中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (12): 1847-1859 DOI: 10.7536/PC160402 Previous Articles   Next Articles

• Review and comments •

Removal of Volatile Organic Compounds by Catalytic Oxidation Technology

Zhao Qian1,2, Ge Yunli1,2, Ji Na1,2, Song Chunfeng1,2, Ma Degang1,2, Liu Qingling1,2*   

  1. 1. Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300072;
    2. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Natural National Science Foundation of China (No. 21406165, 51506147, 21503144), the National Key Basic Research Program of China (No. 2012CB214900) and the Tianjin Research Program of Application Foundation and Advanced Technique (No. 15JCQNJC08500, 16JCQNJC05400).
PDF ( 1019 ) Cited
Export

EndNote

Ris

BibTeX

Volatile organic compounds (VOCs) are poisonous organic compounds which pose a threat to environment and human health. Catalytic oxidation technology, which can convert VOCs into CO2 and H2O, is considered as one of promising techniques for VOCs removal. On the basis of the summary of VOCs removal technologies at home and abroad, catalytic oxidation method is emphatically introduced; besides, catalysts in common use, catalytic oxidation mechanism and existent problems are summarized in this paper. Finally, developmental trends of catalytic oxidation technology of VOCs are also presented. The results show that the core of noble catalysts is the optimization of effective supporters and the enhancement of resistance to catalyst poisoning. As for perovskite-type, spinel-type and other non-noble metal catalyst, it is the key to decrease the active temperature of catalysts. And it can be considered that the reduction ability, oxygen storage capacity and oxygen vacancy, which are critical factors determining catalyst performance for VOCs oxidation, can be improved by means of adjusting the compounding formula, morphological structure, particle size and specific surface area of catalysts and proceed to enhance catalyst performance. This review will offer certain value for reference to determine the proper catalyst for VOCs removal.

Contents
1 Introduction
2 Mechanism of catalytic oxidation
3 Catalysts of VOCs oxidation
3.1 Noble metal catalysts
3.2 Non-noble metal catalysts
4 Future trends
4.1 Noble metal catalysts
4.2 Non-noble metal catalysts
5 Conclusion

CLC Number: 

[1] Hutchings G J, Heneghan C S, Hudson I D, Taylor S H. Nature, 1996, 384:341.
[2] Le Cloirec P. Rev. Environ. Sci. Bio., 2012, 11(4):381.
[3] Atkinson R, Arey J. Chem. Rev., 2003, 103(12):4605.
[4] Yu C, Crump D. Build. Environ., 1998, 33(6):357.
[5] Tchobanoglous G, Theisen H, Vigil S. Integrated Solid Waste Management:Engineering Principles and Management Issues. NY:McGraw-Hill, Inc., 1993. 80
[6] 杨新兴(Yang X X), 李世莲(Li S L), 尉鹏(Wei P), 冯丽华(Feng L H).前沿科学(Frontier Science), 2013, 7(4):21.
[7] 王连生(Wang L S). 高等教育出版社(Higher Education Press), 2004, 122.
[8] Mølhave L, Bach B, Pedersen O F. Environ. Int., 1986, 12:167.
[9] World Health Organization (WHO). Air quality guidelines for Europe, 2nd edition. European Series, No.91. WHO Regional Publications, 2000.
[10] 张薇薇(Zhang W W). 大连理工大学硕士论文(Master's Dissertation of Dalian University of Technology), 2011.
[11] 孟中华(Meng Z H). 浙江大学硕士论文(Master's Dissertation of Zhejiang University), 2013.
[12] Roizard D, Lapicque F, Favre E, Roizard C. Chem. Eng. Sci., 2009, 64(9):1927.
[13] Yu C, Crump D. Build. Environ., 1998, 33(6):357.
[14] Müller G, Ulrich M. Chem. Ing. Tech., 1991, 63(8):819.
[15] Trimm D L. Appl. Catal., 1983, 7(3):249.
[16] Tsuru T, Kanno T, Yoshioka T, Asaeda M. J. Membrane Sci., 2006, 280(1):156.
[17] Rusu A O, Dumitriu E. Environ. Eng. Manag. J., 2003, 2(4):273.
[18] Spivey J J. Ind. Eng. Chem. Res., 1987, 26(11):2165.
[19] Scirè S, Liotta L F. Appl. Catal. B:Environ., 2012, 125:222.
[20] Everaert K, Baeyens J. J. Hazard. Mater., 2004, 109(1):113.
[21] Mukadi L S, Hayes R E. Comput. Chem. Eng., 2002, 26(3):439
[22] Stoyanova M, Konova P, Nikolov P, Naydenov A, Mehandjiev D. Chem. Eng. J., 2006, 122(1):41.
[23] Alvarez-Merino M A, Ribeiro M F, Silva J M,Carrasco-Marin F, Maldonado-Hodar F J. Environ. Sci. Technol., 2004, 38(17):4664.
[24] Balasubramanian S, Viswanath D S. Ind. Eng. Chem. Res., 1975, 14(3):158.
[25] Grasselli R K. Top. Catal., 2002, 21(1/3):79.
[26] Tang W X, Wu X F, Li D Y, Wang Z, Liu G, Liu H D, Chen Y F. J. Mater. Chem. A, 2014, 2:2544.
[27] Akram S, Wang Z, Chen L, Wang Q, Shen G L, Han N, Chen Y F, Ge G L. Catal. Communi., 2016, 73:123.
[28] Liotta L F. Appl. Catal. B:Environ., 2010, 100(3):403.
[29] Tidahy H L, Hosseni M, Siffert S, Cousin R, Lamonier J F, Aboukaïs A, Su B L, Giraudon J M, Leclercq G. Catal. Today, 2008, 137(2):335.
[30] Lewandowski M, Ollis D F. J. Catal., 2003, 217:38.
[31] Ousmane M, Liotta L F, Di Carlo G, Pantaleo G, Venezia A M, Deganello G, Retailleau L, Boreave A, Giroir-Fendler A. Appl. Catal. B:Environ., 2011, 101(3):629.
[32] Lamallem M, El Ayadi H, Gennequin C, Cousin R, Siffert S, Aïssi F, Aboukaïs A. Catal. Today, 2008, 137(2):367.
[33] Gluhoi A C, Bogdanchikova N, Nieuwenhuys B E. J.Catal., 2005, 229(1):154.
[34] Tan W, Guo G, Deng J, Xie S, Yang H, Jiang Y, Dai H. Ind. Eng. Chem. Res., 2014, 53(48):18452.
[35] Han W, Deng J, Xie S, Yang H, Dai H, Au C T. Ind. Eng. Chem. Res., 2014, 53(9):3486.
[36] Cellier C, Lambert S, Gaigneaux E M, Poleunis C, Ruaux V, Eloy P, Lahousse C, Bertrand P, Pirard J P, Grange P. Appl. Catal. B:Environ., 2007, 70(1):406.
[37] Carabineiro S A C, Chen X, Martynyuk O, Bogdanchikova N, Avalos-Borja M, Pestryakov A, Tavares P B, Órfão J J M, Pereira M F R, Figueiredo J L. Catal. Today, 2015, 244:103.
[38] Huang S, Zhang C, He H. Catal. Today, 2008, 139(1):15.
[39] He C, Li J, Zhang X, Yin L, Chen J, Gao S. Chem. Eng. J., 2012, 180:46.
[40] Wang Y, Zhang C, Liu F, He H. Appl. Catal. B:Environ., 2013, 142:72.
[41] Wu Z X, Deng J G, Xie S H, Yang H G, Zhao X T, Zhang K F, Lin H X, Dai H X, Guo G S. Micropor. Mesopor. Mat., 2016, 224:311.
[42] Paulis M, Peyrard H, Montes M. J. Catal., 2001, 199(1):30.
[43] Tang W, Wu X, Chen Y. React. Kinet. Mech. Cat., 2015, 114(2):711.
[44] Li Z H, Yang K, Liu G, Deng G F, Li J Q, Li G, Yue R L, Yang J, Chen Y F. Catal. Let., 2014, 144(6):1080.
[45] Deng J, He S, Xie S, Yang H, Liu Y, Guo G, Dai H. Environ. Sci. Technol., 2015, 49(18):11089.
[46] Giraudon J M, Elhachimi A, Wyrwalski F, Siffert S, Aboukais A, Lamonier J F, Leclercq G. Appl. Catal. B:Environ., 2007, 75(3):157.
[47] Papaefthimiou P, Ioannides T, Verykios X E. Appl. Catal. B, 1997, 13:175.
[48] Fiorenza R, Crisafulli C, Condorelli G G, Lupo F, Scirè S. Catal. Lett., 2015, 145(9):1691.
[49] Baek S W, Kim J R, Ihm S K. Catal. Today, 2004, 93:575.
[50] Tidahy H L, Siffert S, Lamonier J F, Zhilinskaya E A, Aboukaïs A, Yuan Z Y, Vantomme A, Su B L, Canet X, Deweireld G, Frère M N, Guyen T B, Giraudon J M, Leclercq G.Appl. Catal. A:Gen., 2006, 310:61.
[51] Tidahy H L, Siffert S, Lamonier J F, Zhilinskaya E A, Aboukais A, Yuan Z Y, Vantomme A, Su B L, Canet X, Deweireld G, Frere M. Stud. Surf. Sci. Catal., 2007, 160:201.
[52] Pozan G S. J.Hazard. Mater., 2012, 221:124.
[53] Tang W X, Deng Y Z, Li W H, Li J Q, Li G, Li A D, Wu X F, Chen Y F. Catal. Sci. Technol., 2016, 6(6):1710.
[54] Njagi E C, Genuino H C, King'ondu C K, Dharmarathna S, Suib S L. Appl. Catal. A:Gen., 2012, 421:154.
[55] Dai Q, Wang X, Lu G. Appl. Catal. B:Environ., 2008, 81(3):192.
[56] Pérez A, Molina R, Moreno S. Appl. Catal. A:Gen., 2014, 477:109.
[57] de Rivas B, López-Fonseca R, Jiménez-González C, Gutiérrez-Ortiz J I. J. Catal., 2011, 281(1):88.
[58] Wang F, Dai H, Deng J, Bai G, Ji K, Liu Y. Environ. Sci. Technol., 2012, 46(7):4034.
[59] Cao S, Wang H Q, Yu F X, Shi M P, Chen S, Weng X L, Liu Y, Wu Z B. J. Colloid Interf. Sci., 2016, 43:233.
[60] Wei Y C, Liu J, Zhao Z, Duan A J, Jiang G Y, Xu C M, Gao J S, He H, Wang X P. Energy Environ. Sci., 2011, 4(8):2959.
[61] He C, Yu Y K, Chen C W, Yue L, Qiao N L, Shen Q, Chen J S, Hao Z P. RSC Adv., 2013, 3(42):19639.
[62] Du Y C, Meng Q, Wang J S, Yan J, Fan H G, Liu Y X, Dai H X. Micropor. Mesopor. Mat., 2012, 162:199.
[63] Tang W X, Wu X F, Li S D, Shan X, Liu G, Chen Y F. Appl. Catal. B:Environ., 2015, 162:110.
[64] Zhang H M, Shimizu Y, Teraoka Y, Miura N, Yamazoe N. J. Catal., 1990, 121(2):432.
[65] Rezlescu N, Rezlescu E, Popa P D, Doroftei C, Ignat M. Mater. Chem. Phys., 2016, 182:332.
[66] Luo Y, Wang K, Chen Q, Xu Y, Xue H, Qian Q. J. Hazar. Mater., 2015, 296:17.
[67] Zhang J Y, Tan D D, Meng Q J, Wen X L, Wu Z B. Appl. Catal. B:Environ., 2015, 172:18.
[68] 王永强(Wang Y Q), 肖丽(Xiao L), 孙启猛(Sun Q M), 赵朝成(Zhao C C), 李石(Li S). 燃烧化学学报(Journal of Fuel Chemistry and Technology). 2014, 9(42):1146.
[69] Hosseini S A, Salari D, Niaei A, Oskoui S. J. Ind. Eng. Chem., 2013, 19:1903.
[70] Rezlescu N, Rezlescu E, Popa P D, Doroftei C, Ignat M. Ceram. Internat., 2015, 41(3):4430.
[71] Liu Y X, Dai H X, Du Y C, Deng J, Zhang L, Zhao Z, Au C T. J. Catal., 2012, 287:149.
[72] Ji K M, Dai H X, Dai J X, Deng J G, Wang F, Zhang H, Zhang L. Catal. Today, 2013, 201:40.
[73] Ji K M, Dai H X, Deng J G, Jiang H Y, Zhang L, Zhang H, Cao Y J. Chem. Eng. J., 2013, 214:262.
[74] Gao B Z, Deng J G, Liu Y X, Zhao Z X, Li X W, Wang Y, Dai H X. Chinese J. Catal., 2013, 34(12):2223.
[75] Chen Y W, Li B, Niu Q, Li L, Kan J W, Zhu S M, Shen S B. Environ. Sci. Pollut. Res., 2016, 23:15193.
[76] Jiang Y, Deng J G, Xie S H, Yang H G, Dai H X. Ind.Eng.Chem.Res., 2015, 54(3):900.
[77] Li X W, Dai H X, Deng J G, Liu Y X, Xie S H, Zhao Z X, Wang Y, Guo G S, Hamidreza Arandiyan. Chem.Eng. J., 2013, 228(14):965.
[78] Yong S T, Hidajat K, Kawi S. Catal. Today, 2008, 131(1):188.
[79] Hosseini S A, Niaei A, Salari D, Nabavi S R. Ceram Int., 2012, 38(2):1655.
[80] Hosseini S A, Salari D, Niaei A, Deganello F, Pantaleo G, Hojati P. J. Environ. Sci. Heal. A, 2011, 46(3):291.
[81] Li D L, Fan Y Y, Ding Y Y, Wei X F, Xiao Y H. Catal. Commun., 2017, 88(5):60.
[82] Alphonse P. Appl. Catal. B:Environ., 2016, 180:715.
[83] Zav'yalova U, Nigrovski B, Pollok K, Langenhorst F, Müller B, Scholz P, Ondruschka B. Appl. Catal. B:Environ., 2008, 83(3):221.
[84] Castillo S, Moran-Pineda M, Gómez R, López T. J. Catal., 1997, 172(1):263.
[85] Vodyankin A Y, Kurina L N, Popov V N. Kinetika i kataliz, 1999, 40(4):636.
[86] Hosseini S A, Niaei A, Salari D, Nabavi S R. Ceram. Int., 2012, 38(2):1655.
[87] Tang Q H, Wu C M, Qiao R, Chen Y T, Yang Y H. Appl. Catal. A:Gen., 2011, 403(1):136.
[88] Jodaei A, Salari D, Niaei A, Khatamian M, Ali Hosseini S. J. Environ. Sci. Heal. A, 2011, 46(1):50.
[89] Chen M, Zheng X M. J. Mol. Catal. A:Chem., 2004, 221(1):77.
[90] Garetto T F, Vignatti C I, Borgna A, Monzón A. Appl. Catal. B:Environ., 2009, 87(3):211.
[91] Ran L, Qin Z, Wang Z, Wang X, Dai Q. Catal. Commun., 2013, 37:5.
[92] Zhao S, Li K Z, Jiang S, Li J H. Appl. Catal. B:Environ., 2016, 181:236.
[93] Zawadaki M, Okal J. Catal. Today, 2015, 257:136.
[94] Tian Z Y, Ngamou P H T, Vannier V, Kohse-Höinghaus K, Bahlawane N. Appl. Catal. B:Environ., 2012, 117(3):125.
[95] 余凤江(Yu F J), 张丽丹(Zhang L D). 北京化工大学学报:自然科学版(Journal of Beijing University of Chemical Technology), 2001, 28(4):67.
[96] Groppi G, Cristiani C, Forzatti P. Appl. Catal. B:Environ., 2001, 35(2):137.
[1] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[2] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[3] Tingyi Yan, Guangyao Zhang, Kun Yu, Mengjie Li, Lijun Qu, Xueji Zhang. Smartphone-Based Point-of-Care Testing [J]. Progress in Chemistry, 2022, 34(4): 884-897.
[4] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[5] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[6] Xiaojing Li, Yonghong Li, Fuhang Yu, Weiyan Qi, Ye Jiang, Qianwen Lu. Catalysts for Removal of Xylene by Catalytic Oxidation [J]. Progress in Chemistry, 2021, 33(12): 2203-2214.
[7] Wei Kang, Lu Li, Qing Zhao, Cheng Wang, Jianlong Wang, Yue Teng. Application of New Hydrogen and Oxygen Evolution Electrochemical Catalysts for Solid Polymer Water Electrolysis System [J]. Progress in Chemistry, 2020, 32(12): 1952-1977.
[8] Fenya Guo, Hongwei Li, Mengzhe Zhou, Zhengqi Xu, Yueqing Zheng, Tingting Li. Electroreduction of Nitrogen to Ammonia Catalyzed by Non-Noble Metal Catalysts under Ambient Conditions [J]. Progress in Chemistry, 2020, 32(1): 33-45.
[9] Zhe Liu, Xiaolan Zhang, Ting Cai, Jing Yua, Kunfeng Zhao, Dannong He. Catalytic Oxidation of Formaldehyde over Manganese-Based Catalysts and the Influence of Synergistic Effect [J]. Progress in Chemistry, 2019, 31(2/3): 311-321.
[10] Guo Ruimei, Bai Jinquan, Zhang Heng, Xie Yabo, Li Jianrong. Metal-Organic Frameworks for Catalytic Oxidation [J]. Progress in Chemistry, 2016, 28(2/3): 232-243.
[11] Zhang Xiaodong, Yang Yang, Li Hongxin, Zou Xuejun, Wang Yuxin. Non-TiO2 Photocatalysts Used for Degradation of Gaseous VOCs [J]. Progress in Chemistry, 2016, 28(10): 1550-1559.
[12] Wang Weitao, Yao Min, Ma Yangmin, Zhang Jin. Direct Oxidation of Liquid Benzene to Phenol with Molecular Oxygen [J]. Progress in Chemistry, 2014, 26(10): 1665-1672.
[13] Wang Meng, Hui Yonghai, Zhang Xuehua, Wei Yana, Shi Minshan, Wang Jide*. Oxidation of Tetrahydrofuran [J]. Progress in Chemistry, 2013, 25(07): 1158-1165.
[14] Ren Fangfang, Jiang Fengxing, Zhou Weiqiang, Du Yukou, Xu Jingkun. Application of Conducting Polymers/Metal Composites for C1 Molecules Electrooxidation [J]. Progress in Chemistry, 2012, (9): 1818-1836.
[15] Zhang Jun, Chen Jing, Huang Xinsong, Li Guangshe. Recent Research Progress and Applications of Nano Catalytic Materials for CO Oxidation [J]. Progress in Chemistry, 2012, 24(07): 1245-1251.