中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (07): 1107-1119 DOI: 10.7536/PC140116 Previous Articles   Next Articles

• Review •

Self-Assembly of Nanoparticles at Interfaces

Yang Pinghui, Sun Wei*, Hu Si, Chen Zhongren   

  1. The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21104036), Subject Funding of Ningbo University (xkl11050) and K. C. Wong Magna Found in Ningbo University

PDF ( 3708 ) Cited
Export

EndNote

Ris

BibTeX

Self-assembly of nanoparticles at interfaces has become the focus of extensive studies since the phenomenon of Pickering emulsion, known as a fact that solid particles can spontaneously migrate onto fluid/fluid interface forming monolayer or multilayer, acting as the "surfactant" to stabilize the emulsion, was firstly established in early 20th century. Using interface, especially fluid/fluid interface, to guide the directed assemblies of nanoparticles is of great scientific interest for the food, cosmetics and pharmaceutical industry. For liquid/liquid interface-induced assembly, reduction of the interfacial energy is the dominating driving force. Self-assembly processes can be controlled by tuning the sizes of the nanoparticles as well as the chemical characteristics of the ligands on the particle surfaces. In this review, self-assembly behavior of different types of nanoparticles, including homogeneous, Janus-type, rod-type, and biological nanoparticles, and their applications are summarized. All these studies have shed new light on the basic understandings of self-assembly of nanoparticles at interfaces and widened the application fields of nanoparticles. The hierarchically ordered structures generated by self-assembly of nanoparticles could find extensive applications in various fields, such as optics, acoustics, electricity, magnetics, medicine, etc. Furthermore, the limitation and future development in the field of self-assembly of nanoparticles at interfaces are elucidated.

Contents
1 Introduction
1.1 Pickering emulsion
1.2 Nanoparticles as building block
2 Self-assembly of nanoparticles at interface
2.1 Homogeneous nanoparticles
2.2 Janus nanoparticles
2.3 Rod-type nanoparticles
2.4 Biological nanoparticles
3 Conclusion and outlook

CLC Number: 

[1] Pickering S U. J. Chem. Soc., 1907, 91: 2001.
[2] Ramsden W. Proc. R. Soc. London, 1903,72: 156.
[3] Binks B P. Curr. Opin. Colloid Interface Sci., 2002, 7: 21.
[4] Aveyard R, Binks B P, Clint J H. Adv. Colloid Interface Sci., 2003,100/102 : 503.
[5] Pieranski P. Phys. Rev. Lett., 1980, 45: 569.
[6] Binks B P, Lumsdon S O. Langmuir, 2000, 16: 8622.
[7] Binks B P, Lumsdon S O. Langmuir, 2001, 17: 4540.
[8] Binks B P, Whitby C P. Langmuir, 2004, 20: 1130.
[9] Horozov T S, Aveyard R, Clint J H, Binks B P. Langmuir, 2003, 19: 2822.
[10] Giermanska-Kahn J, Schmitt V, Binks B P, Leal-Calderon F. Langmuir, 2002, 18: 2515.
[11] Birdi K S, Vu D T. Handbook of Surface and Colloid Chemistry. Boca Raton: CRC Press, 1997,142.
[12] Lin Y, Böker A, Skaff H, Cookson D, Dinsmore A D, Emrick T, Russell T P. Langmuir, 2005, 21: 191.
[13] Lin Y, Skaff H, Emrick T, Dinsmore A D, Russell T P. Science, 2003, 299:226.
[14] 马小军(Ma X J). 微胶囊与人工器官(Microcapsule and Artificial Organs). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2002, 30.
[15] Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R, Weitz D A. Science, 2002, 298: 1006.
[16] Mulvaney P, Giersig M, Ung T, Liz-Marzán L M. Adv. Mater., 1997, 9: 570.
[17] Walsh D, Mann S. Nature, 1995, 377: 320.
[18] Zhang Q, Wang W, Goebl J, Yin Y. Nano Today, 2009, 4: 494.
[19] Tian J, Yuan L, Zhang M M, Zheng F, Xiong Q Q, Zhao H. Langmuir, 2012, 28: 9365.
[20] Chatzipavlidis A, Bilalis P, Tziveleka L A, Boukos N, Charitidis C A, Kordas G. Langmuir, 2013, 29: 9562.
[21] Chen Y, Chen H R, Zeng D P, Tian Y B, Chen F, Feng J W, Shi J L. ACS Nano, 2010, 4: 6001.
[22] Murray C B, Kagan C R, Bawendi M G. Science, 1995, 270: 1335.
[23] Murray C B, Kagan C R, Bawendi M G. Annu. Rev. Mater. Sci., 2000, 30: 545.
[24] Sun S H, Murray C B, Weller D, Folks L, Moser A. Science, 2000, 287: 1989.
[25] Böker A, He J B, Emrick T, Russell T P. Soft Matter, 2007, 3: 1231.
[26] Kim J W, Nieves A F, Dan N, Utada A S, Marquez M, Weitz D A. Nano Lett., 2007, 7: 2876.
[27] Talapin D V, Shevchenko E V, Kornowski A, Gaponik N, Haase M, Rogach A L, Weller H. Adv. Mater., 2001, 13: 1868.
[28] Miesch C, Kosif I, Lee E, Kin J K, Russell T P, Hayward R C, Emrick T. Angew. Chem. Int. Ed., 2012, 51: 145.
[29] Wang J, Wang D, Sobal N S, Giersig M, Jiang M, Mhwald H. Angew. Chem., 2006, 118: 813.
[30] Lee K Y, Bae Y, Kim M, Cheong G W, Kim J, Lee S S, Han S W. Thin Solid Films, 2006, 515: 2049.
[31] Lee K Y, Han S W, Bull. Korean Chem. Soc., 2005, 26: 1306.
[32] Arumugam P, Patra D, Samanta B, Agasti S S, Subramani C, Rotello V M. J. Am. Chem. Soc., 2008, 130: 10046.
[33] Yang X C, Samanta B, Agasti S S, Jeong Y, Zhu Z J, Rana S, Miranda O R, Rotello V M. Angew. Chem., 2011, 123: 497.
[34] Reincke F, Kegel W K, Zhang H, Nolte M, Wang D, Vanmaekelbergh D, Mhwald H. Phys.Chem.Chem.Phys., 2006, 8: 3828.
[35] Li Y J, Huang W J, Sun S G. Angew. Chem., 2006, 118: 2599.
[36] Park Y K, Yoo S H, Park S. Langmuir, 2007, 23: 10505.
[37] Park Y K, Park S. Chem. Mater., 2008, 20: 2388.
[38] Xu L, Han G, Hu J, He Y, Pan J, Li Y, Xiang J. Phys. Chem. Chem. Phys., 2009, 11: 6490.
[39] Cheng L, Liu A, Peng S, Duan H. ACS Nano, 2010, 4: 6098.
[40] Kubowicz S, Daillant J, Dubois M, Delsanti M, Verbavatz J M, Möhwald H. Langmuir, 2010, 26: 1642.
[41] Bigioni T P, Lin X M, Nguyen T T, Corwin E I, Witten T A, Jaeger H M. Nat. Mater., 2006, 5: 265.
[42] Mueggenburg K E, Lin X M, Goldsmith R H, Jaeger H M. Nat. Mater., 2007, 6: 656.
[43] Sashuk V, Ho?yst R, Wojciechowski T, Górecka E, Fia?kowski M. Chem. Eur. J., 2012, 18: 2235.
[44] Kim S I, Prada F, Song H, Kim S. Journal of Vacuum Science & Technology B, 2011, 29: 021801.
[45] Krishnaswamy R, Kalyanikutty K P, Biswas K, Sood A K, Rao C N R. Langmuir, 2009, 25: 10954.
[46] Park Y K, Yoo S H, Park S. Langmuir, 2007, 23: 10505.
[47] Park Y K, Park S. Chem. Mater., 2008, 20: 2388.
[48] Park Y K, Yoo S H, Park S. Langmuir, 2008, 24: 4370.
[49] de Gennes P G.. Rev. Mod. Phys., 1992, 64: 645.
[50] Perro A, Reculusa S, Ravaine S, Bourgeat-Lamic E, Duguet E. J. Mater. Chem., 2005, 15: 3745.
[51] Binks B P, Fletcher P D I. Langmuir, 2001, 17: 4708.
[52] Hong L, Cacciuto A, Luijten E, Granick S. Langmuir, 2008, 24: 621.
[53] Cheung D L, Bon S A F. Soft Matter, 2009, 5: 3969.
[54] Miller W L, Cacciuto A. Phys. Rev. E, 2009, 80: 1539.
[55] Fujii S, Yokoyama Y, Miyanari Y, Shiono T, Ito M, Yusa S, Nakamura Y. Langmuir, 2013, 29: 5457.
[56] Voets I K, de Keizer A, de Waard P, Frederik P M, Bomans P H H, Schmalz H, Walther A, King S M, Leermakers F A M, Cohen-Stuart M A. Angew. Chem. Inter. Ed., 2006, 40: 6825.
[57] Voets I K, Fokkink R, Hellweg T, King S M, de Waard P, de Keizer A, Cohen-Stuart M A. Soft Matter, 2009, 5: 999.
[58] 王朝阳(Wang Z Y),阳瑞(Yang R), 陈云华(Chen Y H), 童真(Tong Z). 高等学校化学学报(Chemical Journal of Chinese Universities),2010,31(5): 864.
[59] Yu H, Chen M, Rice P M, Wang S X, White R L. Nano Lett., 2005, 5: 379.
[60] Park B J, Brugarolas T, Lee D. Soft Matter, 2011, 7: 6413.
[61] Ruhland T M, Gröschel A H, Walther A, Müller A. Langmuir, 2011, 27: 9807.
[62] Virgilio N, Favis B D. Macromolecules, 2011, 44: 5850.
[63] Wang Y Z, Fan D Q, He J P, Yang Y L. Colloid Polym. Sci., 2011, 289: 1885.
[64] Luo Q J, Hickey R J, Park S J. Macro Lett., 2013, 2: 107.
[65] Ruhland T M, Gröschel A H, Ballard N, Skelhon T S, WaltherA, Müller A H E, Bon S A F. Langmuir, 2013, 29: 1388.
[66] Park B J, Lee D. Soft Matter, 2012, 8: 7690.
[67] Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404: 59.
[68] Peng Z A, Peng X G. J. Am. Chem. Soc., 2002, 124: 3343.
[69] Joo J, Na H B, Yu T, Yu J H, Kim Y W, Wu Y, Zhang J Z, Hyeon T. J. Am. Chem. Soc., 2003, 125: 11100.
[70] Puntes V F, Krishnan K M, Alivisatos A P. Science, 2001, 291: 2115.
[71] Murphy C J, San T K, Gole A M, Orendorff C J, Gao J X, Gou L F, Hunyadi S E, Li T. J. Phys. Chem. B, 2005, 109: 13857.
[72] Puntes V F, Krishnan K M, Alivisatos A P. Science, 2001, 291: 2115.
[73] He J, Zhang Q, Gupta S, Thiyagarajan P, Emrick T, Russell T P. Small, 2007, 3: 1214.
[74] Basavaraj M G, Fuller G G, Fransaer J, Vermant J. Langmuir, 2006, 22: 6605.
[75] Dong L C, Johnson D T. Langmuir, 2005, 21: 3838.
[76] Lewandowski E P, Searson P C, Stebe K J. J. Phys. Chem. B, 2006, 110: 4283.
[77] Lin Y, Skaff H, Emrick T, Dinsmore A D, Russell T P. Science, 2003, 299: 226.
[78] Nikoobakht B, Wang Z L, El-Sayed M A. J. Phys. Chem. B, 2000, 104: 8635.
[79] Caswell K K, Wilson J N, Bunz U H F, Murphy C J. J. Am. Chem. Soc., 2003, 125: 13914.
[80] Zhang Q L, Gupta S, Emrick T, Russell T P. J. Am. Chem. Soc., 2006, 128: 3898.
[81] Ahmed S, Ryan K M. Chem. Commun., 2009, 42: 6421.
[82] Kelly D, Singh A, Barrett C A, O'Sullivan C, Coughlan C, Laffir F R, O'Dwyer C, Ryan K M. Nanoscale, 2011, 3: 4580.
[83] Singh A, Gunning R D, Ahmed S, Barrett C A. Mater. Chem., 2012, 22: 1562.
[84] Singh A, Dickinson C, Ryan K M. ACS Nano, 2012, 6: 3339.
[85] Singh A, Geaney H, Laffir F, Ryan K M. J. Am. Chem. Soc., 2012, 134: 2910.
[86] Khanal B P, Zubarev E R. Angew. Chem. Int. Ed., 2007, 46: 2195.
[87] He J, Zhang Q, Gupta S, Thiyagarajan P, Emrick T, Russell T P. Small, 2007, 3: 1214.
[88] Kuemin C, Nowack L, Bozano L, Spencer N D, Wolf H. Adv. Funct. Mater., 2012, 22: 702.
[89] Kuemin C, Stutz R, Spencer N D, Wolf H. Langmuir, 2011, 27: 6305.
[90] Holzner F, Kuemin C, Paul P, Hedrick J L, Wolf H, Spencer N D, Duerig U, Knoll A W. Nano Lett., 2011, 11: 3957.
[91] Binder W H. Angew. Chem. Int. Ed., 2005, 44: 5172.
[92] Huynh W U, Dittmer J J, Alivisatos A P. Science, 2002, 295: 2425.
[93] Duan X F, Huang Y, Cui Y, Wang J F, Lieber C M. Nature, 2001, 409: 66.
[94] Huang Y, Duan X F, Wei Q Q, Lieber C M. Science, 2001, 291: 630.
[95] Whitesides G M, Grzybowski B. Science, 2002, 295: 2418.
[96] Murray C B, Kagan C R, Bawendi M G. Annu. Rev. Mater. Sci., 2000, 30: 545.
[97] Kuemin C, Huckstadt K C, Lörtscher E, Rey A, Decker A, Spencer N D, Wolf H. Adv. Mater., 2010, 22: 2804.
[98] Claridge S A, Castleman A W, Khanna S N, Murray C B, Sen A, Weiss P S. ACS Nano, 2009, 3: 244.
[99] Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Chem. Rev., 2010, 110: 389.
[100] Glotzer S C, Solomon M J. Nat. Mater., 2007, 6: 557.
[101] Liu Z, Qiao J, Niu Z W, Wang Q. Chem. Soc. Rev., 2012, 41: 6178.
[102] Scheybani T, Yoshimura H, Baumeister W, Nagayama K. Langmuir, 1996, 12: 431.
[103] Yoshimura H, Scheybani T, Baumeister W, Nagayama K. Langmuir, 1994, 10: 3290.
[104] Dimitrov A S, Yamaki M, Nagayama K. Langmuir, 1995, 11: 2682.
[105] Yamaki M, Matsubara K, Nagayama K. Langmuir, 1993, 9: 3154.
[106] Adachi E, Nagayama K. Langmuir, 1996, 12: 1836.
[107] Granoff A, Webster R G. Encyclopedia of Virology. 3rd ed. San Diego: Academic Press, 1999, 1850.
[108] Canady M A, Larson S B, Day J, McPherson A. Nature Structural Biology, 1996, 3: 771.
[109] Foster G D, Taylor S C. Plant virology protocols. vol. 81. Totawa: Humana Press, 1998, 219.
[110] Stanley W M. Science, 1935, 81: 644.
[111] Jutza G, Böker A. Polymer, 2011, 52: 211.
[112] Barnhill H N, Claudel-Gillet S, Ziessel R, Charbonniere L J, Wang Q. Journal of the American Chemical Society, 2007, 129: 7799.
[113] Kaur G, He J B, Xu J, Pingali S V, Jutz G, Böker A, Niu Z W, Li T, Rawlinson D, Emrick T, Lee B, Thiyagarajan P, Russell T P, Wang Q. Langmuir, 2009, 25: 5168.
[114] Arosio P, Ingrassia R, Cavadini P. Biochimica Et Biophysica Acta-General Subjects, 2009, 1790: 589.
[115] Chasteen N D, Harrison P M. Journal of Structural Biology, 1999, 126: 182.
[116] Harrison P M, Arosio P. Biochimica Et Biophysica Acta -Bioenergetics, 1996, 1275: 161.
[117] Martin T D, Monheit S A, Niichel R J, Peterson S C, Campbell C H, Zapien D C. J. Electroanal. Chem., 1997, 420: 279.
[118] Wong K K W, Mann S. Adv. Mater., 1996, 8: 928.
[119] Wong K K W, Douglas T, Gider S, Awschalom D D, Mann S. Chem.Mater., 1998, 10: 279.
[120] Dickinson E. Soft Matter, 2008, 4: 932.
[121] Damodaran S. J. Food Sci., 2005, 70: 54.
[122] Murray B S. Curr. Opin. Colloid Interface Sci., 2007, 12: 232.
[123] Mougin N C, van Rijn P, Park H, Müller A H E, Böker A. Adv. Funct. Mater., 2011, 21: 2470.
[124] van Rijn P, Mougin N C, Böker A. Polymer, 2012, 53: 6045.
[125] van Rijn P, Park H, zlem-Nazli K, Mougin N C, Böker A. Langmuir, 2013, 29: 276.

[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[5] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[6] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[7] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[8] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[9] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[10] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[11] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[12] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[13] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[14] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[15] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.