中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120713 Previous Articles   Next Articles

• Review •

Metal-Organic Frameworks for Heterogeneous Catalysis

Liu Bing, Jie Suyun*, Li Bogeng*   

  1. State Key Laboratory of Chemical Engineering, Institute of Polymerization and Polymer Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
PDF ( 2346 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, metal-organic frameworks (MOFs) as a new type of inorganic materials have been discovered. Because of their high surface area and porosity, various and controllable frameworks, they have been extensively used in gas sorption, biomedicine, magnetic field and so on. Particularly, the application of MOFs as heterogeneous catalysts has attracted more attention and many achievements have been gained. In this review, the unique advantages of MOFs catalysts, the possible problems in practical applications and the corresponding solutions are firstly introduced. And then, we summarize the exploration and application of MOFs in catalytic reactions based on their three structural elements such as metal vertex, organic ligand and pore system. Examples of the catalytic reactions are followed. At last, the problems need to be focused and prospective directions on MOFs catalysts are discussed. Contents
1 Introduction
2 Classification of MOFs catalysts and its application
2.1 MOFs with metal active sites
2.2 MOFs with reactive functional groups
2.3 MOFs as supporters or nanometric reactors
3 Conclusion and outlook

CLC Number: 

[1] Batten S R, Hoskins B F, Robson R. J. Am. Chem. Soc., 1995, 117(19): 5385-5386
[2] Li H, Eddaoudi M, O'Keeffe M, Yaghi M O. Nature, 1999, 402(6759): 276-279
[3] Yaghi O M, Li H. J. Am. Chem. Soc., 1995, 117(41): 10401-10402
[4] Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. Science, 2005, 309: 2040-2042
[5] Kitagawa S, Kondo M. Bull. Chem. Soc. Jpn., 1998, 71: 1739-1753
[6] Corma A, Garciía H, Llabreés I Xamena F X. Chem. Rev., 2010, 110(8): 4606-4655
[7] Llabres I Xamena F X, Abad A, Corma A, Garcia H. J. Catal., 2007, 250(2): 294-298
[8] Alaerts L, Seguin E, Poelman H, Thibault-Starzyk F, Jacobs P A, DeVos D K. Chem. Eur. J., 2006, 12(28): 7353-7363
[9] Llabres I Xamena F X, Corma A, Garcia H. J. Phys. Chem. C, 2006, 111(1): 80-85
[10] Huang X, Lin Y, Zhang J, Chen X. Angew. Chem. Int. Ed., 2006, 45(10): 1557-1559
[11] Decoste J B, Peterson G W, Smith M W, Smith M W, Stone C A, Willis C R. J. Am. Chem. Soc., 2012, 134(3): 1486-1489
[12] 刘丽丽(Liu L L), 张鑫(Zhang X), 徐春明(Xu C M). 化学进展(Progress in Chemistry), 2010, 11(22): 2089-2098
[13] Horcajada P, Surble S, Serre C, Hong D, Seo Y, Chang J, Greneche J, Margiolaki I, Ferey G. Chem. Commun., 2007, 2820-2822
[14] Jian L, Chen C, Lan F, Deng S, Xiao W, Zhang N. Solid State Sci., 2011, 13(5): 1127-1131
[15] Deng S, Zhang N, Xiao W, Chen C. Inorg. Chem. Commun., 2009, 12: 157-160
[16] Pathan N B, Rahatgaonkar A M, Chorghade M S. Catal. Commun., 2011, 12(12): 1170-1176
[17] Neogi S, Sharma M K, Bharadwaj P K. Knoevenagel. J. Mol. Catal. A: Chem., 2009, 299(1/2): 1-4
[18] Mahata P, Aarthi T, Madras G, Natarajan S. J. Phys. Chem. C, 2007, 111(4): 1665-1674
[19] Vitorino M, Devic T, Tromp M, Ferey M, Visseaux M. Macromol. Chem. Phys., 2009, 210(22): 1923-1932
[20] Wilson D. Polym. Int., 1996, 39(3): 235-242
[21] Rodrigues I, Mihalcea I, Volkringer C, Loiseau T, Visseaux M. Inorg. Chem., 2012, 51(1): 483-490
[22] Bahuleyan B K, Lee U, Ha C S, Kim I. Appl. Catal. A: General, 2008, 351(1): 36-44
[23] Kermagoret A, Braunstein P. Organometallics, 2008, 27(1): 88-99
[24] Souza R F, Bernardo-Gusmao K, Cunha G A, Loup C, Leca F, Reau R. J. Catal., 2004, 226(1): 235-239
[25] Lallemand M, Finiels A, Fajula F, Hulea V. J. Phys. Chem. C, 2009, 113(47): 20360-20364
[26] Zhang Q, Lana I G D. Chem. Eng. Sci., 1997, 52(21/22): 4187-4195
[27] Kyogoku K, Yamada C, Suzuki Y, Nishiyama S, Fukumoto K, Yamamoto H, Indo S, Sano M, Miyake T. J. Jpn. Petrol. Inst., 2010, 53(5): 308-312
[28] Hulea V, Fajula F. J. Catal., 2004, 225(1): 213-222
[29] Chuck C J, Davidson M G, Jones M D, Kociok-Kohn G, Lunn M D, Wu S. Inorg. Chem., 2006, 45(17): 6595-6597
[30] Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. J. Am. Chem. Soc., 2007, 129(9): 2607-2614
[31] Ingleson M J, Barrio J P, Bacsa J, Dickinson C, Park H, Rosseinsky M J. Chem. Commun., 2008, 1287-1289
[32] Roberts J M, Fini B M, Sarjeant A A, Farha O K, Hupp J T, Scheidt K A. J. Am. Chem. Soc., 2012, 134(7): 3334-3337
[33] Cohen S M. Chem. Rev., 2011, 112(2): 970-1000
[34] Wang Z, Cohen S M. J. Am. Chem. Soc., 2007, 129(41): 12368-12369
[35] Ingleson M J, Perez Barrio J, Guilbaud J, Khimyak Y Z, Rosseinsky M J. Chem. Commun., 2008, 2680-2682
[36] Zhang X, Llabrés I Xamena F X, Corma A. J. Catal., 2009, 265(2): 155-160
[37] Garibay S J, Wang Z, Cohen S M. Inorg. Chem., 2010, 49(17): 8086-8091
[38] Aguado S, Canivet J, Farrusseng D. Chem. Commun., 2010, 7999-8001
[39] Canivet J, Aguado S, Daniel C, Farrusseng D. ChemCatChem, 2011, 3(4): 675-678
[40] Alkordi M H, Liu Y, Larsen R W, Eubank J F, Eddaoudi M. J. Am. Chem. Soc., 2008, 130(38): 12639-12641
[41] Wang W, Li Y, Zhang R, He D, Liu H, Liao S. Catal. Commun., 2011, 12(10): 875-879
[42] Zhao H, Song H, Chou L. Inorg. Chem. Commun., 2012, 15: 261-265
[43] Uemura T, Kitagawa K, Horike S, Kawamura T, Kitagawa S, Mizuno M, Endo K. Chem. Commun., 2005, 5968-5970
[44] Zhou X, Xu Z, Zeller M, Hunter A D, Chui S S, Che C, Lin J. Inorg. Chem., 2010, 49(17): 7629-7631
[45] Ni Z, Masel R I. J. Am. Chem. Soc., 2006, 128(38): 12394-12395
[46] Yoon M, Srirambalaji R, Kim K. Chem. Rev., 2011, 112(2): 196-1231

[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[6] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[7] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[8] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[9] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[10] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[11] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[12] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[13] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[14] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[15] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.