中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1293-1310 DOI: 10.7536/PC200759 Previous Articles   Next Articles

• Review •

Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials

Jinzhao Li1, Zheng Li1,2(), Xupin Zhuang1, Jixian Gong1, Qiujin Li1, Jianfei Zhang1,3   

  1. 1 Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textiles Science and Engineering, Tiangong University,Tianjin 300387, China
    2 Innovation Research Institute of Wolfberry Industry Co. LTD,Zhongning 755199, China
    3 Collaborative Innovation Center for Eco-Textiles of Shandong Province,Qingdao 266071, China
  • Received: Revised: Online: Published:
  • Contact: Zheng Li
  • Supported by:
    National Key Research and Development Project Foundation of China(2017YFB0309800); National Key Research and Development Project Foundation of China(2016YFC0400503-02); Tianjin Key Research and Development Project(20YFZCSN00130); Xinjiang Autonomous Region Major Significant Project Foundation(2016A03006-3); Tianjin Natural Science Foundation(18JCYBJC89600); Science and Technology Guidance Project of China National Textile and Apparel Council(2017011); Innovation Research Institute of Wolfberry Industry Co. LTD(ZNGQCX-B-2019006)
Richhtml ( 154 ) PDF ( 957 ) Cited
Export

EndNote

Ris

BibTeX

Cellulose nanocrystal(CNC) is a nano-scaled rod-like or spherical crystal isolated from cellulosic materials. CNC has shown many advantages of, for example, high strength, high specific surface area, biocompatibility, renewability and degradability. Therefore, it can be applied to the composite materials, biomedicine and environment fields. The preparation methods of CNC are detailedly summarized in this review such as acid hydrolysis, oxidation method, enzymatic hydrolysis, mechanical method, solvent methods and combined processes. Meanwhile, the advantages and shortcomings of the preparation methods are discussed. In the field of applied research, this review summarizes the research status of CNC in some popular fields such as reinforced composite materials, membrane filtration composite materials, conductive composite materials and inorganic nanocomposites. Finally, the future prospective of CNC is presented.

Contents

1 Introduction

2 Physicochemical characteristics of CNC

2.1 Size distribution and morphology

2.2 Thermal performance

2.3 Rheological properties

3 Methods to prepare CNC

3.1 Acid hydrolysis

3.2 Oxidation methods

3.3 Enzymatic hydrolysis

3.4 Mechanical methods

3.5 Solvent methods

3.6 Combined processes

4 Application of CNC in the field of composite materials

4.1 Reinforced composite materials

4.2 Membrane filtration composite materials

4.3 Conductive composite materials

4.4 Inorganic nanocomposites

5 Conclusion and outlook

Fig. 1 (a) Schematics of idealized cellulose microfibril showing one of the suggested configurations of the crystalline and amorphous regions, and(b) cellulose nanocrystals after acid hydrolysis dissolved the disordered regions[3]
Table 1 Examples of length(L) and diameter(d) of CNC from various sources obtained via different methods
Fig. 2 TEM images of cellulose nanocrystals derived from(a) tunicate,(b) bacteria,(c) ramie,(d) sisal[5]
Fig. 3 Surface chemistry in the preparation of cellulose nanocrystallines[3]
Table 2 Length, diameter and yield of different preparation methods for producing CNC
Main method Raw source Length(nm) Diameter(nm) Yield(%) ref
mineral acid hydrolysis bleached hardwood pulp 600~800 15~40 60.0% 24
mineral acid hydrolysis spent mushroom substrate 10~30 42.8% 25
mineral acid hydrolysis bacterial cellulose 100~300 5~20 >80.0% 10
mineral acid hydrolysis surgical cotton 297.7 ± 98.9 18.4±7.2 56.0% 26
organic acid hydrolysis corncob residue 421 ± 112 6.5 ± 2.0 66.3% 11
organic acid hydrolysis bleached birch kraft pulp 200~1200 8~15 85.0% 27
organic acid hydrolysis unbleached hardwood kraft pulp ca. 230 25 <6.0% 28
organic acid hydrolysis bleached eucalyptus kraft pulp 150~400 5~20 >70.0% 29
oxidation method jute fibers 100~200 3~10 >80.0% 30
oxidation method oil palm empty fruit bunch 122 6 93.0% 31
oxidation method hemp flax triticale ca.150 3~6 28.0%~36.0% 12
oxidation method cotton linters 136 ± 90 10 ± 5 95.8% 32
enzymatic hydrolysis MCC 120 ± 36.25 40.74 ± 7.59 22.0% 33
mechanical method MCC 50~250 10~20 ≤10.0% 34
mechanical method wood flour <500 1~9 22.4% 13
mechanical method microcrystalline cellulose 280 11 72.2% 35
mechanical method cotton cellulose powder 60~320 4~14 80.0% 36
ionic liquid MCC 146.8 ± 62 3.6 ± 1.8 48.0% 37
ionic liquid cotton fiber 150~350 ca. 20 38
ionic liquid MCC 70~80 15~20 14
deep eutectic solvent cotton fiber 100~350 3~25 74.2% 16
deep eutectic solvent bleached eucalyptus kraft pulp 50~300 5~20 73.0% 39
deep eutectic solvent cotton fiber 500~800 50~100 40
combined process bamboo pulp 200~300 25~50 88.4% 41
Fig. 4 Illustration of the extraction process of CCNC[49]
Fig. 5 Schematic flow diagram of experiments for integrated CNC and CNF production with recovery of organic acid[51]
Fig. 6 Regioselective oxidation of cellulose by TEMPO-mediated oxidation[57]
Fig. 7 Schematic representation of the preparation of CNC by APS swelling followed by oxidation[32]
Fig. 8 Schematic diagram of morphology-controlled CNC via compound enzymatic hydrolysis[66]
Fig. 9 Schematic diagram of the MCC ultrasonication process[34]
Fig. 10 Working principle of ball milling process[68]
Fig. 11 Schematic diagram showing reaction of single cellulose chain repeating unit with [BMIM]HSO4[14]
Fig. 12 One-pot preparation of hydrophobic CNCs in TBAA/DMAc with acetic hydride(upper), and the more typical route(lower)[75]
Fig. 13 Schematic illustration of in situ chemical polymerization in the synthesis of PPy/CNC nanostructures[105]
[1]
Sticklen M B. Nat. Rev. Genet., 2008, 9(6): 433.

doi: 10.1038/nrg2336 pmid: 18487988
[2]
Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Ed., 2011, 50(24): 5438.

doi: 10.1002/anie.201001273
[3]
Moon R J, Martini A, Nairn J, Simonsen J, Youngblood J. Chem. Soc. Rev., 2011, 40(7): 3941.

doi: 10.1039/c0cs00108b
[4]
Trache D, Hussin M H, Haafiz M K M, Thakur V K. Nanoscale, 2017, 9(5): 1763.

doi: 10.1039/C6NR09494E
[5]
Habibi Y, Lucia L A, Rojas O J. Chem. Rev., 2010, 110(6): 3479.

doi: 10.1021/cr900339w
[6]
Miller A F, Donald A M. Biomacromolecules, 2003, 4(3): 510.

pmid: 12741764
[7]
Terech P, Chazeau L, Cavaille J Y. Macromolecules, 1999, 32(6): 1872.

doi: 10.1021/ma9810621
[8]
de Souza Lima M M, Wong J T, Paillet M, Borsali R, Pecora R. Langmuir, 2003, 19(1): 24.

doi: 10.1021/la020475z
[9]
Li W, Wang R, Liu S X, Prog. Chem., 2010, 22(10):2060.
(李伟, 王锐, 刘守新. 化学进展, 2010, 22(10): 2060.)
[10]
Pääkkönen T, Spiliopoulos P, Nonappa , Kontturi K S, Penttilä P, Viljanen M, Svedström K, Kontturi E. ACS Sustainable Chem. Eng., 2019, 7(17): 14384.
[11]
Liu C, Li B, Du H S, Lv D, Zhang Y D, Yu G, Mu X D, Peng H. Carbohydr. Polym., 2016, 151: 716.

doi: 10.1016/j.carbpol.2016.06.025
[12]
Leung A C W, Hrapovic S, Lam E, Liu Y L, Male K B, Mahmoud K A, Luong J H T. Small, 2011, 7(3): 302.

doi: 10.1002/smll.201001715
[13]
Li Y N, Liu Y Z, Chen W S, Wang Q W, Liu Y X, Li J, Yu H P. Green Chem., 2016, 18(4): 1010.

doi: 10.1039/C5GC02576A
[14]
Tan X Y, Abd Hamid S B, Lai C W. Biomass Bioenergy, 2015, 81: 584.

doi: 10.1016/j.biombioe.2015.08.016
[15]
Beck-Candanedo S, Roman M, Gray D G. Biomacromolecules, 2005, 6(2): 1048.

pmid: 15762677
[16]
Liu Y Z, Guo B T, Xia Q Q, Meng J, Chen W S, Liu S X, Wang Q W, Liu Y X, Li J, Yu H P. ACS Sustainable Chem. Eng., 2017, 5(9): 7623.

doi: 10.1021/acssuschemeng.7b00954
[17]
Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, Heux L, Dubreuil F, Rochas C. Biomacromolecules, 2008, 9(1): 57.

pmid: 18052127
[18]
Brinchi L, Cotana F, Fortunati E, Kenny J M. Carbohydr. Polym., 2013, 94(1): 154.

doi: 10.1016/j.carbpol.2013.01.033
[19]
Camarero Espinosa S, Kuhnt T, Foster E J, Weder C. Biomacromolecules, 2013, 14(4): 1223.

doi: 10.1021/bm400219u pmid: 23458473
[20]
Voronova M I, Surov O V, Guseinov S S, Zakharov A G. Compos. Commun., 2016, 2: 15.

doi: 10.1016/j.coco.2016.09.002
[21]
Li X F, Ding E Y, Li G K. J. Cellul. Sci. Technol., 2001, 9(2): 29.
(李小芳, 丁恩勇, 黎国康. 纤维素科学与技术, 2001, 9(2): 29.)
[22]
Ye D Y, Zhou L J. J. South China Univ. Technol. Nat. Sci. Ed., 2010, 38(9): 63.
(叶代勇, 周刘佳. 华南理工大学学报(自然科学版), 2010, 38(9): 63.)
[23]
Li X W. Master Dissertation of Zhejiang Agricultural & Forestry University, 2018.
(李秀雯. 浙江农林大学硕士论文, 2018.).
[24]
Liu Y F, Wang H S, Yu G, Yu Q X, Li B, Mu X D. Carbohydr. Polym., 2014, 110: 415.

doi: 10.1016/j.carbpol.2014.04.040
[25]
Zhuang S Y, Tang L R, Lu Q L, Lin F C, Ni P Z, Huang B. Chem. Ind. Eng. Prog., 2016, 35(03):866.
(庄森炀, 唐丽荣, 卢麒麟, 林凤采, 倪沛钟, 黄彪. 化工进展, 2016, 35(03):866.)
[26]
Ramakrishnan A, Ravishankar K, Dhamodharan R. Cellulose, 2019, 26(5): 3127.

doi: 10.1007/s10570-019-02312-4
[27]
Xu W Y, GrÉnman H, Liu J, Kronlund D, Li B, Backman P, Peltonen J, Willför S, Sundberg A, Xu C L. ChemNanoMat, 2017, 3(2): 109.

doi: 10.1002/cnma.201600347
[28]
Bian H Y, Chen L H, Dai H Q, Zhu J Y. Carbohydr. Polym., 2017, 167: 167.

doi: 10.1016/j.carbpol.2017.03.050
[29]
Xie H X, Zou Z F, Du H S, Zhang X Y, Wang X M, Yang X H, Wang H, Li G B, Li L, Si C L. Carbohydr. Polym., 2019, 223: 115116.
[30]
Cao X W, Ding B, Yu J Y, Al-Deyab S S. Carbohydr. Polym., 2012, 90(2): 1075.

doi: 10.1016/j.carbpol.2012.06.046
[31]
Rohaizu R, Wanrosli W D. Ultrason. Sonochemistry, 2017, 34: 631.

doi: 10.1016/j.ultsonch.2016.06.040
[32]
Wang H, Pudukudy M, Ni Y H, Zhi Y F, Zhang H, Wang Z Q, Jia Q M, Shan S Y. Cellulose, 2020, 27(2): 657.

doi: 10.1007/s10570-019-02789-z
[33]
Satyamurthy P, Jain P, Balasubramanya R H, Vigneshwaran N. Carbohydr. Polym., 2011, 83(1): 122.

doi: 10.1016/j.carbpol.2010.07.029
[34]
Li W, Yue J Q, Liu S X. Ultrason. Sonochemistry, 2012, 19(3): 479.

doi: 10.1016/j.ultsonch.2011.11.007
[35]
Gao A Q, Chen H H, Hou A Q, Xie K L. Cellulose, 2019, 26(10): 5937.

doi: 10.1007/s10570-019-02507-9
[36]
Park N M, Choi S, Oh J E, Hwang D Y. Carbohydr. Polym., 2019, 223: 115114.
[37]
Mao J, Osorio-Madrazo A, Laborie M P. Cellulose, 2013, 20(4): 1829.

doi: 10.1007/s10570-013-9942-2
[38]
Lazko J, SÉnÉchal T, Landercy N, Dangreau L, Raquez J M, Dubois P. Cellulose, 2014, 21(6): 4195.

doi: 10.1007/s10570-014-0417-x
[39]
Yang X H, Xie H X, Du H S, Zhang X Y, Zou Z F, Zou Y, Liu W, Lan H Y, Zhang X X, Si C L. ACS Sustainable Chem. Eng., 2019, 7(7): 7200.

doi: 10.1021/acssuschemeng.9b00209
[40]
Wang H Q, Li J C, Zeng X H, Tang X, Sun Y, Lei T Z, Lin L. Cellulose, 2020, 27(3): 1301.

doi: 10.1007/s10570-019-02867-2
[41]
Lu Q L, Cai Z H, Lin F C, Tang L R, Wang S Q, Huang B. ACS Sustainable Chem. Eng., 2016, 4(4): 2165.

doi: 10.1021/acssuschemeng.5b01620
[42]
Wang W X, Sun N X, Dong J H, Cai Z S, Gu F. Biol. Chem. Eng., 2020, 6(02):133.
(王旺霞, 孙楠勋, 董继红, 蔡照胜, 谷峰. 生物化工, 2020, 6(02):133.)
[43]
Zianor Azrina Z A, Beg M D H, Rosli M Y, Ramli R, Junadi N, Alam A K M M. Carbohydr. Polym., 2017, 162: 115.

doi: 10.1016/j.carbpol.2017.01.035
[44]
Li Z, Wang L F, Hua J C, Jia S R, Zhang J F, Liu H. Carbohydr. Polym., 2015, 120: 115.

doi: 10.1016/j.carbpol.2014.11.061
[45]
Wang L F, Li Z, Jia S R, Zhung J F. Microbiol. Chin., 2014, 41(08):1675.
(汪丽粉, 李政, 贾士儒, 张健飞. 微生物学通报, 2014, 41(08):1675.)
[46]
Xia W, Li Z, Hua J C, Gong J X, Jia S R, Zhang J F. New Chem. Mater., 2016, 44(11): 20.
(夏文, 李政, 华嘉川, 巩继贤, 贾士儒, 张健飞. 化工新型材料, 2016, 44(11): 20.)
[47]
Salari M, Sowti Khiabani M, Rezaei Mokarram R, Ghanbarzadeh B, Samadi Kafil H. Int. J. Biol. Macromol., 2019, 122: 280.

doi: 10.1016/j.ijbiomac.2018.10.136
[48]
Tuerxun D, Pulingam T, Nordin N I, Chen Y W, Kamaldin J B, Julkapli N B M, Lee H V, Leo B F, Johan M R B. Eur. Polym. J., 2019, 116: 352.

doi: 10.1016/j.eurpolymj.2019.04.021
[49]
Cheng M, Qin Z Y, Hu J, Liu Q Q, Wei T, Li W F, Ling Y, Liu B. Carbohydr. Polym., 2020, 231: 115701.
[50]
Zhang Y Q, Xu Y J, Yue X P, Dai L, Gao M L, Zhi Y. Tappi J., 2020, 19(1):21.

doi: 10.32964/TJournal
[51]
Chen L H, Zhu J Y, Baez C, Kitin P, Elder T. Green Chem., 2016, 18(13): 3835.

doi: 10.1039/C6GC00687F
[52]
Du H S, Liu C, Mu X D, Gong W B, Lv D, Hong Y M, Si C L, Li B. Cellulose, 2016, 23(4): 2389.

doi: 10.1007/s10570-016-0963-5
[53]
Poletto M, Zattera A J, Forte M M C, Santana R M C. Bioresour. Technol., 2012, 109: 148.

doi: 10.1016/j.biortech.2011.11.122
[54]
Spence K L, Venditti R A, Rojas O J, Habibi Y, Pawlak J J. Cellulose, 2010, 17(4): 835.

doi: 10.1007/s10570-010-9424-8
[55]
Du H S, Liu C, Zhang M M, Kong Q S, Li B, Xian M. Prog. Chem., 2018, 30(4): 448.
(杜海顺, 刘超, 张苗苗, 孔庆山, 李滨, 咸漠. 化学进展, 2018, 30(4): 448.)

doi: 10.7536/PC170830
[56]
Guo H X, Chen Y H, Zhuo L, Zhang C Y, Zhu W R, Zhou Z X, Liu Y, Gu J Y. Chem. Adhesion, 2019, 41(6): 467.
(郭翰祥, 陈宇豪, 卓琳, 张晨雨, 朱文睿, 周梓轩, 刘旸, 顾继友. 化学与粘合, 2019, 41(6): 467.)
[57]
Isogai A, Saito T, Fukuzumi H. Nanoscale, 2011, 3(1): 71.

doi: 10.1039/c0nr00583e pmid: 20957280
[58]
Qin Z Y, Tong G L, Chin Y, Zhou J C. Bioresources, 2011, 6(2):1136.
[59]
Yang H, Alam M N, Ven T G M. Cellulose, 2013, 20(4): 1865.

doi: 10.1007/s10570-013-9966-7
[60]
Liu P W, Pang B, Dechert S, Zhang X C, Andreas L B, Fischer S, Meyer F, Zhang K. Angew. Chem. Int. Ed., 2020, 59(8): 3218.

doi: 10.1002/anie.v59.8
[61]
Fu J J, Tian Y, Tao J S. Pap. Sci. Technol., 2018, 37(2): 19.
(付俊俊, 田彦, 陶劲松. 造纸科学与技术, 2018, 37(2): 19.)
[62]
Rao Z T, Liu W, Zhang X Y, Liu D, Liu Y, Li Z J, Zhang J, Li W, Si C L. Tianjin Pap. Mak., 2018, 40(4): 2.
(饶泽通, 刘慰, 张筱仪, 刘丹, 刘莹, 李子江, 张洁, 李婉, 司传领. 天津造纸, 2018, 40(4): 2.)
[63]
Chen X Q, Deng X Y, Shen W H, Jiang L L. Bioresources, 2012, 7.
[64]
Chen X Q, Deng X Y, Shen W H, Jia M Y. Carbohydr. Polym., 2018, 181: 879.

doi: 10.1016/j.carbpol.2017.11.064
[65]
Fattahi Meyabadi T, Dadashian F, Mir Mohamad Sadeghi G, Ebrahimi Zanjani Asl H. Powder Technol., 2014, 261: 232.

doi: 10.1016/j.powtec.2014.04.039
[66]
Tong X, Shen W H, Chen X Q, Jia M Y, Roux J C. J. Appl. Polym. Sci., 2020, 137(9): 48407.
[67]
Yan M L, Li S J, Dong F, Han S Y, Li J, Xing L. Polym. Polym. Compos., 2014, 22(8): 675.
[68]
Baheti V, Abbasi R, Militky J. World J. Eng., 2012, 9(1): 45.

doi: 10.1260/1708-5284.9.1.45
[69]
Mohd Amin K N, Annamalai P K, Morrow I C, Martin D. RSC Adv., 2015, 5(70): 57133.
[70]
Lee M, Heo M H, Lee H, Lee H H, Jeong H, Kim Y W, Shin J. Green Chem., 2018, 20(11): 2596.

doi: 10.1039/C8GC00577J
[71]
Shi J H, Sun X, Yang C H, Gao Q Y, Li Y F. Chemistry, 2002,(04): 243.
(石家华, 孙逊, 杨春和, 高青雨, 李永舫. 化学通报, 2002,(04): 243.)
[72]
Man Z, Muhammad N, Sarwono A, Bustam M A, Vignesh Kumar M, Rafiq S. J. Polym. Environ., 2011, 19(3): 726.

doi: 10.1007/s10924-011-0323-3
[73]
Mao J, Heck B, Reiter G, Laborie M P. Carbohydr. Polym., 2015, 117: 443.

doi: 10.1016/j.carbpol.2014.10.001
[74]
Abushammala H, Krossing I, Laborie M P. Carbohydr. Polym., 2015, 134: 609.

doi: 10.1016/j.carbpol.2015.07.079
[75]
Miao J J, Yu Y Q, Jiang Z M, Zhang L P. Cellulose, 2016, 23(2): 1209.

doi: 10.1007/s10570-016-0864-7
[76]
Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem. Commun., 2003(1): 70.
[77]
Dai Y T, Witkamp G J, Verpoorte R, Choi Y H. Food Chem., 2015, 187: 14.

doi: 10.1016/j.foodchem.2015.03.123
[78]
Xie Y J, Dong H F, Zhang S J, Lu X H, Ji X Y. J. Chem. Eng. Data, 2014, 59(11): 3344.

doi: 10.1021/je500320c
[79]
Ma Y, Xia Q Q, Liu Y Z, Chen W S, Liu S X, Wang Q W, Liu Y X, Li J, Yu H P. ACS Omega, 2019, 4(5): 8539.

doi: 10.1021/acsomega.9b00519
[80]
Cui S N, Zhang S L, Ge S J, Xiong L, Sun Q J. Ind. Crops Prod., 2016, 83: 346.

doi: 10.1016/j.indcrop.2016.01.019
[81]
Beltramino F, Roncero M B, Vidal T, Torres A L, Valls C. Bioresour. Technol., 2015, 192: 574.

doi: 10.1016/j.biortech.2015.06.007
[82]
Beltramino F, Roncero M B, Torres A L, Vidal T, Valls C. Cellulose, 2016, 23(3): 1777.

doi: 10.1007/s10570-016-0897-y
[83]
Beltramino F, Blanca Roncero M, Vidal T, Valls C. Carbohydr. Polym., 2018, 189: 39.

doi: 10.1016/j.carbpol.2018.02.015
[84]
Lu Q L, Lu L N, Li Y G, Huang B. Cellulose, 2019, 26(13/14): 7741.

doi: 10.1007/s10570-019-02647-y
[85]
Seta F T, An X Y, Liu L Q, Zhang H, Yang J, Zhang W, Nie S X, Yao S Q, Cao H B, Xu Q L, Bu Y F, Liu H B. Carbohydr. Polym., 2020, 234: 115942.
[86]
Zhang Z, Wu Q L, Song K L, Ren S X, Lei T Z, Zhang Q G. ACS Sustainable Chem. Eng., 2015, 3(4): 574.

doi: 10.1021/sc500792c
[87]
Ye D Y. Prog. Chem., 2007,(10):1568.
(叶代勇. 化学进展, 2007,(10):1568.)
[88]
Bai P X, Deng Z Y, Wang S X, He Y F, Lin Y, Zheng Q K, Chen S. China Plast. Ind., 2015, 43(12): 37.
(白盼星, 邓子悦, 王师霞, 何永峰, 林义, 郑庆康, 陈胜. 塑料工业, 2015, 43(12): 37.)
[89]
Liu H, Luo B H, Chen R P, Zhou S Y, Huang Y J, Zhou C R. Acta Mater. Compos. Sin., 2015, 32(6): 1703.
(刘桦, 罗丙红, 陈睿鹏, 周世裕, 黄耀基, 周长忍. 复合材料学报, 2015, 32(6): 1703.)
[90]
Zhang J, Ding C K, Duan J Y, Li Q, Cheng B W. Chin. Plastic., 2018, 32(03):22.
(张静, 丁长坤, 段镜月, 李倩, 程博闻. 中国塑料, 2018, 32(03):22.)
[91]
Huan S Q, Cheng W L, Bai L, Liu G X, Han G P. Polym. Mater. Sci. Eng., 2016, 32(03):141.
(宦思琪, 程万里, 白龙, 刘国相, 韩广萍. 高分子材料科学与工程, 2016, 32(03):141.)
[92]
Ma X M, Li R, Zhao X H, Ji Q, Xing Y C, Sunarso J, Xia Y Z. Compos A: Appl. Sci. Manu., 2017, 96: 155.

doi: 10.1016/j.compositesa.2017.02.021
[93]
Yang S S, Li H C, Sun H Z. Iran. Polym. J., 2018, 27(9): 645.

doi: 10.1007/s13726-018-0641-6
[94]
Akhavan-Kharazian N, Izadi-Vasafi H. Int. J. Biol. Macromol., 2019, 133: 881.

doi: S0141-8130(19)30243-0 pmid: 31028810
[95]
Jiang S J, Zhang T, Song Y, Qian F, Tuo Y F, Mu G Q. Int. J. Biol. Macromol., 2019, 126: 1266.

doi: 10.1016/j.ijbiomac.2018.12.254
[96]
Peres B U, Vidotti H A, De Carvalho L D, Manso A P, Ko F, Carvalho R M. Journal of Oral Biosciences, 2019, 61(1):37.

doi: 10.1016/j.job.2018.09.002
Peres B U, Vidotti H A, de Carvalho L D, Manso A P, Ko F, Carvalho R M. J. Oral Biosci., 2019, 61(1): 37.

doi: 10.1016/j.job.2018.09.002
[97]
Moeinzadeh R, Jadval Ghadam A G, Lau W J, Emadzadeh D. Carbohydr. Polym., 2019, 225: 115212.
[98]
Bai L M, Liang H, Jia R B, Qu F S, Ding A, Li G B. Water Wastewater Eng., 2016, 52(12): 30.
(白朗明, 梁恒, 贾瑞宝, 瞿芳术, 丁安, 李圭白. 给水排水, 2016, 52(12): 30.)
[99]
Wu H Y. Master Dissertation of Harbin Institute of Technology, 2019.
(武虹妤. 哈尔滨工业大学硕士论文, 2019.).
[100]
Lv J L. Doctoral Dissertation of Dalian University of Technology, 2018.
(吕金玲. 大连理工大学博士论文, 2018.).
[101]
Dong L P, Li Z, Xia W, Gong J X, Jia S R, Zhang J F. Mater. Sci. Technol., 2018, 26(1): 88.
(董丽攀, 李政, 夏文, 巩继贤, 贾士儒, 张健飞. 材料科学与工艺, 2018, 26(1): 88.)
[102]
Fabra M J, LÓpez-Rubio A, Ambrosio-Martín J, Lagaron J M. Food Hydrocoll., 2016, 61: 261.

doi: 10.1016/j.foodhyd.2016.05.025
[103]
Zhang S H, Fu R F, Dong L Q, Gu Y C, Chen S. China Pulp Pap., 2017, 36(1): 67.
(张思航, 付润芳, 董立琴, 顾迎春, 陈胜. 中国造纸, 2017, 36(1): 67.)
[104]
Liu Y, Liu Y J, Meng F H, Liu J L. Modern Chem. Ind., 2019, 39(04):58.
(刘莹, 刘钰娇, 孟凡浩, 刘井来. 现代化工, 2019, 39(04):58.)
[105]
Wu X Y, Chabot V L, Kim B K, Yu A P, Berry R M, Tam K C. Electrochimica Acta, 2014, 138: 139.

doi: 10.1016/j.electacta.2014.06.089
[106]
Ravit R, Abdullah J, Ahmad I, Sulaiman Y. Carbohydr. Polym., 2019, 203: 128.

doi: 10.1016/j.carbpol.2018.09.043
[107]
Mukhopadhyay A, Cheng Z, Natan A, Ma Y, Yang Y, Cao D X, Wang W, Zhu H L. Nano Lett., 2019, 19(12): 8979.

doi: 10.1021/acs.nanolett.9b03964 pmid: 31702931
[108]
Xu X L, Zhao G D, Wang H, Li X J, Feng X, Cheng B W, Shi L, Kang W M, Zhuang X P, Yin Y. J. Power Sources, 2019, 409: 123.

doi: 10.1016/j.jpowsour.2018.11.003
[109]
Shi Z Q, Tang J T, Chen L, Yan C R, Tanvir S, Anderson W A, Berry R M, Tam K C. J. Mater. Chem. B, 2015, 3(4): 603.

doi: 10.1039/C4TB01647E
[110]
Fan L. Master Dissertation of Tianjin University of Science & Technology, 2019.
(樊丽. 天津科技大学硕士论文, 2019.).
[111]
Azizi S, Ahmad M, Mahdavi M, Abdolmohammadi S. BioResources, 2013, 8(2): 1841.
[112]
Zhan Y H, Meng Y Y, Li W Z, Chen Z M, Yan N, Li Y C, Teng M Y. Ind. Crops Prod., 2018, 122: 422.

doi: 10.1016/j.indcrop.2018.06.043
[113]
Wu X D, Lu C H, Zhang W, Yuan G P, Xiong R, Zhang X X. J. Mater. Chem. A, 2013, 1(30): 8645.

doi: 10.1039/c3ta11236e
[114]
Eisa W H, Abdelgawad A M, Rojas O J. ACS Sustainable Chem. Eng., 2018, 6(3): 3974.

doi: 10.1021/acssuschemeng.7b04333
[115]
Kafy A, Akther A, Shishir M I R, Kim H C, Yun Y, Kim J. Sens. Actuat. A: Phys., 2016, 247: 221.

doi: 10.1016/j.sna.2016.05.045
[116]
Mun S, Chen Y, Kim J. Sens. Actuat. B: Chem., 2012, 171-172: 1186.
[117]
Sadasivuni K K, Ponnamma D, Ko H U, Kim H C, Zhai L D, Kim J. Sens. Actuat. B: Chem., 2016, 233: 633.

doi: 10.1016/j.snb.2016.04.134
[118]
Xu G Y, Liang S P, Fan J S, Sheng G, Luo X L. Microchimica Acta, 2016, 183(6): 2031.

doi: 10.1007/s00604-016-1842-3
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[8] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[9] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[10] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[11] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[12] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[13] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[14] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[15] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.