中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (05): 796-809 DOI: 10.7536/PC131032 Previous Articles   Next Articles

• Review •

Aerogel Materials Based on Cellulose

Ma Shurong, Mi Qinyong, Yu Jian*, He Jiasong, Zhang Jun*   

  1. Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 51273206),Knowledge Inn ovation Program of the Chinese Academy of Sciences(No. KJCX2-YW-H30-03) and National Basic Research Program of China (973 Program, No. 2010CB934705)

PDF ( 4889 ) Cited
Export

EndNote

Ris

BibTeX

Cellulose, as the most abundant biopolymer in nature, has attracted extensive interest from both academia and industry in recent years due to its specific properties such as biocompatibility, biodegradability, thermal and chemical stability. Nowadays, cellulose aerogel, which possesses extremely low density, large open pores, and a high specific surface area, has become one of topical polymer materials that are based on this sustainable resource. The combination of the advantages and characteristics of the renewable biopolymer and highly porous material has made cellulose aerogel as the new generation succeeding the inorganic and synthetic polymer-based aerogel. In this review, recent research progress in cellulose aerogel materials is summarized based on about 70 relevant papers. The preparation of cellulose aerogel materials is mainly focused on the dissolving solvents of cellulose, including hydrous and anhydrous systems, and aqueous dispersion media of cellulose nanofibers, which are separated from native lignocellulose biomass and bacterial cellulose. The recent development to enhance the mechanical properties of cellulose aerogel by improving the strength of solid network via addition of inorganic components, is described, along with that to introduce functionality (hydrophobicity, superoleophobicity, electrical and magnetic properties, etc.) in cellulose aerogel. Finally, a perspective on the cellulose aerogel materials and the research directions in the future is briefly discussed.

Contents
1 Introduction
2 Preparation of cellulose aerogels
2.1 Dissolution of cellulose by non-derivative solvents
2.2 Dispersion of cellulose nanofibers in water
3 Modification of cellulose aerogels
3.1 Enhancement of mechanical properties
3.2 Modification of hydrophobicity and oleophobicity
3.3 Electrical and magnetic functionalization
3.4 Loading of active compounds on aerogels
4 Perspective

CLC Number: 

[1] 邢宗(Xing Z), 陈均志(Chen J Z). 纸和造纸(Paper and Paper Making), 2009, 28(12): 26.
[2] 吕昂(Lv A), 张俐娜(Zhang L N). 高分子学报(Acta Polymerica Sinica), 2007, (10): 937.
[3] 张金明(Zhang J M), 张军(Zhang J). 高分子学报(Acta Polymerica Sinica), 2010, (12): 1376.
[4] 徐雁(Xu Y). 化学进展(Progress in Chemistry), 2011, 23(11): 2183.
[5] 陶丹丹(Tao D D), 白绘宇(Bai H Y), 刘石林(Liu S L), 刘晓亚(Liu X Y). 纤维素科学与技术(Journal of Cellulose Science and Technology), 2011, 19(2): 64.
[6] Gesser H D, Goswami P C. Chem. Rev., 1989, 89(4): 765.
[7] Husing N, Schubert U. Angew. Chem. Int. Ed., 1998, 37(1): 22.
[8] Kistler S S. Nature, 1931, 127(3211): 741.
[9] Kistler S S. J. Phys. Chem., 1932, 36(1): 52.
[10] Pierre A C, Pajonk G M. Chem. Rev., 2002, 102(11): 4243.
[11] Akimov Y K. Instrum. Exp. Tech., 2003, 46(3): 287.
[12] Tan C B, Fung B M, Newman J K, Vu C. Adv. Mater., 2001, 13(9): 644.
[13] Pekala R W. J. Mater. Sci., 1989, 24(9): 3221.
[14] Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P. Polymer, 2006, 47(22): 7636.
[15] Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon-Fabry S, Achard P, Chainet E. J. Power Sources, 2007, 166(1): 104.
[16] Hattori M, Shimaya Y, Saito M. Polym. J., 1998, 30(1): 37.
[17] Jin H, Nishiyama Y, Wada M, Kuga S. Colloid Surf. A-Physicochem. Eng. Asp., 2004, 240(1/3): 63.
[18] Hoepfner S, Ratke L, Milow B. Cellulose, 2008, 15(1): 121.
[19] Luong N D, Lee Y, Nam J D. Eur. Polym. J., 2008, 44(10): 3116.
[20] Luong N D, Lee Y, Nam J D. J. Mater. Chem., 2008, 18(36): 4254.
[21] Innerlohinger J, Weber H K, Kraft G. Macromol. Symp., 2006, 244(1): 126.
[22] Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M. Res. Lett. Mater. Sci., 2007, 73724.
[23] Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M. Holzforschung, 2008, 62(2): 129.
[24] Gavillon R, Budtova T. Biomacromolecules, 2008, 9(1): 269.
[25] Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze M A, Wendland M, Rosenau T. Holzforschung, 2009, 63(1): 3.
[26] Litschauer M, Neouze M A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F. Cellulose, 2011, 18(1): 143.
[27] Sescousse R, Budtova T. Cellulose, 2009, 16(3): 417.
[28] Sescousse R, Smacchia A, Budtova T. Cellulose, 2010, 17(6): 1137.
[29] Cai J, Liu Y T, Zhang L N. J. Polym. Sci. Pt. B-Polym. Phys., 2006, 44(21): 3093.
[30] Cai J, Zhang L. Macromol. Biosci., 2005, 5(6): 539.
[31] Cai J, Kimura S, Wada M, Kuga S, Zhang L. ChemSusChem, 2008, 1(1/2): 149.
[32] Cai J, Liu S L, Feng J, Kimura S, Wada M, Kuga S, Zhang L N. Angew. Chem. Int. Ed., 2012, 51(9): 2076.
[33] Liu S L, Yan Q F, Tao D D, Yu T F, Liu X Y. Carbohydr. Polym., 2012, 89(2): 551.
[34] Qi H S, Mader E, Liu J W. J. Mater. Chem. A, 2013, 1(34): 9714.
[35] Zhang J, Cao Y W, Feng J C, Wu P Y. J. Phys. Chem. C, 2012, 116(14): 8063.
[36] Surapolchai W, Schiraldi D A. Polym. Bull., 2010, 65(9): 951.
[37] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124(18): 4974.
[38] Wu J, Zhang J, Zhang H, He J S, Ren Q, Guo M. Biomacromolecules, 2004, 5(2): 266.
[39] Zhang H, Wu J, Zhang J, He J S. Macromolecules, 2005, 38(20): 8272.
[40] Xu A R, Wang J J, Wang H Y. Green Chem., 2010, 12(2): 268.
[41] 张金明(Zhang J M), 吕玉霞(Lv Y X), 罗楠(Luo N), 武进(Wu J), 余坚(Yu J), 何嘉松(He J S), 张军(Zhang J). 高分子通报(Polymer Bulletin), 2011(10): 138.
[42] Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C. Green Chem., 2008, 10(9): 965.
[43] 吕玉霞(Lv Y X), 李小艳(Li X Y), 米勤勇(Mi Q Y), 王德修(Wang D X), 余坚(Yu J), 张军(Zhang J). 中国科学: 化学(Scientia Sinica Chimica), 2011, 41(8): 1331.
[44] Deng M L, Zhou Q, Du A K, van Kasteren J, Wang Y Z. Mater. Lett., 2009, 63(21): 1851.
[45] Sescousse R, Gavillon R, Budtova T. Carbohydr. Polym., 2011, 83(4): 1766.
[46] Gavillon R, Budtova T. Biomacromolecules, 2007, 8(2): 424.
[47] Li J, Lu Y, Yang D J, Sun Q F, Liu Y X, Zhao H J. Biomacromolecules, 2011, 12(5): 1860.
[48] Aaltonen O, Jauhiainen O. Carbohydr. Polym., 2009, 75(1): 125.
[49] Granstrom M, Paakko M K N, Jin H, Kolehmainen E, Kilpelainen I, Ikkala O. Polym. Chem., 2011, 2(8): 1789.
[50] Duchemin B J C, Staiger M P, Tucker N, Newman R H. J. Appl. Polym. Sci., 2010, 115(1): 216.
[51] Wang Z G, Liu S L, Matsumoto Y, Kuga S. Cellulose, 2012, 19(2): 393.
[52] Maeda H, Nakajima M, Hagwara T, Sawaguchi T, Yano S. Kobunshi Ronbunshu, 2006, 63(2): 135.
[53] Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund L A, Ikkala O. Soft Matter, 2008, 4(12): 2492.
[54] Liebner F, Haimer E, Wendland M, Neouze M A, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T. Macromol. Biosci., 2010, 10(4): 349.
[55] Heath L, Thielemans W. Green Chem., 2010, 12(8): 1448.
[56] Silva T C F, Habibi Y, Colodette J L, Elder T, Lucia L A. Cellulose, 2012, 19(6): 1945.
[57] Aulin C, Netrval J, Wagberg L, Lindstrom T. Soft Matter, 2010, 6(14): 3298.
[58] Korhonen J T, Kettunen M, Ras R H A, Ikkala O. ACS Appl. Mater. Interfaces, 2011, 3(6): 1813.
[59] Korhonen J T, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras R H A. ACS Nano, 2011, 5(3): 1967.
[60] Kettunen M, Silvennoinen R J, Houbenov N, Nykanen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindstrom T, Ritala M, Ras R H A, Ikkala O. Adv. Funct. Mater., 2011, 21(3): 510.
[61] Russler A, Wieland M, Bacher M, Henniges U, Miethe P, Liebner F, Potthast A, Rosenau T. Cellulose, 2012, 19(4): 1337.
[62] Sehaqui H, Salajkova M, Zhou Q, Berglund L A. Soft Matter, 2010, 6(8): 1824.
[63] Cervin N T, Aulin C, Larsson P T, Wagberg L. Cellulose, 2012, 19(2): 401.
[64] Wang M, Anoshkin I V, Nasibulin A G, Korhonen J T, Seitsonen J, Pere J, Kauppinen E I, Ras R H A, Ikkala O. Adv. Mater., 2013, 25(17): 2428.
[65] Gawryla M D, van den Berg O, Weder C, Schiraldi D A. J. Mater. Chem., 2009, 19(15): 2118.
[66] Haimer E, Wendland M, Schlufter K, Frankenfeld K, Miethe P, Potthast A, Rosenau T, Liebner F. Macromol. Symp., 2010, 294(2): 64.
[67] Hoshi T, Maeda H, Mizobuchi K, Tetsukawa A, Sawaguchi T, Yano S. Kobunshi Ronbunshu, 2010, 67(5): 318.
[68] Javadi A, Zheng Q F, Payen F, Altin Y, Cai Z Y, Sabo R, Gong S Q. ACS Appl. Mater. Interfaces, 2013, 5(13): 5969.
[69] Jin H, Kettunen M, Laiho A, Pynnonen H, Paltakari J, Marmur A, Ikkala O, Ras R H A. Langmuir, 2011, 27(5): 1930.
[70] Olsson R T, Samir M, Salazar-Alvarez G, Belova L, Strom V, Berglund L A, Ikkala O, Nogues J, Gedde U W. Nat. Nanotechnol., 2010, 5(8): 584.
[71] Gao K Z, Shao Z Q, Wang X, Zhang Y H, Wang W J, Wang F J. RSC Adv., 2013, 3(35): 15058.
[72] Thiruvengadam V, Vitta S. RSC Adv., 2013, 3(31): 12765.

[1] Bao Li, Lixin Wu. Liquid Condensed Matter Mediated Assembly and Functionality of Dispersoid [J]. Progress in Chemistry, 2022, 34(7): 1600-1609.
[2] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[3] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[4] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[5] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[6] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[7] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[8] Jian Li, Enshuang Zhang, Yuanyuan Liu, Hongyan Huang, Yuefeng Su, Wenjing Li. Preparation of the Ultralow Density Aerogel and Its Application [J]. Progress in Chemistry, 2020, 32(6): 713-726.
[9] Lina Shi, Xin Hu, Ning Zhu, Kai Guo. Cellulose-Based Dielectric Composite [J]. Progress in Chemistry, 2020, 32(12): 2022-2033.
[10] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[11] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[12] Ying Qiao, Na Teng, Chengkai Zhai, Haining Na, Jin Zhu. High Efficient Hydrolysis of Cellulose into Sugar by Chemical Catalytic Method [J]. Progress in Chemistry, 2018, 30(9): 1415-1423.
[13] Haishun Du, Chao Liu, Miaomiao Zhang, Qingshan Kong, Bin Li*, Mo Xian. Preparation and Industrialization Status of Nanocellulose [J]. Progress in Chemistry, 2018, 30(4): 448-462.
[14] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[15] Jing Ru, Biyao Geng, Congcong Tong, Haiying Wang, Shengchun Wu, Hongzhi Liu. Nanocellulose-Based Adsorption Materials [J]. Progress in Chemistry, 2017, 29(10): 1228-1251.
Viewed
Full text


Abstract

Aerogel Materials Based on Cellulose