中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (11): 2331-2339 DOI: 10.7536/PC220319 Previous Articles   Next Articles

• Review •

Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms

Dandan Zhang1,2, Qi Wu1,3, Guangbo Qu1,2,3(), Jianbo Shi1,2,3, Guibin Jiang1   

  1. 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
    2 College of Resources and Environment, University of Chinese Academy of Sciences,Beijing 100049, China
    3 School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou 310024, China
  • Received: Revised: Online: Published:
  • Contact: Guangbo Qu
  • Supported by:
    National Natural Science Foundation of China(21976189); National Natural Science Foundation of China(22036002)
Richhtml ( 32 ) PDF ( 256 ) Cited
Export

EndNote

Ris

BibTeX

Metal nanoparticles released by human activities inevitably enter the aquatic environment. Numerous studies have shown that metal nanoparticles could induce reproductive toxicity and genetic toxicity in aquatic organisms. Furthermore, metal nanoparticles could be transmitted along the food chains which is a potential threat to human health. Quantitative analysis of intracellular metal nanoparticles is important for studying the biological effects of metal nanoparticles. In addition, there is heterogeneity among cells, and the individual cell with special physiological characteristics may influence or even determine the destiny of the cell population. However, most traditional methods for the quantitative determination of intracellular metal nanoparticles were based on the whole cell population whereas the heterogeneity of individual cells was neglected, which may result in the loss of significant information about cell populations that have important functions to the community. Therefore, the quantitative analysis of the intracellular metal nanoparticles in unicellular microorganisms, which locates at the bottom of the trophic level in the aquatic environment, is essential for understanding the interaction between metal nanoparticles and aquatic organisms and evaluating the potential risk of metal nanoparticles entering the food chain. In this review, we discuss the single-cell analysis methods for the quantitative determination of metal nanoparticles in aquatic unicellular organisms. The working principle and application of these methods and their pros and cons are summarized. This paper aims to provide a theoretical basis of the method selection for relevant studies in the future. Finally, we prospect the future research directions in this field according to the current research status.

Contents

1 Introduction

2 Quantitative methods based on fluorescence

2.1 Confocal laser scanning microscopy

2.2 Flow cytometry

3 Quantitative methods based on non-fluorescent microscopy

3.1 Scanning transmission electron microscopy

3.2 Hyperspectral imaging with enhanced darkfield microscopy

4 Quantitative methods based on mass spectrometry

4.1 Single cell inductively coupled plasma mass spectrometry

4.2 Mass cytometry

5 Conclusion and perspective

Table 1 Overview of the application of methods for quantitative analysis of metal nanoparticles in unicellular aquatic organisms mentioned in this review
Table 2 Overview of the advantage and disadvantage among single-cell quantitative analysis methods mentioned in this review
[1]
Gilroy K D, Ruditskiy A, Peng H C, Qin D, Xia Y N. Chem. Rev., 2016, 116(18): 10414.

doi: 10.1021/acs.chemrev.6b00211 pmid: 27367000
[2]
Pei P, Chen Y, Sun C X, Fan Y, Yang Y M, Liu X, Lu L F, Zhao M Y, Zhang H X, Zhao D Y, Liu X G, Zhang F. Nat. Nanotechnol., 2021, 16(9): 1011.

doi: 10.1038/s41565-021-00922-3
[3]
Price E, Gesquiere A J. Sci. Adv., 2020, 6(4): eaax2642.

doi: 10.1126/sciadv.aax2642
[4]
Shi T L, Hou X, Guo S Q, Zhang L, Wei C H, Peng T, Hu X G. Nat. Commun., 2021, 12(1): 493.

doi: 10.1038/s41467-020-20547-9
[5]
Pomerantseva E, Bonaccorso F, Feng X L, Cui Y, Gogotsi Y. Science, 2019, 366(6468): 969.

doi: 10.1126/science.aan8285
[6]
Park K, Kuo Y, Shvadchak V, Ingargiola A, Dai X H, Hsiung L, Kim W, Zhou H, Zou P, Levine A J, Li J, Weiss S. Sci. Adv., 2018, 4(1): e1601453.

doi: 10.1126/sciadv.1601453
[7]
Song Y, Ozdemir E, Ramesh S, Adishev A, Subramanian S, Harale A, Albuali M, Fadhel B A, Jamal A, Moon D, Choi S H, Yavuz C T. Science, 2020, 368(6492): eabb5680.

doi: 10.1126/science.abb5680
[8]
Roach K A, Stefaniak A B, Roberts J R. J. Immunotoxicol., 2019, 16(1): 87.

doi: 10.1080/1547691X.2019.1605553
[9]
Aruoja V, Pokhrel S, Sihtmäe M, Mortimer M, Mädler L, Kahru A. Environ. Sci. Nano., 2015, 2(6): 630.

doi: 10.1039/C5EN00057B
[10]
Chen F R, Xiao Z G, Yue L, Wang J, Feng Y, Zhu X S, Wang Z Y, Xing B S. Environ. Sci. Nano., 2019, 6(4): 1026.

doi: 10.1039/C8EN01368C
[11]
Kim M S, Louis K M, Pedersen J A, Hamers R J, Peterson R E, Heideman W. Analyst, 2014, 139(5): 964.

doi: 10.1039/c3an01966g pmid: 24384696
[12]
Yang W W, Wang Y, Huang B, Wang N X, Wei Z B, Luo J, Miao A J, Yang L Y. Environ. Sci. Technol., 2014, 48(13): 7568.

doi: 10.1021/es500694t pmid: 24912115
[13]
Guo W B, Yang L Y, Miao A J. J. Hazard. Mater., 2021, 411: 125098.

doi: 10.1016/j.jhazmat.2021.125098
[14]
Haghighat F, Kim Y, Sourinejad I, Yu I J, Johari S A. Chemosphere, 2021, 262: 127805.

doi: 10.1016/j.chemosphere.2020.127805
[15]
Werlin R, Priester J H, Mielke R E, Krämer S, Jackson S, Stoimenov P K, Stucky G D, Cherr G N, Orias E, Holden P A. Nat. Nanotechnol., 2011, 6(1): 65.

doi: 10.1038/nnano.2010.251 pmid: 21170041
[16]
Abdolahpur Monikh F, Chupani L, Arenas-Lago D, Guo Z L, Zhang P, Darbha G K, Valsami-Jones E, Lynch I, Vijver M G, van Bodegom P M, Peijnenburg W J G M. Nat. Commun., 2021, 12(1): 899.

doi: 10.1038/s41467-021-21164-w pmid: 33563998
[17]
Kuehr S, Diehle N, Kaegi R, Schlechtriem C. Environ. Sci. Eur., 2021, 33(1) : 35.

doi: 10.1186/s12302-021-00473-3
[18]
Tan L Y, Huang B, Xu S, Wei Z B, Yang L Y, Miao A J. Environ. Sci. Technol., 2016, 50(14): 7799.

doi: 10.1021/acs.est.6b01645
[19]
Briffa S M, Nasser F, Valsami-Jones E, Lynch I. Environ. Sci. Nano., 2018, 5(7): 1745.

doi: 10.1039/C8EN00063H
[20]
Yang M H, Lin C H, Chang L W, Lin P P. Methods Mol. Biol., 2012, 926: 345.

doi: 10.1007/978-1-62703-002-1_22 pmid: 22975974
[21]
Domingos R F, Simon D F, Hauser C, Wilkinson K J. Environ. Sci. Technol., 2011, 45(18): 7664.

doi: 10.1021/es201193s pmid: 21842898
[22]
Zhang L Q, Wang W X. Environ. Sci. Technol., 2019, 53(1): 494.

doi: 10.1021/acs.est.8b04918
[23]
Brehm-Stecher B F, Johnson E A. Microbiol. Mol. Biol. Rev., 2004, 68(3): 538.

doi: 10.1128/MMBR.68.3.538-559.2004
[24]
Vanhecke D, Rodriguez-Lorenzo L, Clift M J D, Blank F, Petri-Fink A, Rothen-Rutishauser B. Nanomed., 2014, 9(12): 1885.

doi: 10.2217/nnm.14.108
[25]
Wei X, Lu Y, Zhang X, Chen M L, Wang J H. TrAC, Trends Anal. Chem., 2020, 127: 115886.
[26]
Brown M, Wittwer C. Clin. Chem., 2000, 46(8): 1221.

doi: 10.1093/clinchem/46.8.1221
[27]
Shapiro H M. J. Microbiol. Methods, 2000, 42(1): 3.

pmid: 11000426
[28]
Han M Y, Gao X H, Su J Z, Nie S M. Nat. Biotechnol., 2001, 19(7): 631.

pmid: 11433273
[29]
Rothen-Rutishauser B, Kuhn D A, Ali Z, Gasser M, Amin F, Parak W J, Vanhecke D, Fink A, Gehr P, Brandenberger C. Nanomed., 2014, 9(5): 607.

doi: 10.2217/nnm.13.24
[30]
Rodriguez-Lorenzo L, Fytianos K, Blank F, Garnier C V, Rothen-Rutishauser B, Petri-Fink A. Small, 2014, 10(7): 1341.

doi: 10.1002/smll.201302889 pmid: 24482355
[31]
Chastellain M, Petri A, Hofmann H. J. Colloid Interface Sci., 2004, 278(2): 353.

doi: 10.1016/j.jcis.2004.06.025
[32]
Hard R, Hipp J, Tangrea M A, Tomaszewski J E. Pathobiology of Human Disease. Eds.: McManus L M, Mitchell R N. Amsterdam: Elsevier, 2014. 3723.
[33]
Jiang X E, Röcker C, Hafner M, Brandholt S, Dörlich R M, Nienhaus G U. ACS Nano, 2010, 4(11): 6787.

doi: 10.1021/nn101277w pmid: 21028844
[34]
Wu Q, Shi J B, Ji X M, Xia T, Zeng L, Li G T, Wang Y Y Y, Gao J, Yao L L, Ma J J, Liu X L, Liu N, Hu L G, He B, Liang Y, Qu G B, Jiang G B. ACS Nano, 2020, 14(10): 12828.

doi: 10.1021/acsnano.0c03587
[35]
Clift M J D, Rothen-Rutishauser B, Brown D M, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V. Toxicol. Appl. Pharmacol., 2008, 232(3): 418.

doi: 10.1016/j.taap.2008.06.009
[36]
Gottstein C, Wu G H, Wong B J, Zasadzinski J A. ACS Nano, 2013, 7(6): 4933.

doi: 10.1021/nn400243d pmid: 23706031
[37]
Wang Y, Miao A J, Luo J, Wei Z B, Zhu J J, Yang L Y. Environ. Sci. Technol., 2013, 47(18): 10601.

doi: 10.1021/es4017188
[38]
Chithrani B D, Ghazani A A, Chan W C W. Nano Lett., 2006, 6(4): 662.

pmid: 16608261
[39]
Park J, Ha M K, Yang N, Yoon T H. Anal. Chem., 2017, 89(4): 2449.

doi: 10.1021/acs.analchem.6b04418
[40]
Wu Y, Ali M R K, Dansby K, El-Sayed M A. Anal. Chem., 2019, 91(22): 14261.

doi: 10.1021/acs.analchem.9b02248
[41]
Gupta G S, Kumar A, Shanker R, Dhawan A. Sci. Rep., 2016, 6: 31422.

doi: 10.1038/srep31422
[42]
Fan Y Y, Dong D F, Li Q L, Si H B, Pei H M, Li L, Tang B. Lab Chip, 2018, 18(8): 1151.

doi: 10.1039/C7LC01333G
[43]
Mullins J M. Methods in Molecular Biology. Eds.: Walker J M. Amsterdam: Springer, 2010. 181.
[44]
Blank H, Schneider R, Gerthsen D, Gehrke H, Jarolim K, Marko D. Nanotoxicology, 2014, 8(4): 433.

doi: 10.3109/17435390.2013.796535
[45]
Browning N D, Chisholm M F, Pennycook S J. Nature, 1993, 366(6451): 143.

doi: 10.1038/366143a0
[46]
LeBeau J M, Findlay S D, Allen L J, Stemmer S. Nano Lett., 2010, 10(11): 4405.

doi: 10.1021/nl102025s pmid: 20945926
[47]
Mielke R E, Priester J H, Werlin R A, Gelb J, Horst A M, Orias E, Holden P A. Appl. Environ. Microbiol., 2013, 79(18): 5616.

doi: 10.1128/AEM.01680-13
[48]
Priester J H, Stoimenov P K, Mielke R E, Webb S M, Ehrhardt C, Zhang J P, Stucky G D, Holden P A. Environ. Sci. Technol., 2009, 43(7): 2589.

pmid: 19452921
[49]
Zamora-Perez P, Tsoutsi D, Xu R X, Rivera Gil P. Materials, 2018, 11(2): 243.

doi: 10.3390/ma11020243
[50]
Fairbairn N, Christofidou A, Kanaras A G, Newman T A, Muskens O L. Phys. Chem. Chem. Phys., 2013, 15(12): 4163.

doi: 10.1039/c2cp43162a pmid: 23183927
[51]
Xiao L H, Yeung E S. Annu. Rev. Anal. Chem., 2014, 7: 89.

doi: 10.1146/annurev-anchem-071213-020125
[52]
Wang H H, Zhang T, Zhou X C. J. Phys.: Condens. Matter, 2019, 31(47): 473001.
[53]
Gao L, Smith R T. J. Biophotonics, 2015, 8(6): 441.

doi: 10.1002/jbio.201400051
[54]
Badireddy A R, Wiesner M R, Liu J. Environ. Sci. Technol., 2012, 46(18): 10081.

doi: 10.1021/es204140s pmid: 22906208
[55]
Mortimer M, Gogos A, Bartolome N, Kahru A, Bucheli T D, Slaveykova V I. Environ. Sci. Technol., 2014, 48(15): 8760.

doi: 10.1021/es500898j pmid: 25000358
[56]
Halter M, Bier E, DeRose P C, Cooksey G A, Choquette S J, Plant A L, Elliott J T. Cytometry A, 2014, 85(11): 978.

doi: 10.1002/cyto.a.22519
[57]
Petersen E J, Mortimer M, Burgess R M, Handy R, Hanna S, Ho K T, Johnson M, Loureiro S, Selck H, Scott-Fordsmand J J, Spurgeon D, Unrine J, van den Brink N W, Wang Y, White J, Holden P. Environ. Sci. Nano., 2019, 6(6): 1619.

doi: 10.1039/C8EN01378K
[58]
Yin L, Zhang Z, Liu Y Z, Gao Y, Gu J K. Analyst, 2019, 144(3): 824.

doi: 10.1039/C8AN01190G
[59]
Yu X X, He M, Chen B B, Hu B. Anal. Chim. Acta, 2020, 1137: 191.

doi: 10.1016/j.aca.2020.07.041
[60]
Li F M, Armstrong D W, Houk R S. Anal. Chem., 2005, 77(5): 1407.

doi: 10.1021/ac049188l
[61]
Corte-Rodríguez M, Álvarez-Fernández R, García-Cancela P, Montes-BayÓn M, Bettmer J. TrAC, Trends Anal. Chem., 2020, 132: 116042.
[62]
Wei X, Hu L L, Chen M L, Yang T, Wang J H. Anal. Chem., 2016, 88(24): 12437.

doi: 10.1021/acs.analchem.6b03810
[63]
Meyer S, LÓpez-Serrano A, Mitze H, Jakubowski N, Schwerdtle T. Metallomics, 2018, 10(1): 73.

doi: 10.1039/c7mt00285h pmid: 29292446
[64]
Shen X, Zhang H T, He X L, Shi H L, Stephan C, Jiang H, Wan C H, Eichholz T. Anal. Bioanal. Chem., 2019, 411(21): 5531.

doi: 10.1007/s00216-019-01933-9
[65]
Gomez-Gomez B, Corte-Rodríguez M, Perez-Corona M T, Bettmer J, Montes-BayÓn M, Madrid Y. Anal. Chim. Acta, 2020, 1128: 116.

doi: S0003-2670(20)30707-8 pmid: 32825896
[66]
Merrifield R C, Stephan C, Lead J R. Environ. Sci. Technol., 2018, 52(4): 2271.

doi: 10.1021/acs.est.7b04968 pmid: 29400052
[67]
Shi J B, Ji X M, Wu Q, Liu H W, Qu G B, Yin Y G, Hu L G, Jiang G B. Anal. Chem., 2020, 92(1): 622.

doi: 10.1021/acs.analchem.9b03719
[68]
Lum J T, Leung K S. Anal. Chim. Acta, 2019, 1061: 50.

doi: 10.1016/j.aca.2019.02.042
[69]
Wang H, Chen B B, He M, Hu B. Anal. Chem., 2017, 89(9): 4931.

doi: 10.1021/acs.analchem.7b00134 pmid: 28397489
[70]
Yu X X, Chen B B, He M, Wang H, Hu B. Anal. Chem., 2019, 91(4): 2869.

doi: 10.1021/acs.analchem.8b04844
[71]
Yu X X, Chen B B, He M, Hu B. Anal. Chem., 2020, 92(19): 13550.

doi: 10.1021/acs.analchem.0c03194
[72]
Zhang X, Wei X, Men X, Wu C X, Bai J J, Li W T, Yang T, Chen M L, Wang J H. ACS Appl. Mater. Interfaces, 2021, 13(36): 43668.

doi: 10.1021/acsami.1c11953
[73]
Wei X, Zhang X, Guo R, Chen M L, Yang T, Xu Z R, Wang J H. Anal. Chem., 2019, 91(24): 15826.

doi: 10.1021/acs.analchem.9b04122
[74]
Zhang X, Wei X, Men X, Jiang Z, Ye W Q, Chen M L, Yang T, Xu Z R, Wang J H. Anal. Chem., 2020, 92(9): 6604.

doi: 10.1021/acs.analchem.0c00376 pmid: 32233376
[75]
Baumgarth N, Roederer M. J. Immunol. Methods, 2000, 243(1/2): 77.

doi: 10.1016/S0022-1759(00)00229-5
[76]
Oliver A L S, Haase A, Peddinghaus A, Wittke D, Jakubowski N, Luch A, Grützkau A, Baumgart S. Anal. Chem., 2019, 91(18): 11514.

doi: 10.1021/acs.analchem.9b01870
[77]
Yang Y Y S, Atukorale P U, Moynihan K D, Bekdemir A, Rakhra K, Tang L, Stellacci F, Irvine D J. Nat. Commun., 2017, 8: 14069.

doi: 10.1038/ncomms14069
[78]
Guo Y T, Baumgart S, Stark H J, Harms H, Müller S. Front. Microbiol., 2017, 8: 1326.

doi: 10.3389/fmicb.2017.01326
[79]
Spitzer M H, Nolan G P. Cell, 2016, 165(4): 780.

doi: 10.1016/j.cell.2016.04.019
[80]
Langer J, Aberasturi D J D, Aizpurua J, Alvarez-Puebla R A, AuguiÉ B, Baumberg J J, Bazan G C, Bell S E J, Boisen A, Brolo A G, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, Javier García de Abajo F, Goodacre R, Graham D, Haes A J, Haynes C L, Huck C, Itoh T, Käll M, Kneipp J, Kotov N A, Kuang H, Le Ru E C, Lee H K, Li J F, Ling X Y, Maier S A, Mayerhöfer T, Moskovits M, Murakoshi K, Nam J M, Nie S M, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz G C, Shegai T, Schlücker S, Tay L L, George Thomas K, Tian Z Q, Van Duyne R P, Vo-Dinh T, Wang Y, Willets K A, Xu C L, Xu H X, Xu Y K, Yamamoto Y S, Zhao B, Liz-Marzán L M. ACS Nano, 2020, 14(1): 28.

doi: 10.1021/acsnano.9b04224
[81]
Sirimuthu N M S, Syme D, Cooper J M. Anal. Chem., 2010, 82(17): 7369.

doi: 10.1021/ac101480t pmid: 20695440
[82]
Taylor J, Huefner A, Li L, Wingfield J, Mahajan S. Analyst, 2016, 141(17): 5037.

doi: 10.1039/c6an01003b pmid: 27479539
[83]
Fienberg H G, Simonds E F, Fantl W J, Nolan G P, Bodenmiller B. Cytometry A, 2012, 81A(6): 467.

doi: 10.1002/cyto.a.22067
[84]
Hartmann F J, Simonds E F, Bendall S C J S r. Sci. Rep., 2018, 8(1): 10770.

doi: 10.1038/s41598-018-28791-2 pmid: 30018331
[85]
Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik M A, Tanner S. J. Immunol. Methods, 2010, 361(1-2): 1.

doi: 10.1016/j.jim.2010.07.002 pmid: 20655312
[86]
Behbehani G K, Bendall S C, Clutter M R, Fantl W J, Nolan G P. Cytometry A, 2012, 81A(7): 552.

doi: 10.1002/cyto.a.22075
[87]
Chang Q, Ornatsky O I, Siddiqui I, Loboda A, Baranov V I, Hedley D W. Cytometry A, 2017, 91(2): 160.

doi: 10.1002/cyto.a.23053
[88]
Chang Q, Ornatsky O I, Siddiqui I, Straus R, Baranov V I, Hedley D W. Sci. Rep., 2016, 6(1): 36641.

doi: 10.1038/srep36641
[89]
Kutscher D, Asogan D, Mudway I, Brekke P, Beales C, Wang X H, Perkins M W, Maret W, Stewart T J. Spectroscopy Supplements, 2020, 35(S4): 16.
[90]
Becker J S. J. Mass Spectrom., 2013, 48(2): 255.

doi: 10.1002/jms.3168
[91]
Wang M, Zheng L N, Wang B, Chen H Q, Zhao Y L, Chai Z F, Reid H J, Sharp B L, Feng W Y. Anal. Chem., 2014, 86(20): 10252.

doi: 10.1021/ac502438n
[92]
Zheng L N, Feng L X, Shi J W, Chen H Q, Wang B, Wang M, Wang H F, Feng W Y. Anal. Chem., 2020, 92(21): 14339.

doi: 10.1021/acs.analchem.0c01775
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Lesi Cai, Meng-Chan Xia, Zhanping Li, Sichun Zhang, Xinrong Zhang. Bioimaging By Secondary Ion Mass Spectrometry [J]. Progress in Chemistry, 2021, 33(1): 97-110.
[3] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[4] Qiu Jianhao, He Ming, Jia Mingmin, Yao Jianfeng. Metal Organic Frameworks for Bi- and Multi-Metallic Catalyst and Their Applications [J]. Progress in Chemistry, 2016, 28(7): 1016-1028.
[5] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[6] Gao Youzhi, Wang Meng, Yan Fanyong, Chen Li. Preparing Composite of Hydrogels with Metal Nanoparticles and Its Application as Catalyst [J]. Progress in Chemistry, 2014, 26(04): 626-637.
[7] Tao Qin, Dong Jian, Qian Weiping*. Quantitative Analysis of Surface-Enhanced Raman Spectroscopy [J]. Progress in Chemistry, 2013, 25(06): 1031-1041.
[8] L? Jitao, Zhang Shuzhen* . Methods for Separation and Analysis of Nanomaterials in the Environment [J]. Progress in Chemistry, 2012, 24(12): 2374-2383.
[9] Wang Jinye, Song Chen, Xu Jingkun, Ding Baoquan. Organizing Functional Nanomaterials with DNA Origami [J]. Progress in Chemistry, 2012, (10): 1936-1945.
[10] Hao Li, Xu Chunxiu, Cheng Heyong, Liu Jinhua, Yin Xuefeng. Recent Advances in the Determination of Intracellular Contents in Individual Cells Using Microfluidic Devices [J]. Progress in Chemistry, 2012, 24(08): 1544-1553.
[11] Tao Kai, Wang Jiqian, Xia Daohong, Xu Hai, Lv Jianren, Shan Honghong. Applications of Peptides in Noble Metal Nanoparticles (NMNPs) Preparation [J]. Progress in Chemistry, 2012, 24(07): 1294-1308.
[12] Xia Wenjian, Meng Lingjie, Liu Li, Lu Qinghua. Carbon Nanotubes Decorated with Noble Metal Nanoparticles [J]. Progress in Chemistry, 2010, 22(12): 2298-2308.
[13] Wang Sheng, Zou Xia, Zhang Yan. Recent Advances in Mass Spectrometry Based Analysis of Protein O-glycosylation [J]. Progress in Chemistry, 2010, 22(12): 2428-2435.
[14] . Recent Advances in Single-Cell Analysis Using Capillary Electrophoresis [J]. Progress in Chemistry, 2010, 22(11): 2215-2223.
[15] . Reducing Agents and Capping Agents in the Preparation of Metal Nanoparticles [J]. Progress in Chemistry, 2010, 22(04): 580-592.