中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (2): 318-330 DOI: 10.7535/PC200441 Previous Articles   

• Review •

Selective Oxidation of HMF

Lili Cheng1, Yun Zhang1, Yekun Zhu1, Ying Wu1,*()   

  1. 1 Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
  • Received: Revised: Online: Published:
  • Contact: Ying Wu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    Natural Science Foundation of Zhejiang Province(LY16B030002)
Richhtml ( 42 ) PDF ( 2007 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, the use of abundant and renewable biomass resources to prepare high value-added chemicals and liquid fuels is one of the hot spots in the chemical research field, which is in line with the national strategy of sustainable development. 5-hydroxymethylfurfural(HMF)is one of the key biomass platform compounds, widely used in the preparation of fine platform compounds, drug intermediates, polymer synthesis and liquid fuel precursor. Therefore, the selective oxidation of HMF has gradually become a research hotspot in the field of biomass. This paper mainly introduces the research on preparation of biomass derivatives such as DFF, FFCA and FDCA by selective oxidation of HMF in last five years, and the transformation of biomass with HMF as intermediate. The selective oxidation of HMF mainly focuses on two ways:thermalcatalytic and photocatalytic. Among them, the selective oxidation of HMF to DFF and FDCA by thermalcatalytic is widely studied. The catalytic system in this approach mainly includes the noble metals and non-precious metals, which are introduced herein. In the few photocatalytic pathways, the main catalytic system is g-C3N4 catalyst. In addition, the deficiencies in the research on the oxidation of HMF are pointed out and the possible solutions are proposed.

Contents

1 Introduction

2 Summary of HMF

2.1 Property of HMF

2.2 The reaction path of HMF catalytic oxidation

3 Selective oxidation of HMF

3.1 Thermalcatalytic selective oxidation of HMF

3.2 Photocatalytic selective oxidation of HMF

4 The biomass oxidation reaction with HMF as intermediate

5 Conclusion and outlook

Fig. 1 The reaction path of HMF catalytic oxidation[8]
Fig. 2 Reaction mechanism of selective oxidation of HMF by Cs-MnOx[26]
Fig. 3 A possible reaction route for oxidation of HMF by Mn6Fe1Ox to DFF[31]
Table 1 Synthesis of DFF by the oxidation of HMF on different catalysts
Table 2 Selective oxidation of HMF to FDCA on different catalysts
Table 3 Different catalysts convert biomass into HMF derivatives
[1]
Bozell J J, Petersen G R. Green Chem., 2010, 12:539.
[2]
Ma J P, Du Z T, Xu J, Chu Q H, Pang Y. ChemSusChem, 2011, 4:51.

doi: 10.1002/cssc.201000273 pmid: 21226210
[3]
Rose M, Weber D, Lotsch B V, Kremer R K, Goddard R, Palkovits R. Microporous Mesoporous Mater., 2013, 181:217.
[4]
Li Y, Wei Z J, Chen C J, Liu Y X. Progress in Chemistry. 2010, 22(08):1603.
李艳, 魏作君, 陈传杰, 刘迎新. 化学进展. 2010,22(08):1603.
[5]
Wei Z J, Liu Y X, Thushara D, Ren Q L. Green Chem., 2012, 14:1220.
[6]
Wei Z J, Li Y, Thushara D, Liu Y X, Ren Q L. J. Taiwan Inst. Chem. Eng., 2011, 42:363.
[7]
Tong X L, Ma Y, Li Y D. Appl. Catal. A: Gen., 2010, 385:1.
[8]
Zhang Z H, Huber G W. Chem. Soc. Rev., 2018, 47:1351.

doi: 10.1039/c7cs00213k pmid: 29297525
[9]
Pichler C M, Al-Shaal M G, Gu D, Joshi H, Ciptonugroho W, Schüth F. ChemSusChem, 2018, 11:2083.
[10]
Antonyraj C A, Huynh N T T, Lee K W, Kim Y J, Shin S, Shin J S, Cho J K. J. Chem. Sci., 2018, 130:156.
[11]
Liu H, Cao X J, Wang T, Wei J N, Tang X, Zeng X H, Sun Y, Lei T Z, Liu S J, Lin L. J. Ind. Eng. Chem., 2019, 77:209.
[12]
Zheng L F, Zhao J Q, Du Z X, Zong B N, Liu H C. Sci. China Chem., 2017, 60:950.
[13]
Wang S G, Zhang Z H, Liu B, Li J L. Ind. Eng. Chem. Res., 2014, 53:5820.
[14]
Mosby B M, Díaz A, Clearfield A. Dalton Trans., 2014, 43:10328.
[15]
Hajipour A R, Karimi H. Chin. J. Catal., 2014, 35:1529.
[16]
Yang F, Yuan Z L, Liu B, Chen S H, Zhang Z H. J. Ind. Eng. Chem., 2016, 38:181.
[17]
Mishra D K, Cho J K, Kim Y J. J. Ind. Eng. Chem., 2018, 60:513.
[18]
Mishra D K, Lee H J, Kim J, Lee H S, Cho J K, Suh Y W, Yi Y J, Kim Y J. Green Chem., 2017, 19:1619.
[19]
Ait Rass H, Essayem N, Besson M. ChemSusChem, 2015, 8:1206.
[20]
Chen H, Shen J S, Chen K Q, Qin Y, Lu X Y, Ouyang P K, Fu J. Appl. Catal. A: Gen., 2018, 555:98.
[21]
Zhou C M, Shi W R, Wan X Y, Meng Y, Yao Y, Guo Z, Dai Y H, Wang C, Yang Y H. Catal. Today, 2019, 330:92.
[22]
Rathod P V, Jadhav V H. ACS Sustainable Chem. Eng., 2018, 6:5766.
[23]
Zhang Z H, Zhen J D, Liu B, Lv K, Deng K J. Green Chem., 2015, 17:1308.
[24]
Antonyraj C A, Huynh N T T, Park S K, Shin S, Kim Y J, Kim S, Lee K Y, Cho J K. Appl. Catal. A: Gen., 2017, 547:230.
[25]
Kim M, Su Y Q, Fukuoka A, Hensen E J M, Nakajima K. Angew. Chem. Int. Ed., 2018, 57:8235.
[26]
Yuan Z L, Liu B, Zhou P, Zhang Z H, Chi Q. Catal. Sci. Technol., 2018, 8:4430.
[27]
Tong X L, Yu L H, Chen H, Zhuang X L, Liao S Y, Cui H G. Catal. Commun., 2017, 90:91.
[28]
Ke Q P, Jin Y X, Ruan F, Ha M N, Li D D, Cui P X, Cao Y L, Wang H, Wang T T, Nguyen V N, Han X Y, Wang X, Cui P. Green Chem., 2019, 21:4313.
[29]
Hayashi E, Yamaguchi Y, Kamata K, Tsunoda N, Kumagai Y, Oba F, Hara M. J. Am. Chem. Soc., 2019, 141:890.
[30]
Liao X, Hou J, Wang Y, Zhang H, Sun Y, Li X, Tang S. Green Chemistry, 2019, 21(15):4194.
[31]
Liu H, Cao X J, Wei J N, Jia W L, Li M Z, Tang X, Zeng X H, Sun Y, Lei T Z, Liu S J, Lin L. ACS Sustainable Chem. Eng., 2019, 7:7812.
[32]
Gui Z Y, Saravanamurugan S, Cao W R, Schill L, Chen L F, Qi Z W, Riisager A. ChemistrySelect, 2017, 2:6632.
[33]
Ding L, Yang W, Chen L F, Cheng H Y, Qi Z W. Catal. Today, 2020, 347:39.
[34]
Rao K T V, Rogers J L, Souzanchi S, Dessbesell L, Ray M B, Xu C. ChemSusChem, 2018, 11(18):3323.

pmid: 30006949
[35]
Gao T Y, Yin Y X, Zhu G H, Gao Q, Fang W H. Catal. Today, 2020, 355:252.
[36]
Gawade A B, Nakhate A V, Yadav G D. Catal. Today, 2018, 309:119.
[37]
Ventura M, Lobefaro F, de Giglio E, Distaso M, Nocito F, Dibenedetto A. ChemSusChem, 2018, 11:1305.

pmid: 29513920
[38]
Ventura M, Aresta M, Dibenedetto A. ChemSusChem, 2016, 9:1096.

doi: 10.1002/cssc.201600060 pmid: 27101568
[39]
Han X W, Li C Q, Liu X H, Xia Q N, Wang Y Q. Green Chem., 2017, 19:996.
[40]
Hayashi E, Komanoya T, Kamata K, Hara M. ChemSusChem, 2017, 10:654.
[41]
Nocito F, Ventura M, Aresta M, Dibenedetto A. ACS Omega, 2018, 3:18724.

pmid: 31458437
[42]
Ventura M, Nocito F, de Giglio E, Cometa S, Altomare A, Dibenedetto A. Green Chem., 2018, 20:3921.
[43]
Zhao J, Chen X P, Du Y H, Yang Y H, Lee J M. Appl. Catal. A: Gen., 2018, 568:16.
[44]
Lai J H, Liu K, Zhou S L, Zhang D, Liu X X, Xu Q, Yin D L. RSC Adv., 2019, 9:14242.
[45]
Yan Y B, Li K X, Zhao J, Cai W Z, Yang Y H, Lee J M. Appl. Catal. B: Environ., 2017, 207:358.
[46]
Liu L J, Wang Z M, Lyu Y J, Zhang J F, Huang Z, Qi T, Si Z B, Yang H Q, Hu C W. Catal. Sci. Technol., 2020, 10:278.
[47]
Gupta D, Pant K K, Saha B. Mol. Catal., 2017, 435:182.
[48]
Wei Z J, Xiao S W, Chen M T, Lu M, Liu Y X. New J. Chem., 2019, 43:7600.
[49]
Wu Q, He Y M, Zhang H L, Feng Z Y, Wu Y, Wu T H. Mol. Catal., 2017, 436:10.
[50]
Zhang H L, Feng Z Y, Zhu Y K, Wu Y, Wu T H. J. Photochem. Photobiol. A: Chem., 2019, 371:1.
[51]
Zhu Y K, Zhang Y, Cheng L L, Ismael M, Feng Z Y, Wu Y. Adv. Powder Technol., 2020, 31:1148.
[52]
Xu S, Zhou P, Zhang Z H, Yang C J, Zhang B G, Deng K J, Bottle S, Zhu H Y. J. Am. Chem. Soc., 2017, 139:14775.
[53]
Xue J J, Huang C J, Zong Y Q, Gu J D, Wang M X, Ma S S. Appl. Organomet. Chem., 2019, 33:e5187.
[54]
Zhang H L, Wu Q, Guo C, Wu Y, Wu T H. ACS Sustainable Chem. Eng., 2017, 5:3517.
[55]
Ma B, Wang Y Y, Guo X N, Tong X L, Liu C, Wang Y W, Guo X Y. Appl. Catal. A: Gen., 2018, 552:70.
[56]
Giannakoudakis D A, Nair V, Khan A, Deliyanni E A, Colmenares J C, Triantafyllidis K S. Appl. Catal. B: Environ., 2019, 256:117803.
[57]
Meng S G, Wu H H, Cui Y J, Zheng X Z, Wang H, Chen S F, Wang Y X, Fu X L. Appl. Catal. B: Environ., 2020, 266:118617.
[58]
Ye H F, Shi R, Yang X. Appl. Catal. B:Environ, 2018, 233:70.
[59]
Battula V R, Jaryal A, Kailasam K. J. Mater. Chem. A, 2019, 7:5643.
[60]
Zhao H, Holladay J E, Brown H, Zhang Z C. Science, 2007, 316:1597.

doi: 10.1126/science.1141199 pmid: 17569858
[61]
Antonetti C, Melloni M, Licursi D, Fulignati S, Ribechini E, Rivas S, ParajÓ J C, Cavani F, Raspolli Galletti A M. Appl. Catal. B: Environ., 2017, 206:364.
[62]
Songo M, Moutloali R, Ray S. Catalysts, 2019, 9:126.
[63]
Wang J, Qu T, Liang M S, Zhao Z B. RSC Adv., 2015, 5:106053.
[64]
Raveendra G, Surendar M, Sai Prasad P S. New J. Chem., 2017, 41:8520.
[65]
Yu X, Chu Y Y, Zhang L, Shi H, Xie M J, Peng L M, Guo X F, Li W, Xue N H, Ding W P. J. Energy Chem., 2020, 47:112.
[66]
Dibenedetto A, Aresta M, Pastore C, di Bitonto L, Angelini A, Quaranta E. RSC Adv., 2015, 5:26941.
[67]
Zhang Q Y, Liu X F, Yang T T, Pu Q L, Yue C Y, Zhang S Y, Zhang Y T. Int. J. Chem. Eng., 2019, 2019:1.
[68]
Zhang M L, Su K M, Song H M, Li Z H, Cheng B W. Catal. Commun., 2015, 69:76.
[69]
Cao J J, Ma M W, Liu J C, Yang Y Q, Liu H, Xu X L, Huang J H, Yue H J, Tian G, Feng S H. Appl. Catal. A: Gen., 2019, 571:96.
[70]
Candu N, El Fergani M, Verziu M, Cojocaru B, Jurca B, Apostol N, Teodorescu C, Parvulescu V I, Coman S M. Catal. Today, 2019, 325:109.
[71]
Guo Q, Ren L M, Alhassan S M, Tsapatsis M. Chem. Commun., 2019, 55:14942.
[72]
Feng Y C, Zuo M, Wang T, Jia W L, Zhao X Y, Zeng X H, Sun Y, Tang X, Lei T Z, Lin L. J. Taiwan Inst. Chem. Eng., 2019, 96:431.
[73]
Zhang Y L, Li B, Wei Y N, Yan C H, Meng M J, Yan Y S. J. Taiwan Inst. Chem. Eng., 2019, 96:93.
[74]
Takagaki A. Catalysts, 2019, 9:818.
[75]
Wang X, Lv T, Wu M H, Sui J W, Liu Q, Liu H, Huang J J, Jia L S. Appl. Catal. A: Gen., 2019, 574:87.
[76]
Zhang Y, Wang J G, Wang J H, Wang Y, Wang M, Cui H Y, Song F, Sun X Y, Xie Y J, Yi W M. ChemistrySelect, 2019, 4:5724.
[77]
Li K, Du M M, Ji P J. ACS Sustainable Chem. Eng., 2018, 6:5636.
[78]
Yue C C, Li G N, Pidko E A, Wiesfeld J J, Rigutto M, Hensen E J M. ChemSusChem, 2016, 9:2421.
[79]
Wen Z, Yu L H, Mai F H, Ma Z W, Chen H, Li Y D. Ind. Eng. Chem. Res., 2019, 58:17675.
[80]
Li X, Peng K, Xia Q, Liu X, Wang Y. Chemical Engineering Journal, 2018, 332:528.
[81]
Fang J, Zheng W W, Liu K, Li H, Li C L. Chem. Eng. J., 2020, 385:123796.
[82]
Zhou C M, Zhao J, Sun H L, Song Y, Wan X Y, Lin H F, Yang Y H. ACS Sustainable Chem. Eng., 2019, 7:315.
[83]
Zhao J, Jayakumar A, Lee J M. ACS Sustainable Chem. Eng., 2018, 6:2976.
[84]
Yang Z Z, Qi W, Su R X, He Z M. ACS Sustainable Chem. Eng., 2017, 5:4179.
[85]
Zhao J, Jayakumar A, Hu Z T. Yan Y B, Yang Y H, Lee J M, ACS Sustainable Chem. En., 2018, 6:284.
[86]
Zhao J, Anjali J, Yan Y B, Lee J M. ChemCatChem, 2017, 9:1187.
[87]
Liu Y, Zhu L F, Tang J Q, Liu M Y, Cheng R D, Hu C W. ChemSusChem, 2014, 7:3541.
[88]
Mittal N, Nisola G M, Malihan L B, Seo J G, Kim H, Lee S P, Chung W J. RSC Adv., 2016, 6:25678.
[89]
Fang R Q, Luque R, Li Y W. Green Chem., 2017, 19:647.
[90]
Chen Z C, Liao S Y, Ge L Y, Amaniampong P N, Min Y G, Wang C H, Li K X, Lee J M. Chem. Eng. J., 2020, 379:122284.
[91]
Lv G, Wang H L, Yang Y X, Deng T S, Chen C M, Zhu Y L, Hou X L. Green Chem., 2016, 18:2302.
[92]
Zhang W, Meng T S, Tang J J, Zhuang W X, Zhou Y, Wang J. ACS Sustainable Chem. Eng., 2017, 5:10029.
[93]
Hou W, Wang Q, Guo Z J, Li J, Zhou Y, Wang J. Catal. Sci. Technol., 2017, 7:1006.
[94]
Xu F H, Zhang Z H. ChemCatChem, 2015, 7:1470.
[95]
Yan D X, Wang G Y, Gao K, Lu X M, Xin J Y, Zhang S J. Ind. Eng. Chem. Res., 2018, 57:1851.
[96]
Motagamwala A H, Won W, Sener C N, Alonso D M, Maravelias C T, Dumesic J A. Sci. Adv., 2018, 4:eaap9722.

doi: 10.1126/sciadv.aap9722 pmid: 29372184
[97]
Raut A B, Bhanage B M. ChemistrySelect, 2018, 3:11388.
[98]
Chen G Y, Wu L B, Fan H, Li B G. Ind. Eng. Chem. Res., 2018, 57:16172.
[99]
De S, Dutta S, Saha B. Green Chem., 2011, 13:2859.
[100]
Despax S, Estrine B, Hoffmann N, Le Bras J, Marinkovic S, Muzart J. Catal. Commun., 2013, 39:35.
[101]
Dijkmans J, Gabriëls D, Dusselier M, de Clippel F, Vanelderen P, Houthoofd K, Malfliet A, Pontikes Y, Sels B F. Green Chem., 2013, 15:2777.
[102]
Zhang S Q, Li W F, Zeng X H, Sun Y, Lin L. BioResources, 2014, 9:4568.
[103]
Xiang X, He L, Yang Y, Guo B, Tong D M, Hu C W. Catal. Lett., 2011, 141:735.
[104]
Takagaki A, Takahashi M, Nishimura S, Ebitani K. ACS Catal., 2011, 1:1562.
[1] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[2] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[3] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[4] Yiqiang Liu, Yimei Qiu, Xing Tang, Yong Sun, Xianhai Zeng, Lu Lin. Glucose Isomerization into Fructose by Chemocatalytic Route [J]. Progress in Chemistry, 2021, 33(11): 2128-2137.
[5] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[6] Yu Yin, Chunhui Ma, Wei Li, Shouxin Liu. Solvent System and Conversion Mechanism of 5-Hydroxymethylfurfural Preparation from Glucose [J]. Progress in Chemistry, 2021, 33(10): 1856-1873.
[7] Lina Shi, Xin Hu, Ning Zhu, Kai Guo. Cellulose-Based Dielectric Composite [J]. Progress in Chemistry, 2020, 32(12): 2022-2033.
[8] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[9] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[10] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[11] Ying Qiao, Na Teng, Chengkai Zhai, Haining Na, Jin Zhu. High Efficient Hydrolysis of Cellulose into Sugar by Chemical Catalytic Method [J]. Progress in Chemistry, 2018, 30(9): 1415-1423.
[12] Haishun Du, Chao Liu, Miaomiao Zhang, Qingshan Kong, Bin Li*, Mo Xian. Preparation and Industrialization Status of Nanocellulose [J]. Progress in Chemistry, 2018, 30(4): 448-462.
[13] Yunchao Feng, Miao Zuo, Xianhai Zeng*, Yong Sun, Xing Tang, Lu Lin*. Preparation of 5-Hydroxymethylfurfural from Glucose [J]. Progress in Chemistry, 2018, 30(2/3): 314-324.
[14] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[15] Jing Ru, Biyao Geng, Congcong Tong, Haiying Wang, Shengchun Wu, Hongzhi Liu. Nanocellulose-Based Adsorption Materials [J]. Progress in Chemistry, 2017, 29(10): 1228-1251.
Viewed
Full text


Abstract

Selective Oxidation of HMF