2015,9(12):5965.
[63]
陈仁忠(Chen R Z), 胡毅(Hu Y), 袁菁红(Yuan J H), 沈桢(Shen Z), 陈艳丽(Chen Y L), 吕慧(Lv H), 何霞(He X) . 纺织学报 (Journal of Textile Research), 2015,36(5):1.
[64]
Miyawaki J, Lee G H, Yeh J, Shiratori N, Shimohara T, Mochida I, Yoon S H . Catal. Today, 2012,185:278. 36ff9c1d-5e1f-4416-82e3-21917b409af2http://dx.doi.org/10.1016/j.cattod.2011.09.036

doi: 10.1016/j.cattod.2011.09.036
[65]
Wang J, Yunus R, Li J, Li P, Zhang P, Kim J . Appl. Surf. Sci., 2015,357:787. https://linkinghub.elsevier.com/retrieve/pii/S0169433215022035

doi: 10.1016/j.apsusc.2015.09.109
[66]
李传宝(Li C B), 刘海辉(Liu H H), 苗锦雷(Miao J L), 张兴祥(Zhang X X) . 复合材料学报 (Acta Materiae Compositae Sinica), 2016,33(12):2831.
[67]
Wang M, Zhang L, Huang W, Xiu T, Zhuang C, Shi J . Chem.Eng. J., 2017,320:667.
[68]
Averlant R, Royer S, Giraudon J M, Bellat J P, Bezverkhyy I, Weber G, Lamonier J F . ChemCatChem, 2014,6:152. 74369dda-38ba-41aa-958c-7f927f5f4116http://onlinelibrary.wiley.com/doi/10.1002/cctc.201300544/abstract

doi: 10.1002/cctc.201300544
[69]
Wang J, Li J, Zhang P, Zhang G . Appl.Catal.B: Environ., 2018,224:863. https://linkinghub.elsevier.com/retrieve/pii/S0926337317310743

doi: 10.1016/j.apcatb.2017.11.019
[70]
Chen H, Tang M, Rui Z, Ji H . Ind. Eng. Chem. Res., 2015,54:8900. https://pubs.acs.org/doi/10.1021/acs.iecr.5b01970

doi: 10.1021/acs.iecr.5b01970
[71]
Chen Y, He J, Tian H, Wang D, Yang Q . J. Colloid Interface Sci., 2014,428:1. https://www.ncbi.nlm.nih.gov/pubmed/24910027

doi: 10.1016/j.jcis.2014.04.028 pmid: 24910027
[72]
Park S J, Bae I, Nam I S, Cho B K, Jung S M, Lee J H . Chem.Eng. J., 2012,195/196:392.
[73]
Pang G, Wang D, Zhang Y, Ma C, Hao Z . Front. Env. Sci. Eng., 2015,10:447. http://link.springer.com/10.1007/s11783-015-0808-8

doi: 10.1007/s11783-015-0808-8
[74]
Yu X, He J, Wang D, Hu Y, Tian H, Dong T, He Z .J. Nanopart. Res. 2013,15:1832. http://link.springer.com/10.1007/s11051-013-1832-x

doi: 10.1007/s11051-013-1832-x
[75]
Bai B, Qiao Q, Arandiyan H, Li J, Hao J . Environ. Sci. Technol., 2016,50:2635. https://www.ncbi.nlm.nih.gov/pubmed/26629972

doi: 10.1021/acs.est.5b03342 pmid: 26629972
[76]
Li D, Yang G, Li P, Wang J, Zhang P . Catal. Today, 2016,277:257. https://linkinghub.elsevier.com/retrieve/pii/S0920586116301468

doi: 10.1016/j.cattod.2016.02.040
[77]
Kharlamova T, Mamontov G, Salaev M, Zaikovskii V, Popova G, Sobolev V, Knyazev A, Vodyankina O . Appl. Catal. A: Gen., 2013,467:519. https://linkinghub.elsevier.com/retrieve/pii/S0926860X13005024

doi: 10.1016/j.apcata.2013.08.017
[78]
张晓岚(Zhang X L), 袁静(Yuan J), 蔡婷(Cai T), 叶俊辉(Ye J H), 何丹农(He D N) . 化工进展 (Chemical Industry and Engineering Progress), 2017,36(12):4453.
[79]
Bai B, Qiao Q, Li J, Hao J . Chin. J. Catal., 2016,37:102.
[80]
Yusuf A, Snape C, He J, Xu H, Liu C, Zhao M, Chen G Z, Tang B, Wang C, Wang J, Behera S N . Catal. Rev., 2017,59:189.
[81]
Wang J, Zhang P, Li J, Jiang C, Yunus R, Kim J . Environ. Sci. Technol., 2015,49:12372. https://www.ncbi.nlm.nih.gov/pubmed/26426569

doi: 10.1021/acs.est.5b02085 pmid: 26426569
[82]
Wang J, Li D, Li P, Zhang P, Xu Q, Yu J . RSC Adv., 2015,5:100434. http://xlink.rsc.org/?DOI=C5RA17018D

doi: 10.1039/C5RA17018D
[83]
Wang J, Zhang G, Zhang P . J. Mater. Chem. A, 2017,5:5719.
[84]
哈肯(Haken H) . 自然杂志 (Chinese Journal of Nature), 1983,(6):5.
[85]
Shi J . Chem.Rev., 2013,113:2139. https://www.ncbi.nlm.nih.gov/pubmed/23190123

doi: 10.1021/cr3002752 pmid: 23190123
[1] Qiong Wang, Kang Xiao. Indoor Formaldehyde Concentrations and the Influencing Factors in Urban China [J]. Progress in Chemistry, 2022, 34(3): 743-772.
[2] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[3] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[4] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[5] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[6] Xiaoshan Zeng, Chuanjia Shan, Mingdi Sun, Taohong He, Shaopeng Rong. Manganese Dioxides for Catalytic Decomposition of Formaldehyde in Indoor Air [J]. Progress in Chemistry, 2021, 33(12): 2245-2258.
[7] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[8] Hua Guo, Lei Zhang, Xu Dong, Gangyi Shen, Junfa Yin. Immobilized Multi-Enzyme Cascade Reactor [J]. Progress in Chemistry, 2020, 32(4): 392-405.
[9] Maozhong Chen, Lanyi Wang, Xuehua Yu, Zhen Zhao. Application of Mn-Based Catalysts for the Catalytic Combustion of Diesel Soot [J]. Progress in Chemistry, 2019, 31(5): 723-737.
[10] Song Heyuan, Kang Meirong, Jin Ronghua, Jin Fuxiang, Chen Jing. Application of Ionic Liquids to the Carbonylation Reactions [J]. Progress in Chemistry, 2016, 28(9): 1313-1327.
[11] Guo Ruimei, Bai Jinquan, Zhang Heng, Xie Yabo, Li Jianrong. Metal-Organic Frameworks for Catalytic Oxidation [J]. Progress in Chemistry, 2016, 28(2/3): 232-243.
[12] Zhao Qian, Ge Yunli, Ji Na, Song Chunfeng, Ma Degang, Liu Qingling. Removal of Volatile Organic Compounds by Catalytic Oxidation Technology [J]. Progress in Chemistry, 2016, 28(12): 1847-1859.
[13] Wang Weitao, Yao Min, Ma Yangmin, Zhang Jin. Direct Oxidation of Liquid Benzene to Phenol with Molecular Oxygen [J]. Progress in Chemistry, 2014, 26(10): 1665-1672.
[14] Wang Meng, Hui Yonghai, Zhang Xuehua, Wei Yana, Shi Minshan, Wang Jide*. Oxidation of Tetrahydrofuran [J]. Progress in Chemistry, 2013, 25(07): 1158-1165.
[15] Ren Fangfang, Jiang Fengxing, Zhou Weiqiang, Du Yukou, Xu Jingkun. Application of Conducting Polymers/Metal Composites for C1 Molecules Electrooxidation [J]. Progress in Chemistry, 2012, (9): 1818-1836.