中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (10): 1273-1284 DOI: 10.7536/PC170403 Previous Articles   

• Review •

Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose

Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*   

  1. College of Energy, Xiamen University, Xiamen 361102, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21676223, 21506177), the Fujian Provincial Development and Reform Commission, China (No. 2015489), the Fundamental Research Funds for the Central Universities (No. 20720160087, 20720160077, 20720170062), the Natural Science Foundation of Fujian Province of China (No. 2016J01077, 2015J05034), and the Education Department of Fujian Province (No. JZ160398).
PDF ( 509 ) Cited
Export

EndNote

Ris

BibTeX

Lignocellulosic materials contributing the large proportion to the biomass resource are mainly composed of carbohydrate polymers (cellulose, hemicellulose), and aromatic macromolecules (lignin). Pre-fractionating lignocellulose is considered as the foundational step to establish an economical and sustainable lignocellulosic biorefinery. Firstly, the distinction between lignocellulose fractionation technologies and pretreatment methods for cellulosic ethanol production is discussed. Afterwards, five prior-fractionating strategies of lignocellulose for the biorefinery process are elaborated, including cellulose-first processing, lignin-first processing, hemicellulose-first processing, lignin & hemicellulose-first processing, and cellulose & hemicellulose-first processing. And then industrial applications of hemicellulose-first processing in our country are reviewed. Ultimately, the future perspective on lignocellulose fractionation technologies are given. The aim of this review is to provide new insights into the lignocellulosic biorefinery based on the fractionating of lignocellulose.
Contents
1 Introduction
2 The similarity and difference between lignocellulose pretreatment and fractionation
3 Prior-fractionating strategies of lignocellulose for biorefinery
3.1 Cellulose-first processing
3.2 Lignin-first processing
3.3 Hemicellulose-first processing
3.4 Lignin&hemicellulose-first processing
3.5 Cellulose&hemicellulose-first processing
4 Industrial cases of hemicellulose-first strategy
4.1 Co-production of dissolving pulp and xylitol/furfural
4.2 Co-production of citric acid and xylitol/arabinose
4.3 Co-production of xylooligosaccharide and lignocellulosic ethanol
4.4 Co-production of furfural and ethanol
4.5 Co-production of vehicle fuels and chemicals
5 Conclusion

CLC Number: 

[1] Cherubini F. Energy Convers. Manage., 2010, 51(7):1412.
[2] Menon V, Rao M L. Prog. Energy Combust. Sci., 2012, 38(4):522.
[3] Isikgor F, Becer C R. Polym. Chem., 2015, 6(25):4497.
[4] Biermann C J. Handbook of Pulping and Papermaking. 2nd ed. Oxford:Academic Press, 1996. 1.
[5] Lee J. J. Biotechnol., 1997, 56(1):1.
[6] Zhang Y H P. J. Ind. Microbiol. Biotechnol., 2008, 35(5):367.
[7] Christopher L, Clark J H, Kraus G A. Integrated Forest Biorefineries. Cambridge:Royal Society of Chemistry, 2012. 1.
[8] Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M. Bioresour. Technol., 2005, 96(6):673.
[9] Yang B, Wyman C E. Biofuels, Bioprod. Biorefin., 2008, 2(1):26.
[10] Kumar P, Barrett D M, Delwiche M J, Stroeve P. Ind. Eng. Chem. Res., 2009, 48(8):3713.
[11] Gregg D, Saddler J N. A Techno-Economic Assessment of the Pretreatment and Fractionation Steps of a Biomass-to-Ethanol Process. Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Springer. 1996. 711.
[12] Zhang W, Sathitsuksanoh N, Barone J R, Renneckar S. Bioresour. Technol., 2016, 199:148.
[13] Rollin J A, Zhu Z G, Sathitsuksanoh N, Zhang Y H P. Biotechnol. Bioeng., 2011, 108(1):22.
[14] FitzPatrick M, Champagne P, Cunningham M F, Whitney R A. Bioresour. Technol., 2010, 101(23):8915.
[15] Van Heiningen A. Pulp Pap. Can., 2006, 107(6):38.
[16] Yoon S H, Van Heiningen A. Tappi J., 2008, 7(7):22.
[17] Chundawat S P, Beckham G T, Himmel M E, Dale B E. Annu. Rev. Chem. Biomol., 2011, 2:121.
[18] da Costa Lopes A M, João K G, Morais A R C, Bogel-?ukasik E, Bogel-?ukasik R. Sustain. Chem. Processes, 2013, 1(1):1.
[19] Smith E L, Abbott A P, Ryder K S. Chem. Rev., 2014, 114(21):11060.
[20] Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola J P. Ind. Crops Prod., 2010, 32(3):175.
[21] Mora-Pale M, Meli L, Doherty T V, Linhardt R J, Dordick J S. Biotechnol. Bioeng., 2011, 108(6):1229.
[22] Brandt A, Gräsvik J, Hallett J P, Welton T. Green Chem., 2013, 15(3):550.
[23] Vancov T, Alston A S, Brown T, McIntosh S. Renewable Energy, 2012, 45:1.
[24] Zakrzewska M E, Bogel-?ukasik E, Bogel-?ukasik R. Chem. Rev., 2010, 111(2):397.
[25] Yang D, Zhong L X, Yuan T Q, Peng X W, Sun R C. Ind. Crops Prod., 2013, 43:141.
[26] da Silva S P M, da Costa Lopes A M, Roseiro L B, Bogel-?ukasik R. RSC Adv., 2013, 3(36):16040.
[27] da Costa Lopes A M, João K G, Rubik D F, Bogel-?ukasik E, Duarte L C, Andreaus J, Bogel-?ukasik R. Bioresour. Technol., 2013, 142:198.
[28] Lan W, Liu C F, Sun R C. J. Agric. Food. Chem., 2011, 59(16):8691.
[29] Zhang P, Dong S J, Ma H H, Zhang B X, Wang Y F, Hu X M. Ind. Crops Prod., 2015, 76:688.
[30] Leskinen T, King A W, Kilpeläinen I, Argyropoulos D S. Ind. Eng. Chem. Res., 2011, 50(22):12349.
[31] Leskinen T, King A W, Kilpeläinen I, Argyropoulos D S. Ind. Eng. Chem. Res., 2013, 52(11):3958.
[32] Verdía P, Brandt A, Hallett J P, Ray M J, Welton T. Green Chem., 2014, 16(3):1617.
[33] Morais A R C, Pinto J V, Nunes D, Roseiro L B, Oliveira M C, Fortunato E, Bogel-?ukasik R. ACS Sustain. Chem. Eng., 2016, 4(3):1643.
[34] da Costa Lopes A M, Brenner M, Falé P, Roseiro L B, Bogel-?ukasik R. ACS Sustain. Chem. Eng., 2016, 4(6):3357.
[35] Barakat A, Rouau X. Biotechnol. Biofuels, 2014, 7(1):138.
[36] Chuetor S, Luque R, Barron C, Solhy A, Rouau X, Barakat A. Green Chem., 2015, 17(2):926.
[37] Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn S F, Renders T, De Meester B, Huijgen W, Dehaen W, Courtin C. Energy Environ. Sci., 2015, 8(6):1748.
[38] Schutyser W, Van den Bosch S, Renders T, De Boe T, Koelewijn S F, Dewaele A, Ennaert T, Verkinderen O, Goderis B, Courtin C. Green Chem., 2015, 17(11):5035.
[39] Van den Bosch S, Schutyser W, Koelewijn S F, Renders T, Courtin C, Sels B. Chem. Commun., 2015, 51(67):13158.
[40] Anderson E M, Katahira R, Reed M, Resch M G, Karp E M, Beckham G T, Román-Leshkov Y. ACS Sustain. Chem. Eng., 2016, 4(12):6940.
[41] Huang X M, Gonzalez O M M, Zhu J D, Korányi T I, Boot M D, Hensen E J. Green Chem., 2017, 19(1):175.
[42] Renders T, Schutyser W, Van den Bosch S, Koelewijn S F, Vangeel T, Courtin C M, Sels B F. ACS Catal., 2016, 6(3):2055.
[43] Shuai L, Amiri M T, Questell-Santiago Y M, Héroguel F, Li Y D, Kim H, Meilan R, Chapple C, Ralph J, Luterbacher J S. Science, 2016, 354(6310):329.
[44] Motagamwala A H, Won W, Maravelias C T, Dumesic J A. Green Chem., 2016, 18(21):5756.
[45] Lee S H, Doherty T V, Linhardt R J, Dordick J S. Biotechnol. Bioeng., 2009, 102(5):1368.
[46] Fu D B, Mazza G, Tamaki Y. J. Agric. Food. Chem., 2010, 58(5):2915.
[47] Tan S S, MacFarlane D R, Upfal J, Edye L A, Doherty W O, Patti A F, Pringle J M, Scott J L. Green Chem., 2009, 11(3):339.
[48] Pinkert A, Goeke D F, Marsh K N, Pang S S. Green Chem., 2011, 13(11):3124.
[49] Achinivu E C, Howard R M, Li G Q, Gracz H, Henderson W A. Green Chem., 2014, 16(3):1114.
[50] Castro M C, Arce A, Soto A, Rodríguez H. Ind. Eng. Chem. Res., 2015, 54(39):9605.
[51] Phan L, Chiu D, Heldebrant D J, Huttenhower H, John E, Li X W, Pollet P, Wang R Y, Eckert C A, Liotta C L, Jessop P G. Ind. Eng. Chem. Res., 2008, 47(3):539.
[52] Blasucci V, Dilek C, Huttenhower H, John E, Llopis-Mestre V, Pollet P, Eckert C A, Liotta C L. Chem. Commun., 2009, (1):116.
[53] Domínguez de María P. J. Chem. Technol. Biotechnol., 2014, 89(1):11.
[54] Anugwom I, Mäki-Arvela P, Virtanen P, Willför S, Sjöholm R, Mikkola J P. Carbohydr. Polym., 2012, 87(3):2005.
[55] Anugwom I, Eta V, Virtanen P, Mäki-Arvela P, Hedenström M, Hummel M, Sixta H, Mikkola J P. ChemSusChem, 2014, 7(4):1170.
[56] Hou X D, Smith T J, Li N, Zong M H. Biotechnol. Bioeng., 2012, 109(10):2484.
[57] Zhang C W, Xia S Q, Ma P S. Bioresour. Technol., 2016, 219:1.
[58] Zhang Y H P, Ding S Y, Mielenz J R, Cui J B, Elander R T, Laser M, Himmel M E, McMillan J R, Lynd L R. Biotechnol. Bioeng., 2007, 97(2):214.
[59] Zhang Y H P, Zhu Z, Rollin J, Sathitsuksanoh N. Advances in Cellulose Solvent-and Organic Solvent-Based Lignocellulose Fractionation (COSLIF). Cellulose Solvents:For Analysis, Shaping and Chemical Modification.Chapter 20, 2010. 365.DOI:10.1021/bk-2010-1033.ch020.
[60] Li M F, Fan Y M, Xu F, Sun R C, Zhang X L. Ind. Crops Prod., 2010, 32(3):551.
[61] Papatheofanous M, Billa E, Koullas D, Monties B, Koukios E. Bioresour. Technol., 1995, 54(3):305.
[62] Jung Y H, Kim I J, Kim H K, Kim K H. Bioresour. Technol., 2013, 132:109.
[63] Shuai L, Yang Q, Zhu J Y, Lu F C, Weimer P, Ralph J, Pan X J. Bioresour. Technol., 2010, 101(9):3106.
[64] Cai C M, Zhang T, Kumar R, Wyman C E. J. Chem. Technol. Biotechnol., 2014, 89(1):2.
[65] Tunc M S, Chheda J, van der Heide E, Morris J, van Heiningen A. Ind. Eng. Chem. Res., 2013, 52(36):13209.
[66] Kim D Y, Kim Y S, Kim T H, Oh K K. Bioresour. Technol., 2016, 199:121.
[67] Kim D Y, Um B H, Oh K K. Appl. Biochem. Biotechnol., 2015, 176(5):1445.
[68] Sun S N, Cao X F, Sun S L, Xu F, Song X L, Sun R C, Jones G L. Biotechnol. Biofuels, 2014, 7(1):116.
[69] Vallejos M E, Zambon M D, Area M C, da Silva Curvelo A A. Ind. Crops Prod., 2015, 65:349.
[70] Cabeza A, Piqueras C, Sobrón F, García-Serna J. Bioresour. Technol., 2016, 200:90.
[71] Chen H Z, Liu L Y. Bioresour. Technol., 2007, 98(3):666.
[72] Nguyen T Y, Cai C M, Kumar R, Wyman C E. ChemSusChem, 2015, 8(10):1716.
[73] Klamrassamee T, Champreda V, Reunglek V, Laosiripojana N. Bioresour. Technol., 2013, 147:276.
[74] Klamrassamee T, Champreda V, Wiyaratn W, Laosiripojana N. Int. J. Chem. Eng. Appl., 2015, 6(2):134.
[75] vom Stein T, Grande P M, Kayser H, Sibilla F, Leitner W, de María P D. Green Chem., 2011, 13(7):1772.
[76] Grande P M, Viell J, Theyssen N, Marquardt W, de María P D, Leitner W. Green Chem., 2015, 17(6):3533.
[77] Grande P M. Doctorial Dissertation of Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen. 2014.
[78] Zhang M J, Qi W, Liu R, Su R X, Wu S M, He Z M. Biomass Bioenergy, 2010, 34(4):525.
[79] Zhu J Y, Pan X J, Wang G S, Gleisner R. Bioresour. Technol., 2009, 100(8):2411.
[80] Iakovlev M, van Heiningen A. ChemSusChem, 2012, 5(8):1625.
[81] Morales L O, Iakovlev M, Martin-Sampedro R, Rahikainen J L, Laine J, van Heiningen A, Rojas O J. Bioresour. Technol., 2014, 161:55.
[82] Yawalata D, Paszner L. Holzforschung, 2004, 58(1):7.
[83] Hundt M, Engel N, Schnitzlein K, Schnitzlein M G. Bioresour. Technol., 2014, 166:411.
[84] Hundt M, Engel N, Schnitzlein K, Schnitzlein M G. Chem. Eng. Res. Des., 2016, 107:13.
[85] Zhu J J, Zhu Y Y, Jiang F X, Xu Y, Ouyang J, Yu S Y. Carbohydr. Res., 2013, 382:52.
[86] Gould J M. Biotechnol. Bioeng., 1985, 27(6):893.
[87] Su Y, Du R, Guo H, Cao M, Wu Q, Su R, Qi W, He Z. Food Bioprod. Process., 2015, 94:322.
[88] Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. NREL Technical Report, 2011.
[89] Wijaya Y P, Putra R D D, Widyaya V T, Ha J M, Suh D J, Kim C S. Bioresour. Technol., 2014, 164:221.
[90] Käldström M, Meine N, Farès C, Rinaldi R, Schüth F. Green Chem., 2014, 16(5):2454.
[91] Hayes D J, Fitzpatrick S, Hayes M H, Ross J R. Biorefineries-Industrial Processes and Product, 2006, 139.
[92] 蒋建新(Jiang J X). 木糖型生物质炼制原理与技术(The principle an technology of the biorefinery of xylose-type biomass). 北京:科学出版社(Beijing:Science Press), 2013.
[93] 沈爱民(Shen A M). 生物质精炼技术与传统制浆造纸工业(Biorefinery technologies and the traditional pulp and papermaking industry). 北京:中国科学技术出版社(Beijing:Scientific Technology Press of China), 2013. 1.
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[3] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[4] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[5] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[6] Deying Mu, Zhu Liu, Shan Jin, Yuanlong Liu, Shuang Tian, Changsong Dai. The Recovery and Recycling of Cathode Materials and Electrolyte from Spent Lithium Ion Batteries in Full Process [J]. Progress in Chemistry, 2020, 32(7): 950-965.
[7] Zhihua Song, Shenghong Li, Gangqiang Yang, Na Zhou, Lingxin Chen. Sample Pretreatment, Analysis and Detection of Ginsenosides [J]. Progress in Chemistry, 2020, 32(2/3): 239-248.
[8] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[9] Lihua Qian, Guojun Lan, Xiaoyan Liu, Qingfeng Ye, Ying Li. Heterogeneous Catalysts for Biomass-Based Molecules Aqueous-Phase Catalytic Hydrogenation [J]. Progress in Chemistry, 2019, 31(8): 1075-1085.
[10] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[11] Lei Bai, Yanfeng Wang, Shuhui Huo, Xiaoquan Lu. Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials [J]. Progress in Chemistry, 2019, 31(1): 191-200.
[12] Jiawei Xie, Xiangwen Zhang, Junjian Xie, Genkuo Nie, Lun Pan, Jijun Zou*. Synthesis of High-Density Jet Fuels from Biomass [J]. Progress in Chemistry, 2018, 30(9): 1424-1433.
[13] Wei Junnan, Tang Xing, Sun Yong, Zeng Xianhai, Lin Lu. Applications of Novel Biomass-Derived Platform Molecule γ-Valerolactone [J]. Progress in Chemistry, 2016, 28(11): 1672-1681.
[14] Yuan Zhengqiu, Long Jinxing, Zhang Xinghua, Xia Ying, Wang Tiejun, Ma Longlong. Catalytic Conversion of Lignocellulose into Energy Platform Chemicals [J]. Progress in Chemistry, 2016, 28(1): 103-110.
[15] Wang Ruiying, Zhang Chaoyan, Wang Shuping, Zhou Youya. Synthesis and Application of Magnetic Metal-Organic Frameworks [J]. Progress in Chemistry, 2015, 27(7): 945-952.