中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2173-2189 DOI: 10.7536/PC220236 Previous Articles   Next Articles

• Review •

Catalytic Conversion of Cellulose-Based Biomass to Diols

Wu Qiaomei1, Yang Qiyue1, Zeng Xianhai2, Deng Jiahui1, Zhang Liangqing1(), Qiu Jiarong1()   

  1. 1 School of Advanced Manufacturing, Fuzhou University,Jinjiang 362251, China
    2 College of Energy, Xiamen University,Xiamen 361102, China
  • Received: Revised: Online: Published:
  • Contact: Zhang Liangqing, Qiu Jiarong
  • Supported by:
    National Natural Science Foundation of China(22108038); National Natural Science Foundation of China(21978248); Tianjin University-Fuzhou University Independent Innovation Fund Cooperation Project(TF2022-10); Open Project Fund of Key Laboratory of Marine Biological Resources of Ministry of Natural Resources(HY202201); Open Project Fund of Key Laboratory of Marine Biological Resources of Ministry of Natural Resources(HY202202); Fuzhou University Testing Fund of Precious Apparatus(2022T032); Fuzhou University Testing Fund of Precious Apparatus(2022T037); Doctoral Scientific Research Foundation of Fuzhou University(511084); National Key R&D Program of China(2021YFC2101604); Guangdong Provincial Key Research and Development Program(2020B0101070001); Natural Science Foundation of Fujian Province of China(2019J06005)
Richhtml ( 45 ) PDF ( 610 ) Cited
Export

EndNote

Ris

BibTeX

As one of the most potential renewable resources to replace fossil energy, biomass has received increasing attention. Cellulose-based biomass is important feedstocks for catalytic conversion into various fuels and chemicals. In recent years, glycols (including ethylene glycol, propylene glycol, and butanediol, etc.) have been widely used in various fields as fuels and chemicals, which is huge market demand. The traditional method to produce diols was using fossil fuels as raw materials, and there are disadvantages such as non-renewable and large environmental pollution. Therefore, the production of diols by non-fossil feedstocks has attracted great attention. Among them, catalysis conversion of cellulose-based biomass to diols is one of the important approaches to overcome the shortage of fossil fuels and reduce environmental pollution. This review comprehensively summarizes the recent advances of cellulose-based biomass (cellulose, glucose, fructose, and sorbitol) as feedstocks for catalytic conversion of diols, and the reaction pathways, reaction mechanisms, catalytic stability, and reaction solvent categories are in-depth discussed. Based on the above discussion, a future research direction for catalysis conversion of cellulose-based biomass to diols is prospected, which might be helpful for researchers.

Table 1 Preparation of diols from cellulose by various catalysts
Fig. 1 Reaction pathways for the conversion of cellulose-based biomass to diols[29,63,64]
Table 2 Preparation of diols from glucose/fructose by various catalysts
Fig. 2 Reaction pathways for the conversion of sorbitol to diols[95,101,108]
Table 3 Preparation of diols from sorbitol by various catalysts
[1]
Zangoei S, Salehnia N, Mashhadi M K. Environ. Sci. Pollut.Res., 2021, 28: 19799.
[2]
Zuo M, Jia W L, Feng Y C, Zeng X H, Tang X, Sun Y, Lin L. Renew. Enegy, 2021, 164: 23.
[3]
Cao X C, Long F, Wang F, Zhao J P, Xu J M, Jiang J C. Renew. Enegy, 2021, 180: 1.
[4]
Gu Y, Zhang J, Wang Y Z, Li D N, Huang H Y, Yuan H R, Chen Y. Ind. Crops Prod., 2020, 145: 112133.

doi: 10.1016/j.indcrop.2020.112133
[5]
Zhang L Q, Qiu J R, Tang X, Sun Y, Zeng X H, Lin L. Chin. J. Chem., 2021, 39: 2467.

doi: 10.1002/cjoc.202100140
[6]
Feng Y C, Long S S, Tang X, Sun Y, Luque R, Zeng X H, Lin L. Chem. Soc. Rev., 2021, 50: 6042.

doi: 10.1039/D0CS01601B
[7]
Feng Y C, Long S S, Yan G H, Jia W L, Sun Y, Tang X, Zhang Z H, Zeng X H, Lin L. J. Catal., 2021, 397: 148.

doi: 10.1016/j.jcat.2021.03.031
[8]
Jimenez-Morales I, Moreno-Recio M, Santa maria - Gonzalez J, Maireles-Torres P, Jimenez-Lopez A. Appl. Catal. B Environ., 2015, 164: 70.

doi: 10.1016/j.apcatb.2014.09.002
[9]
Zhang L Q, Zeng X H, Qiu J R, Du J, Cao X J, Tang X, Sun Y, Li S R, Lei T Z, Liu S J, Lin L. Ind. Crops Prod., 2019, 135: 330.

doi: 10.1016/j.indcrop.2019.04.045
[10]
Zhang L Q, Zeng X H, Fu N, Tang X, Sun Y, Lin L. Food Res. Int., 2018, 106:383.

doi: 10.1016/j.foodres.2018.01.004
[11]
Araujo M L, Correia G A, Carvalho W A, Shul’pina L S, Kozlov Y N, Shul’pina G B, Mandelli D. Mol. Catal., 2021, 500: 111307.
[12]
Kumar M, Oyedun A O, Kumar A. Renew. Sust. Energ. Rev., 2018, 81(2): 1742.

doi: 10.1016/j.rser.2017.05.270
[13]
Jiang Y T, Song X Q, Sun Y, Zeng X H, Tang X, Lin L. Progress in Chemistry, 2017, 29(10): 1273.
蒋叶涛, 宋晓强, 孙勇, 曾宪海, 唐兴, 林鹿. 化学进展, 2017, 29(10): 1273.).

doi: 10.7536/PC170403
[14]
Tang X, Hu L, Sun Y, Zeng X H, Lin L. Progress in Chemistry, 2013, 25(11): 1907.
唐兴, 胡磊, 孙勇, 曾宪海, 林鹿. 化学进展, 2013, 25(11): 1907.).
[15]
Lin L, He B H, Sun R C, Hu R F. Progress in Chemistry, 2007, 19(7/8): 1206.
林鹿, 何北海, 孙润仓, 胡若飞. 化学进展, 2007, 19(7/8): 1206.).
[16]
Nzediegwu E, Dumont M J. Waste Biomass Valorization, 2021, 12: 2825.

doi: 10.1007/s12649-020-01179-y
[17]
Feng Y C, Yan G H, Wang T, Jia W L, Zeng X H, Sperry J, Sun Y, Tang X, Lei T Z, Lin L. Green Chem., 2019, 21: 4319.

doi: 10.1039/C9GC01331H
[18]
Long S S, Feng Y C, He F L, Zhao J Z, Bai T, Lin H B, Cai W L, Mao C W, Chen Y H, Gan L H, Liu J, Ye M D, Zeng X H, Long M N. Nano Energy, 2021, 85: 105973.

doi: 10.1016/j.nanoen.2021.105973
[19]
Wang H Q, Li J C, Ding N, Zeng X H, Tang X, Sun Y, Lei T Z, Lin L. Chem. Eng. J., 2020, 386: 124021.

doi: 10.1016/j.cej.2020.124021
[20]
Peng L C, Wang M M, Li H, Wang J, Zhang J H, He L. Green Chem., 2020, 22: 5656.

doi: 10.1039/D0GC02001J
[21]
Wang H Y, Hu X H, Liu S W, Cai C L, Zhu C H, Xin H S, Xiu Z X, Wang C G, Liu Q Y, Zhang Q, Zhang X H, Ma L L. Cellulose, 2020, 27: 7591.

doi: 10.1007/s10570-020-03340-1
[22]
Tinco D, Borschiver S, Coutinho P L, Freire D M G, Freire. Biofuels Bioprod. Biorefin., 2020, 15(2): 357.
[23]
Li X S, Pang J F, Zhang J C, Li X Q, Jiang Y, Su Y, Li W Z, Zheng M Y. Catalysts, 2021, 11: 415.

doi: 10.3390/catal11040415
[24]
Auneau F, Berchu M, Aubert G, Pinel C, Besson M, Todaro D, Bernardi M, Ponsetti T, Felice R D. Catal. Today, 2014, 234: 100.

doi: 10.1016/j.cattod.2013.12.039
[25]
Derosa C A, Xiang Q K, Bates F S, Hillmyer M A. Ind. Eng. Chem. Res., 2020, 59: 15598.

doi: 10.1021/acs.iecr.0c03009
[26]
Li Y F, Wu X M. Shanghai Chemical Industry, 2015, 40(03): 27.
李玉芳, 伍小明. 上海化工, 2015, 40(03): 27.).
[27]
Liu G L. Master Thesis of Jilin University, 2018.
刘桂兰. 吉林大学硕士论文, 2018.).
[28]
Kuang B F, Jiang T, Yu Y L, Chou S B, Qin Y L, Fang Y X, Wang T J. Fine Chemicals, 2019, 36(5): 781.
匡碧锋, 江婷, 余雅玲, 仇松柏, 秦延林, 方岩雄, 王铁军. 精细化工, 2019, 36(5): 781.).
[29]
Zheng M Y, Pang J F, Sun R Y, Wang A Q, Zhang T. ACS Catal., 2017, 7: 1939.

doi: 10.1021/acscatal.6b03469
[30]
Kambo H S, Dutta A. Renew. Sust. Energ. Rev., 2015, 45: 359.

doi: 10.1016/j.rser.2015.01.050
[31]
Ji N, Zhang T, Zheng M Y, Wang A, Wang H, Wang X D, Chen J G. Angew. Chem. Int. Ed., 2008, 120(44): 8638.

doi: 10.1002/ange.200803233
[32]
Yan J Q, Ji D X, Yang G H, Luo S Y, Zhang K, Chen J C. China Pulp & Paper Industry, 2021, 42(10).
颜家强, 戢德贤, 杨桂花, 罗士余, 张凯, 陈嘉川. 中华纸业, 2021, 42(10).).
[33]
Li M Q. Master Thesis of Ningxia University, 2018.
李梦晴. 宁夏大学硕士论文, 2018.).
[34]
Liang T. Popular Science & Technology, 2013, 15(09).
梁涛. 大众科技, 2013, 15(09).).
[35]
Li Z L, Zhang J Y, Hou B L, Wang A Q. AIChE J., 2019, 65(6): 16585.
[36]
Zheng M Y, Wang A Q, Ji N, Pang J F, Wang X D, Zhang T. ChemSusChem, 2010, 3(1): 63.

doi: 10.1002/cssc.200900197
[37]
Cao Y L, Wang J W, Kang M Q, Zhu Y L. J. Mol. Catal. A Chem., 2014, 381: 46.

doi: 10.1016/j.molcata.2013.10.002
[38]
Li M Q, Ma Y L, Ma X X, Sun Y G, Song Z. RSC Adv., 2018, 8: 10907.

doi: 10.1039/C8RA00584B
[39]
Xiao Z Q, Xu Y D, Fan Y, Zhang Q, Mao J W, Ji J B. Asia Pac. J. Chem. Eng., 2018, 13: 2153.
[40]
Xiao Z Q, Fan Y, Cheng Y J, Zhang Q, Ge Q, Sha R Y, Ji J B, Mao J W. Fuel, 2018, 215: 406.

doi: 10.1016/j.fuel.2017.11.086
[41]
Xiao Z Q, Zhang Q, Chen T T, Wang X N, Fan Y, Ge Q, Zhai R, Sun R, Ji J B, Mao J W. Fuel, 2018, 230: 332.

doi: 10.1016/j.fuel.2018.04.115
[42]
Chu D W, Zhao C. Catal. Today, 2020, 351: 125.

doi: 10.1016/j.cattod.2018.10.006
[43]
Li N X, Liu X, Zhou J C, Ma Q H, Liu M C, Chen W S. ACS Sustainable Chem. Eng., 2020, 8: 9650.

doi: 10.1021/acssuschemeng.0c00836
[44]
Wang H Y, Hu X H, Liu S W, Cai C L, L., Zhu C H, Xin H S, Xiu Z X, Wang C G, Liu Q Y, Zhang Q, Zhang X H, Ma L L. Cellulose, 2020, 27: 7591.

doi: 10.1007/s10570-020-03340-1
[45]
Xiao Z Q, Wang X L, Yang Q Q, Xing C, Ge Q, Gai X K, Mao J W, Ji J B. J. Energy Chem., 2020, 50: 25.
[46]
Hamdy M S, Eissa M A, Keshk S M A S. Green Chem., 2017, 19: 5144.

doi: 10.1039/C7GC02122D
[47]
Sreekantan S, Kirali A A, Marimuthu B. New J. Chem., 2021, 45: 19244.

doi: 10.1039/D1NJ03257G
[48]
Yu J, Liang J Z, Chen X P, Wang L L, Wei X J, Li Y Q, Qin Y M. ACS Omega, 2021, 6: 11650.

doi: 10.1021/acsomega.1c00979
[49]
Gu M Y, Shen Z, Yang L, Dong W J, Kong L, Zhang W, Peng B Y, Zhang Y L. Sci. Rep., 2019, 9: 11938.

doi: 10.1038/s41598-019-48103-6
[50]
Deng T, Liu H C. Green Chem., 2013, 15: 116.

doi: 10.1039/C2GC36088H
[51]
Sun R Y, Zheng M Y, Pang J F, Liu X, Wang J H, Pan X L, Wang A Q, J H, Wang X D, Zhang T. ACS Catal., 2016, 6: 191.

doi: 10.1021/acscatal.5b01807
[52]
Xiao Z Q, Mao J W, Jiang C J, Xing C, Ji J B, Cheng Y J. J. Renew. Sustain. Energy, 2017, 9: 24703.
[53]
Sun R, Wang T T, Zheng M Y, Deng W Q, Pang J F, Wang A Q, Wang X D, Tao Z. ACS Catal., 2015, 5: 874.

doi: 10.1021/cs501372m
[54]
Xiao Z H, Jin S H, Pang M, Liang C H. Green Chem., 2013, 15: 891.

doi: 10.1039/c3gc40134k
[55]
Li C, Xu G Y, Li K, Wang C G, Zhang Y, Fu Y. Chem. Commun., 2019, 55: 7663.

doi: 10.1039/C9CC04020J
[56]
Zhang K, Wu S B, Yang H, Yin H M, Li G. RSC Adv., 2016, 6: 77499.

doi: 10.1039/C6RA10183F
[57]
Ribeiro L S, Orfao J, Melo Orfao J J, Pereira M F R. Cellulose, 2018, 25: 2259.

doi: 10.1007/s10570-018-1721-7
[58]
Ribeiro L S, Melo Orfao J J,. Pereira M F R. Bioresource Technol., 2018, 263: 402.

doi: 10.1016/j.biortech.2018.05.034
[59]
Ribeiro L S, Rey-Raap N, Figueiredo J L, Melo Orfao J J, Pereira M F R. Cellulose, 2019, 26: 7337.

doi: 10.1007/s10570-019-02583-x
[60]
Yang Z Z, Huang R L, Qi W, Tong L P, Su R X, He Z M. Chem. Eng. J., 2015, 280: 90.

doi: 10.1016/j.cej.2015.05.091
[61]
Zhang K, Yang G H, Lyu G J, Jia Z X, Lucai L A, Chen J C. ACS Sustainable Chem. Eng., 2019, 7: 11110.

doi: 10.1021/acssuschemeng.9b00006
[62]
Li C, Xu G Y, Wang C G, Ma L L, Qiao Y, Zhang Y, Fu Y. Green Chem., 2019, 21:2234.

doi: 10.1039/C9GC00719A
[63]
Wiesfeld J J, Perolja P, Rollier F A, Elemans-Mehring A M, Hensen E J M. Mol. Catal., 2019, 473: 110400.
[64]
Lv M X, Xin Q H, Yin D F, Jia Z, Yu C Y, Wang T, Yu S T, Liu S W, Li L, Liu Y. ACS Sustainable Chem. Eng., 2020, 8: 3617.

doi: 10.1021/acssuschemeng.9b06264
[65]
Xu S Q, Yan X P, Bu Q, Xia H A. Cellulose, 2017, 24: 2403.

doi: 10.1007/s10570-017-1275-0
[66]
Xin Q H, Jiang L, Yu S T, Liu S W, Yin D F, Li L, Xie C X, Wu Q, Yu H L, Liu Y X, Liu Y. J. Phys. Chem. C, 2021, 125: 18170.

doi: 10.1021/acs.jpcc.1c04446
[67]
Yu S T, Cao X C, Liu S W, Li L, Wu Q. RSC Adv., 2018, 8: 24857.

doi: 10.1039/C8RA03806F
[68]
Mankar A R, Modak A, Pant K K. Fuel Process. Technol., 2021, 218:106847.

doi: 10.1016/j.fuproc.2021.106847
[69]
Cabiac A, Delcroix D, Girard E. Catal. Sci. Technol., 2016, 6: 5534.

doi: 10.1039/C5CY01782C
[70]
Esposito S, Silvestri B, Russo V, Bonelli B, Manzoli M, Deorsola F A, Vergara A, Aronne A, Serio M D. ACS Catal., 2019, 9: 3426.

doi: 10.1021/acscatal.8b04710
[71]
Climent M J, Corma A, Iborra S. Green Chem., 2011, 13: 520.

doi: 10.1039/c0gc00639d
[72]
Li N X, Zheng Y, Wei L F, Teng H C, Zhou J C. Green Chem., 2017, 19: 682.

doi: 10.1039/C6GC01327A
[73]
Olson N, Deshpande N, G., Seval, Ozkan U S, Brunelli N A. Catal. Today, 2019, 323: 69.

doi: 10.1016/j.cattod.2018.07.059
[74]
Liu L J, Wang Z M, Fu S, Si Z B, Huang Z, Liu T H, Yang H Q, Hu C W. Catal. Sci. Technol., 2021, 11: 1537.

doi: 10.1039/D0CY01984D
[75]
Ishaq M, Sultan S, Ahmad I, Ullah H, Yaseen M, Amir A. J. Saudi Chem. Soc., 2017, 21: 143.
[76]
Cao Y L, Wang J W, Kang M Q, Zhu Y L. J. Fuel Chem. Technol., 2016, 44: 845.
[77]
Tan Z C, Shi L, Zan Y F, Miao G, Li S L, Kong L Z, Li S G, Sun Y H. Appl. Catal. A Gen., 2018, 560: 28.

doi: 10.1016/j.apcata.2018.04.026
[78]
Kirali A A, Sreekantan S, Marimuthu B. New J. of Chem., 2020, 44:15958.

doi: 10.1039/D0NJ03196H
[79]
Xiao Z W, Jin S H, Sha G Y, Williams C T, Liang C H. Ind. Eng. Chem. Res., 2014, 53: 8735.

doi: 10.1021/ie5012189
[80]
Yazdani P, Wang B, Du Y, Kawi S, Borgna A. Catal. Sci. Technol., 2017, 7: 4680.

doi: 10.1039/C7CY01571B
[81]
Liu C W, Shang Y N, Wang S, Liu X, Wang X Z, Gui J Z, Zhang C H, Zhu Y L, Li Y W. Mol. Catal., 2020, 485: 110514.
[82]
Zhao G H, Zheng M Y, Zhang J Y, Wang A, Zhang T. Ind. Eng. Chem. Res., 2013, 52: 9566.

doi: 10.1021/ie400989a
[83]
Liu Y, Liu Y L, Zhang Y. Appl. Catal. B Environ., 2019, 242: 100.

doi: 10.1016/j.apcatb.2018.09.085
[84]
Liu Y, Liu Y L, Wu Q, Zhang Y. Catal. Commun., 2019, 129: 105731.

doi: 10.1016/j.catcom.2019.105731
[85]
Liu C W, Zhang C H, Sun S K, Liu K K, Hao S L, Xu J, Zhu Y L, Li Y W. ACS Catal., 2015, 5: 4612.

doi: 10.1021/acscatal.5b00800
[86]
Lv M X, Zhang Y W, Xin Q H, Yin D F, Yu S T, Liu S W, Li L, Xie C X, Wu Q, Yu H L, Liu Y. Chem. Eng. J., 2020, 396: 125274.

doi: 10.1016/j.cej.2020.125274
[87]
Pang J F, Zheng M Y, Li X S, Jiang y, Zhao Y, Wang A Q, Wang J H, Wang X D, Zhang T. Appl. Catal. B Environ., 2018, 239: 300.

doi: 10.1016/j.apcatb.2018.08.022
[88]
Gu M Y, Shen Z, Zhang W, Xia M, Jiang J K, Dong W J, Zhou X F, Zhang Y L. ChemCatchem, 2020, 12: 3447.

doi: 10.1002/cctc.202000408
[89]
Ji J C, Xu Y, Liu Y, Zhang Y. Catal. Commun., 2020, 144: 106074.

doi: 10.1016/j.catcom.2020.106074
[90]
Liu Y, Luo C, Liu H C. Angewandte Chemie, 2012, 124: 3303.

doi: 10.1002/ange.201200351
[91]
Li C, Xu G Y, Zhang X, Fu Y. Chin. J. of Chem., 2020, 38: 453.

doi: 10.1002/cjoc.201900431
[92]
Zada B, Chen M Y, Chen C B, Yan L, Xu Q, Li W Z, Guo Q X, Fu Y. Sci. China Chem., 2017, 60: 853.

doi: 10.1007/s11426-017-9067-1
[93]
Banu M, Venuvanalingam P, Shanmugam R, Viswanathan B, Sivasanker. Top. Catal., 2012, 55: 897.
[94]
Ye L M, Duan X P, Lin H Q, Yuan Y Z. Catal. Today, 2012, 183: 65.

doi: 10.1016/j.cattod.2011.08.006
[95]
Jia Y Q, Liu H C. Catal. Sci. Technol., 2016, 6: 7042.

doi: 10.1039/C6CY00928J
[96]
Zhao L, Zhou J H, Sui Z J, Zhou X G. Chem. Eng. Sci., 2010, 65: 30.

doi: 10.1016/j.ces.2009.03.026
[97]
Guo X C, Guan J, Li B, Wang X C, Mu X D, Liu H Z. Sci. Rep., 2015, 5: 16451.
[98]
Guo X C, Dong H H, Li B, Dong L L, Mu X D, Chen X F. J. mol. Catal. A Chem., 2017, 426: 79.

doi: 10.1016/j.molcata.2016.11.003
[99]
Jia Y Q, Liu H C. Chin. J. Catal., 2015, 36: 1552.

doi: 10.1016/S1872-2067(15)60892-0
[100]
Wang X D, Beine A K, Hausoul P J C, Palkovits R. ChemCatChem, 2019, 11: 4123.

doi: 10.1002/cctc.201900299
[101]
Jia Y Q, Sun Q H, Liu H C. Appl.Catal. A Gen., 2020, 603: 117770.
[102]
Chen X G, Wang X C, Yao S X, Mu X D. Catal. Commun., 2013, 39: 86.

doi: 10.1016/j.catcom.2013.05.012
[103]
Jin X, Shen J, Yan W J, Zhao M, Thapa P S, Subramaniam B, Chaudhari R V. ACS Catal., 2015, 5:6564.
[104]
Leo I M, Granados M L, Fierro J L G, Mariscal R. Appl. Catal. B Environ., 2016, 185: 141.

doi: 10.1016/j.apcatb.2015.12.005
[105]
Du W C, Zheng L P, Li X W, Fu J, Lu X Y, Z., Hou Z Y. Appl. Clay. Sci., 2016, 123: 166.

doi: 10.1016/j.clay.2016.01.032
[106]
Shanthi R V, Mahalakshmy R, Thitunavukkarasu K, Sivasanker S. Mol. Catal., 2018, 451: 170.
[107]
Cai C L, Wang H Y, Xin H S, Zhu C H, Zhang Q, Zhang X H, Wang C G, Liu Q Y, Ma L L. RSC Adv., 2020, 10: 3993.

doi: 10.1039/C9RA10394E
[108]
Liu Q Y, Liao Y H, Shi N, Wang T J, Ma L L, Zhang Q. Chemical Industry and Engineering Progress, 2013, 32(05).
刘琪英, 廖玉河, 石宁, 王铁军, 马隆龙, 张琦. 化工进展, 2013, 32(05).).
[109]
Liu X Y, Lan G J, Li Z Q, Qian L H, Liu J, Li Y. Chinese Journal of Catalysis, 2021, 42 (05): 694.

doi: 10.1016/S1872-2067(20)63699-3
刘晓艳, 蓝国钧, 李振清, 钱丽华, 刘健, 李瑛. 催化学报, 2021, 42 (05): 694.).
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[5] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[6] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[7] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[8] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[9] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[10] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[11] Jingchen Tian, Gongde Wu, Yanjun Liu, Jie Wan, Xiaoli Wang, Lin Deng. Application of Supported Non-Noble Metal Catalysts for Formaldehyde Oxidation at Low Temperature [J]. Progress in Chemistry, 2021, 33(11): 2069-2084.
[12] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[13] Andong Hu, Shungui Zhou, Jie Ye. The Mechanism, Progress and Prospect of Biohybrid Mediated Semi-Artificial Photosynthesis [J]. Progress in Chemistry, 2021, 33(11): 2103-2115.
[14] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[15] Lina Shi, Xin Hu, Ning Zhu, Kai Guo. Cellulose-Based Dielectric Composite [J]. Progress in Chemistry, 2020, 32(12): 2022-2033.