中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (1): 133-144 DOI: 10.7536/PC190431 Previous Articles   

Special Issue: 计算化学

Computational Study on Adsorption and Separation of C2 and C3 Hydrocarbons by Metal-Organic Frameworks

Jinghao Liu1, Xueqian Wu2, Yufeng Wu1, Jiamei Yu1,**()   

  1. 1. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    2. College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • Received: Online: Published:
  • Contact: Jiamei Yu
  • About author:
    ** E-mail:
  • Supported by:
    National Key R&D Program of China(2018YFC1902506)
Richhtml ( 41 ) PDF ( 790 ) Cited
Export

EndNote

Ris

BibTeX

Hydrocarbons play an important role in industrial productionses. The separation and purification of hydrocarbons is one of the most important industrial processes. The separation of low carbon hydrocarbon gases is extremely difficult since their physicochemical properties are similar. The minor differences are their molecular size and valence state. The traditional separation methods suffer from the high energy consumption and low efficiency. Metal-organic frameworks show superiority in separations due to their unique properties including high specific surface area, high porosity and controllable structure size. Computational simulation has been widely used in the investigations of adsorption and separation of MOFs since it can describe the adsorption and separation process at the microscopic level. This paper reviews the recent advances in computational simulations for the adsorption and separation of low-carbon hydrocarbons by metal-organic frameworks. The difficulties and future developments in the study of adsorption and separation of low carbon hydrocarbons by metal-organic frameworks have also been discussed.

Fig. 1 The preferential C2H2 binding sites for SD/Co3a simulated using GCMC[38]
Fig. 2 Preferential adsorption sites for (a) C2H6 and (b) C2H4 in MAF-49 revealed by computational simulations. Schematic representation of the corresponding host-guest interactions for (c) C2H6 and (d) C2H4. Strong (H…N/O<2.3 Å), weak (2.3Å<H…N/O<2.8 Å) and almost negligible (H…N/O<2.8 Å) C-H…N interactions are displayed as red, blue and black dashed lines, respectively[42]
Fig. 3 Schematic pictures showing the DFT optimized C2H2 (a) and C2H4 (b) adsorption configurations in TIFSIX-2-Ni-i, the different nets are highlighted in blue and green color for clarity. Color code: Si, yellow; F, red; Ni, purple[48]
Fig. 4 DFT-D calculated light hydrocarbons (C2H2, C2H4, C2H6) adsorption binding sites in Ca (squarate). (a) C2H2 interacts with Ca (squarate) through π-π and “Hδ+…Oδ-” multiple van der Waals interaction. (b) C2H4 interacts with the framework through π-π interactions with distances (3.534 Å and 3.586 Å). (c) C2H6 interacts with the optimized structure through “Hδ+…Oδ-” multiple van der Waals interaction (2.809 Å to 3.613 Å). C, gray; Ca, blue; O, purple; H, light blue[49]
Fig. 5 DFT-D-calculated C2H2 adsorption binding sites in SIFSIX-1-Cu (a), SIFSIX-2-Cu (b), SIFSIX-2-Cu-i (c) (the different nets are highlighted in magenta and green for clarity)[9]
Fig. 6 Equilibrium snapshots of propane (a), propylene (b) in Mg-MOF-74 at 100 kPa[41]
Fig. 7 (a,b) DFT-D calculated C3H4 adsorption binding sites in the SIFSIX-3-Ni. (c) DFT-D calculated C3H4 adsorption binding sites in the SIFSIX-1-Cu. (d) DFT-D calculated optimized C3H4 adsorption sites of the SIFSIX-2-Cu-i (The different nets are highlighted in pink and turquoise). (Color code: F, red; Si, light blue; C, gray-40%; H, gray-25%, N, sky blue; Cu, lavender; Ni, bright green. The color of the C atoms in the C3H4 molecule is highlighted by orange) [58]
Fig. 8 (a, b) Schematic diagrams of the two types of cavities (Ⅰ and Ⅱ) in ELM-12 (Cu, green; C, gray; O, red; S, yellow; F, light green). (c, d) Neutron diffraction crystal structure of ELM-12?C3D4 showing the preferential binding sites for C3D4 molecules (sites Ⅰ and Ⅱ) and their close contacts with the framework[61]
Fig. 9 The DFT-D calculated results of the propyne and propadiene within ZU-62. F: red, Nb: dark blue; C: gray-40%, H: gray-25%, O: bright green, N: turquiose, Cu: yellow; the F-F distance includes the Van der Waals radius[63]
[1]
宋芙蓉(Song F R), 戴伟(Dai W), 杨元一(Yang Y Y). 石油化工(Petrochemical Technology), 2004, ( 12):1117.
[2]
钱伯章(Qian B Z) . 中外能源(Sino-Global Energy), 2011, ( 06):62.
[3]
胡玉梅(Hu Y M) . 国际石油经济(International Petroleum Economics), 2005,13(3):20.
[4]
陈乐怡(Chen L Y) . 中外能源(Sino-Global Energy), 2009, ( 03):66.
[5]
杨中维(Yang Z W) . 石化技术(Petrochemical Industry Technology), 2013,20(2):32.
[6]
Chen J , Eldridge R B , Rosen E L , Bielawski C W . Aiche Journal, 2011,57(3):630.
[7]
罗睿(Luo R), 陈永强(Chen Y Q). 广州化工(Guangzhou Chemical Industry), 2018, ( 17):114.
[8]
Jin Y , Datye A K , Rightor E , Gulotty R , Waterman W , Smith M , Holbrook M , Maj J , Blackson J . Journal of Catalysis, 2001,203(2):292.
[9]
Cui X L , Chen K J , Xing H B , Yang Q W , Krishna R , Bao Z B , Wu H , Zhou W , Dong X L , Han Y , Li B , Ren Q L , Zaworotko M J , Chen B L . Science, 2016,353(6295):141 https://www.ncbi.nlm.nih.gov/pubmed/27198674

doi: 10.1126/science.aaf2458 pmid: 27198674
[10]
Cui W G , Hu T L , Bu X H . Advanced Materials, 2019: 1806445.
[11]
Li T , Chen D L , Sullivan J E , Kozlowski M T , Johnson J K , Rosi N L . Chemical Science, 2013,4(4):1746.
[12]
Yu M H , Zhang P , Feng R , Yao Z Q , Yu Y C , Hu T L , Bu X H . ACS Applied Materials & Interfaces, 2017,9(31):26177 https://www.ncbi.nlm.nih.gov/pubmed/28737373

doi: 10.1021/acsami.7b06491 pmid: 28737373
[13]
Li Y W , Xu J , Li D C , Dou J M , Yan H , Hu T L , Bu X H . Chemical Communications, 2015,51(75):14211. https://www.ncbi.nlm.nih.gov/pubmed/26256775

doi: 10.1039/c5cc05097a pmid: 26256775
[14]
Chaemchuen S , Zhou K , Yao C , Luo Z X , Verpoort F . Chinese Journal of Inorganic Chemistry, 2015,31(3):509.
[15]
厉晓蕾(Li X L), 陶硕(Tao S), 李科达(Li K D), 王亚松(Wang Y S), 王苹(Wang P), 田志坚(Tian Z J). 物理化学学报(Acta Physica Sinica), 2016,32(06):1495.
[16]
Ji Y J , Ding L F , Cheng Y Y , Zhou H , Yang S Y , Li F , Li Y Y . Journal of Physical Chemistry C, 2017,121(43):24104.
[17]
Zhong R Q , Yu X F , Meng W , Han S B , Liu J , Ye Y X , Sun C Y , Chen G J , Zou R Q . Chemical Engineering Science, 2018,184:85.
[18]
鄢慧君(Yan H J), 李彪(Li B), 蒋宁(Jiang N), 夏定国(Xia D G). 物理化学学报(Acta Physica Sinica), 2017,33(09):1781.
[19]
吴选军(Wu X J), 郑佶(Zheng J), 李江(Li J), 蔡卫权(Cai W Q). 物理化学学报(Acta Physica Sinica), 2013,29(10):2207.
[20]
Bogdan M . Commun. Math. Phys., 1974,37:221.
[21]
陈正隆(Cheng Z L), 徐为人(Xu W R), 汤立达(Tang L D). 分子模拟的理论与实践(The Theory And Practice Of Molecular Simulation). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2007. 49.
[22]
Nagy Á . Physics Reports. 1998,298(1):1.
[23]
Kryachko E S . International Journal of Quantum Chemistry., 1980,18:1029.
[24]
Walter J C , Barkema G T . Physica A: Statistical Mechanics and its Applications., 2015,418:78. https://www.ncbi.nlm.nih.gov/pubmed/25419039

doi: 10.1016/j.physa.2014.07.045 pmid: 25419039
[25]
Geyer C J . Statistical Science, 1992,7:473.
[26]
Valleau J P , Cohen L K . The Journal of Chemical Physics, 1980,72(11):5935.
[27]
Rappe A K , Casewit C J , Colwell K S , Goddard W A , Skiff W M . Journal of the American Chemical Society, 1992,114(25):10024.
[28]
Mayo S L , Olafson B D , Goddard W A . Physical Chemistry Chemical Physics, 1990,94(26):8897
[29]
Jorgensen W L , Maxwell D S , Tiradorives J . Journal of the American Chemical Society, 1996,118(45):11225.
[30]
Allinger N L , Allinger N , Allinger N . Chemischer Informationsdienst, 1978,9:8127.
[31]
Allinger N L , Yuh Y H , Lii J H . J. Am. Chem. Soc, 1989,111:8551. https://pubs.acs.org/doi/abs/10.1021/ja00205a001

doi: 10.1021/ja00205a001
[32]
Mulliken R S . The Journal of Chemical Physics, 1955,23(10):1841.
[33]
Mulliken R S . The Journal of Chemical Physics, 1955,23(12):2338.
[34]
Mulliken R S . The Journal of Chemical Physics, 1955,23(10):1833.
[35]
Rappe A K , Goddard W A . Journal of Physical Chemistry, 1991,95:3358.
[36]
Li J R , Kuppler R J , Zhou H C . Chemical Society Reviews, 2009,38(5):1477. https://www.ncbi.nlm.nih.gov/pubmed/19384449

doi: 10.1039/b802426j pmid: 19384449
[37]
Zhang Y M , Li B Y , Krishna R , Wu Z L , Ma D X , Shi Z , Pham T , Forrest K , Space B , Ma S Q . Chemical Communications, 2015,51(13):2714. https://www.ncbi.nlm.nih.gov/pubmed/25575193

doi: 10.1039/c4cc09774b pmid: 25575193
[38]
Gao X , Zhang S S , Yan H , Li Y W , Liu Q Y , Wang X P , Tung C H , Ma H Y , Sun D . Crystengcomm, 2018,20(34):4905.
[39]
Lin R B , Li L B , Zhou H L , Wu H , He C H , Li S , Krishna R , Li J P , Zhou W , Chen B L . Nature Materials, 2018,17(12):1128. https://www.ncbi.nlm.nih.gov/pubmed/30397312

doi: 10.1038/s41563-018-0206-2 pmid: 30397312
[40]
Chen Y W , Qiao Z W , Wu H X , Lv D F , Shi R F , Xia Q B , Zhou J , Li Z . Chemical Engineering Science, 2018,175:110.
[41]
Bao Z B , Alnemrat S , Yu L , Vasiliev I , Ren Q L , Lu X Y , Deng S G . Langmuir, 2011,27(22):13554. https://www.ncbi.nlm.nih.gov/pubmed/21942644

doi: 10.1021/la2030473 pmid: 21942644
[42]
Liao P Q , Zhang W X , Zhang J P , Chen X M . Nature Communications, 2015,6(1):8697.
[43]
Li L B , Lin R B , Rajamani K , Li H , Xiang S C , Wu H , Li J P , Zhou W , Chen B L . Science, 2018,362(6413):443. https://www.ncbi.nlm.nih.gov/pubmed/30361370

doi: 10.1126/science.aat0586 pmid: 30361370
[44]
Hao H G , Zhao Y F , Chen D M , Yu J M , Tan K , Ma S Q , Chabal Y , Zhang Z M , Dou J M , Xiao Z H , Gregory D , Zhou H C , Lu T B . Angewandte Chemie International Edition, 2018,57(49):16067. https://www.ncbi.nlm.nih.gov/pubmed/30338921

doi: 10.1002/anie.201809884 pmid: 30338921
[45]
Hong X J , Wei Q , Cai Y P , Wu B B , Feng H X , Yu Y , Dong R F . ACS Applied Materials, 2017,9(34):29374. https://www.ncbi.nlm.nih.gov/pubmed/28792198

doi: 10.1021/acsami.7b10420 pmid: 28792198
[46]
Fan C B , Gong L L , Huang L , Luo F , Krishna R , Yi X F , Zheng A M , Zhang L , Pu S Z , Feng X F , Luo M B , Guo G C . Angewandte Chemie International Edition, 2017,56(27):7900. https://www.ncbi.nlm.nih.gov/pubmed/28436067

doi: 10.1002/anie.201702484 pmid: 28436067
[47]
Yao Z Z , Zhang Z J , Liu L Z , Li Z Y , Zhou W , Zhao Y F , Han Y , Chen B L , Krishna R , Xiang S C . Chemistry-A European Journal, 2016,22(16):5676. https://www.ncbi.nlm.nih.gov/pubmed/26934040

doi: 10.1002/chem.201505107 pmid: 26934040
[48]
Jiang M D , Cui X L , Yang L F , Yang Q W , Zhang Z G , Yang Y W , Xing H B . Chemical Engineering Journal, 2018,352:803.
[49]
Li L Y , Guo L D , Pu S Y , Wang J W , Yang Q W , Zhang Z G , Yang Y W , Ren Q L , Alnemrat S , Bao Z B . Chemical Engineering Journal, 2018,358:446.
[50]
Hu T L , Wang H L , Li B , Krishna R , Wu H , Zhou W , Zhao Y F , Ha Y , Wang X , Zhu W D , Yao Z Z , Xiang S C , Chen B L . Nature Communications, 2015,6(1):7328.
[51]
Li J , Jiang L Y , Chen S , Kirchon A , Li B , Li Y S , Zhou H C . Journal of the American Chemical Society, 2019,141(9):3807. https://www.ncbi.nlm.nih.gov/pubmed/30773013

doi: 10.1021/jacs.8b13463 pmid: 30773013
[52]
Lamia N , Jorge M , Granato M A , Almeida Paz F A , Chevreau H , Rodrigues A E . Chemical Engineering Science, 2009,64(14):3246.
[53]
Bae Y , Lee C Y , Kim K C , Farha O K , Nickias P , Hupp J T , Nguyen S T , Snurr R Q . Angewandte Chemie International Edition, 2012,51(8):1857. https://www.ncbi.nlm.nih.gov/pubmed/22250050

doi: 10.1002/anie.201107534 pmid: 22250050
[54]
Kim S , Yoon T , Kang J H , Kim A , Kim T , Kim S , Park W , Kim K C , Bae Y . ACS Applied Materials & Interfaces, 2018,10(32):27521. https://www.ncbi.nlm.nih.gov/pubmed/30040880

doi: 10.1021/acsami.8b09739 pmid: 30040880
[55]
Chen Y W , Qiao Z W , Lv D F , Duan C X , Sun X J , Wu H X , Shi R F , Xia B , Li Z . Chemical Engineering Journal, 2017,328:360.
[56]
Li L B , Lin R B , Wang X Q , Zhou W , Jia L T , Li J P , Chen B L . Chemical Engineering Journal, 2018,354:977.
[57]
Peng J J , Wang H , Olson D H , Li Z , Li J . Chemical Communications, 2017,53(67):9332. https://www.ncbi.nlm.nih.gov/pubmed/28783197

doi: 10.1039/c7cc03529b pmid: 28783197
[58]
Yang L F , Cui X L , Yang Q W , Qian S H , Wu H , Bao Z B , Zhang Z G , Ren Q L , Zhou W , Chen B L , Xing H B . Advanced Materials, 2018,30(10):1705374.
[59]
Yang L F , Cui X L , Zhang Y B , Yang Q W , Xing H B . Journal of Materials Chemistry A, 2018,6(47):24452.
[60]
Li L B , Wen H M , He C H , Lin R B , Krishna R , Wu H , Zhou W , Li J P , Li B , Chen B L . Advanced Materials, 2018,57(46):15183. https://www.ncbi.nlm.nih.gov/pubmed/30240522

doi: 10.1002/anie.201809869 pmid: 30240522
[61]
Li L B , Lin R B , Krishna R , Wang X Q , Li B , Wu H , Li J P , Zhou W , Chen B L . Journal of the American Chemical Society, 2017,139(23):77336.
[62]
Wen H M , Li L B , Lin R B , Li B , Hu B , Zhou W , Hu J , Chen B L . Journal of Materials Chemistry A, 2018,6(16):6931.
[63]
Yang L F , Cui X L , Zhang Z Q , Yang Q W , Bao Z B , Ren Q L , Xing H B . Angewandte Chemie International Edition, 2018,57(40):13145. https://www.ncbi.nlm.nih.gov/pubmed/30110128

doi: 10.1002/anie.201807652 pmid: 30110128
[1] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[2] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[3] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[4] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[7] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[8] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[9] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[10] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[11] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[12] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[13] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[14] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[15] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.