中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (7): 1600-1609 DOI: 10.7536/PC220304 Previous Articles   Next Articles

• Review •

Liquid Condensed Matter Mediated Assembly and Functionality of Dispersoid

Bao Li, Lixin Wu()   

  1. State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University,Changchun 130012, China
  • Received: Revised: Online: Published:
  • Contact: Lixin Wu
  • Supported by:
    National Natural Science Foundation of China(22172060)
Richhtml ( 8 ) PDF ( 237 ) Cited
Export

EndNote

Ris

BibTeX

Condensed matter chemistry is a new research field that studies the multi-level structures of condensed matter constructed by intermolecular interactions for realizing functionalities and chemical reactions. Compared with solid-state condensed matter chemistry, the study of liquid condensed matter chemistry involves multiphase states, such as how liquid condensed matter affects the state and functional properties of dispersoids. It is important to understand the aggregation behaviors of dispersoids from the perspective of condensed matter chemistry, which is not only beneficial to the preparation of the expected structures, but also can deepen the understanding of the formation process of the assembled structure. In this paper, based on a brief overview of the physical and chemical properties of liquid condensed matter, especially those related to dispersion and dissolution, typical examples are selected to illustrate the assembly process, assembly and disassembly, and structural transformation of dispersoids in the liquid condensed matter. In terms of the influence of the liquid condensed state on properties of dispersoids, the UV-vis absorption, electron transfer, chirality regulation and catalysis are discussed. In these processes, as the continuous phase, the properties of the liquid condensed state, such as dielectric constant, polarity and viscosity, play key roles in the existing states and properties of the dispersoids. However, due to the limitation of the detection range of the present instruments, it is difficult to accurately measure the fast, variable and subtle forces between liquid condensed matter and dispersoids in time and space. Therefore, it is an important and effective strategy to perform mutual fitting from both experimental and theoretical aspects to illustrate the role of liquid condensed matter.

Contents

1 Introduction

2 Properties of liquid condensed matter and its relationship with a dispersoid

3 Influence of liquid condensed state on aggregation behaviors of dispersoid

3.1 Regulation of dispersoid assembly processes by liquid condensed matter

3.2 Regulation of aggregation states of dispersoid by liquid condensed matte

3.3 Regulation of assembly structures of dispersoid by liquid condensed matter

4 Influence of liquid condensed state on the properties of dispersoid

4.1 Liquid condensed state reduced solvatochromism

4.2 Photoinduced electron transfer controlled by liquid condensed matter

4.3 Modulation of dispersoid chirality by liquid condensed matter

4.4 Effects of liquid condensed matter on catalytic reactions of dispersoid

5 Conclusion

Fig. 1 Schematic illustration of the dissolution, recognition and assembly of the dispersoid in the liquid condensed state. The red dotted line represents the force between liquid condensed particles
Fig. 2 (a) Molecular structure of the amphiphilic polypeptide S30L12; (b) schematic illustration of the assembly structure of S30L12 and its transformation under heating, and the assembly structure transformation with different ethanol contents; (c) proposed packing models of polypeptide assemblies with different morphologies[37]. Copyright 2020, American Chemical Society
Fig. 3 Chemical structures of cationic surfactant, polyanion, and supramolecular complex, and schematic diagram of reversible assembly and disassembly of trans-/cis-complexes in solutions with different polarities[39]. Copyright 2012, Wiley
Fig. 4 (a) Molecular structure of PBI; (b) liquid condensed matter modulated reversible transformation between unfolded and folded state of PBI; (c) fluorescence spectra of PBI in CHCl3 (solid line) and MCH solution (dashed line)[41]. Copyright 2011, the Authors
Fig. 5 (a) Molecular structure of TTA; SEM images of methanol solutions of TTA sodium salt with water volume contents of (b) 0, (c) 10% and (d) 20%[44]. Copyright 2019, The Royal Society of Chemistry
Fig. 6 (a) Molecular structure of NPT; (b) solution pictures of NPT in ethane-1,2-diol, toluene, ethyl acetate, and DMA (from left to right); (c) UV-vis spectra of NPT in different liquid condensed matters. The black, green, blue and red lines represent NPT in thane-1,2-diol, toluene, ethyl acetate, and DMA, respectively[47]. Copyright 2016, The Royal Society of Chemistry
Fig. 7 (a) Molecular structure of the compound [Ru(bpy)2(bpy-cc-AQ)]2+ and its electron transfer in liquid condensed states with different dielectric constants; (b) the diagram of relationship between fluorescence lifetime and dielectric constant of liquid condensed state[49]
Fig. 8 Schematic diagram of the molecular structures of the amphiphilic chiral molecules L-PyG and L-PyPhG and their assemblies in EtOH and DMSO and the energy transfer in the presence of dye molecule[53]. Copyright 2022, American Chemical Society
Fig. 9 Schematic diagram of the reaction site of furan-2-ylmethanol catalyzed by H-ZSM-5 in 1,4-dioxane and water[56]
Fig. 10 Schematic illustration of the electrostatic complex {Mo154}@CDC comprising of cationic β-CD (CDC) and {Mo154} cluster as catalyst for the catalytic oxidation of cyclohexene in water[57]. Reproduced under terms of the CC-BY license. Copyright 2021, the Authors. Published by AAAS
[1]
Xu R R. Natl. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155
[2]
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6: 191.

doi: 10.1093/nsr/nwy128
[3]
Chen Z, Shang Y S, Zhang H B, Jiang Z H. Prog. Chem., 2020, 32: 1115.
[4]
Shi J L, Hua Z L. Prog. Chem., 2020, 32: 1060.
[5]
Cohen M L. Phys. Rev. Lett., 2008, 101: 250001.

doi: 10.1103/PhysRevLett.101.250001
[6]
Mu D, Li J Q, Cong X S, Mi Y W, Zhang H. Polymers, 2019, 11: 261.

doi: 10.3390/polym11020261
[7]
Gibb B C. Isr. J. Chem., 2011, 51: 798.

doi: 10.1002/ijch.201100058
[8]
Prince E, Narayanan P, Chekini M, Pace-Tonna C, Roberts M G, Zhulina E, Kumacheva E. Macromolecules, 2020, 53: 4533.

doi: 10.1021/acs.macromol.0c00643
[9]
Zhang R, Deng L, Guo J, Yang H, Zhang L, Cao X, Yu A, Duan B. ACS Nano, 2021, 15: 17790.

doi: 10.1021/acsnano.1c05956
[10]
Yuan P, Zhang R, Selenius E, Ruan P, Yao Y, Zhou Y, Malola S, Hakkinen H, Teo B K, Cao Y, Zheng N. Nat. Commun., 2020, 11: 2229.

doi: 10.1038/s41467-020-16062-6
[11]
Han A D, Yan X H, Chen J R, Cheng X J, Zhang J L. Acta Phys.-Chim. Sin., 2022, 38: 1912052.
[12]
Bo Z, Kong J, Yang H C, Zheng Z W, Chen P P, Yan J H, Cen K F. Acta Phys.-Chim. Sin., 2022, 38: 2005054.
[13]
Wells P R. Chem. Rev., 2002, 63: 171.

doi: 10.1021/cr60222a005
[14]
Kamlet M J, Abboud J L M, Abraham M H, Taft R W. J. Org. Chem., 2002, 48: 2877.

doi: 10.1021/jo00165a018
[15]
Dyson P J, Jessop P G. Catal. Sci. Technol., 2016, 6: 3302.

doi: 10.1039/C5CY02197A
[16]
Ab Rani M A, Brant A, Crowhurst L, Dolan A, Lui M, Hassan N H, Hallett J P, Hunt P A, Niedermeyer H, Perez-Arlandis J M, Schrems M, Welton T, Wilding R. Phys. Chem. Chem. Phys., 2011, 13: 16831.

doi: 10.1039/c1cp21262a pmid: 21858359
[17]
Reichardt C. Org. Process Res. Dev., 2006, 11: 105.

doi: 10.1021/op0680082
[18]
Lam J, Lutsko J F. J. Chem. Phys., 2018, 149: 134703.

doi: 10.1063/1.5037571
[19]
Rekharsky M, Inoue Y, in Supramolecular Chemistry: From Molecules to Nanomaterials (Eds.: P. A. Gale, J. W. Steed), John Wiley & Sons, Ltd., 2012, pp. 117.
[20]
Zhang J, Chen X F, Li W, Li B, Wu L X. Langmuir, 2017, 33: 12750.

doi: 10.1021/acs.langmuir.7b01259 pmid: 29048910
[21]
Nador F, Wnuk K, Roscini C, Solorzano R, Faraudo J, Ruiz-Molina D, Novio F. Chem. Eur. J., 2018, 24: 14724.

doi: 10.1002/chem.201802249
[22]
Moreno-Alcantar G, Aliprandi A, Rouquette R, Pesce L, Wurst K, Perego C, Bruggeller P, Pavan G M, De Cola L, Angew. Chem. Int. Ed., 2021, 60: 5407.

doi: 10.1002/anie.202013474 pmid: 33247479
[23]
Yang X, Xu X, Ji H F. J. Phys. Chem. B, 2008, 112: 7196.

doi: 10.1021/jp801413k
[24]
Maeda H, Terashima Y. Chem. Commun., 2011, 47: 7620.

doi: 10.1039/c1cc12827b
[25]
Yin P, Li D, Liu T. Chem. Soc. Rev., 2012, 41: 7368.

doi: 10.1039/c2cs35176e
[26]
Baar C, Buchner R, Kunz W. J. Phy. Chem. B, 2001, 105: 2906.

doi: 10.1021/jp002884e
[27]
Kim J, Choi C H, Yeom S J, Eom N, Kang K K, Lee C S. Langmuir, 2017, 33: 7503.

doi: 10.1021/acs.langmuir.7b01252
[28]
Zhang F, Wang L, Fang W, Liu Y, Shi P, Liang P, Gao Z, Bao Y. Cryst. Growth Des., 2020, 20: 3650.

doi: 10.1021/acs.cgd.9b01399
[29]
Gutmann V. Coord. Chem. Rev., 1976, 18: 225.

doi: 10.1016/S0010-8545(00)82045-7
[30]
Taft R W, Kamlet M J. J. Am. Chem. Soc., 1976, 98: 2886.

doi: 10.1021/ja00426a036
[31]
Kamlet M J, Taft R W. J. Am. Chem. Soc., 1976, 98: 377.

doi: 10.1021/ja00418a009
[32]
Aratsu K, Shimizu N, Takagi H, Haruki R, Adachi S-i, Yagai S. Chem. Lett., 2020, 49: 178.

doi: 10.1246/cl.190789
[33]
Li C P, Du M. Chem. Commun., 2011, 47: 5958.

doi: 10.1039/c1cc10935a
[34]
Davies R P, Less R J, Lickiss P D, White A J. Dalton Trans., 2007: 2528.
[35]
Lehn J M. Angew. Chem. Int. Ed., 2015, 54: 3276.

doi: 10.1002/anie.201409399
[36]
Jeon H-J, Kim C, Song H H. Macromol. Res., 2012, 20: 954.

doi: 10.1007/s13233-012-0142-y
[37]
Nandakumar A, Ito Y, Ueda M. J. Am. Chem. Soc., 2020, 142: 20994.

doi: 10.1021/jacs.0c03425
[38]
Li B, Li W, Li H L, Wu L X. Acc. Chem. Res., 2017, 50: 1391.

doi: 10.1021/acs.accounts.7b00055
[39]
Yang Y, Yue L, Li H, Maher E, Li Y, Wang Y, Wu L, Yam V W-W. Small, 2012, 8: 3105.

doi: 10.1002/smll.201200768 pmid: 22777901
[40]
Yang Y, Zhang B, Wang Y Z, Yue L, Li W, Wu L X. J. Am. Chem. Soc., 2013, 135: 14500.

doi: 10.1021/ja4057882 pmid: 24041266
[41]
Dehm V, Büchner M, Seibt J, Engel V, Würthner F. Chem. Sci., 2011, 2: 2094.

doi: 10.1039/c1sc00435b
[42]
Morozumi T, Matsuoka R, Nakamura T, Nabeshima T. Chem. Sci., 2021, 12: 7720.

doi: 10.1039/d1sc01529j pmid: 34168824
[43]
Du D, Ren G-B, Qi M-H, Li Z, Xu X-Y. Crystals, 2019, 9: 161.

doi: 10.3390/cryst9030161
[44]
Liu D J K, Zhang G H, Gao B, Li B, Wu L X. Dalton Trans., 2019, 48: 11623.

doi: 10.1039/C9DT01780A
[45]
Kitahama Y, Takazawa K. Bull. Chem. Soc. Jpn., 2008, 81: 1282.

doi: 10.1246/bcsj.81.1282
[46]
Reichardt C. Chem. Rev., 1994, 94: 2319.

doi: 10.1021/cr00032a005
[47]
Stock R I, Schramm A D, Rezende M C, Machado V G. Phys. Chem. Chem. Phys., 2016, 18: 20266.

doi: 10.1039/C6CP03875A
[48]
Brennaman M K, Meyer T J, Papanikolas J M. J. Phy. Chem. A, 2004, 108: 9938.

doi: 10.1021/jp0479670
[49]
Larsen C B, Farrow G A, Smith L D, Appleby M V, Chekulaev D, Weinstein J A, Wenger O S. Inorg. Chem., 2020, 59: 10430.

doi: 10.1021/acs.inorgchem.0c00679
[50]
Veling N, van Hameren R, van Buul A M, Rowan A E, Nolte R J, Elemans J A. Chem. Commun., 2012, 48: 4371.

doi: 10.1039/c2cc31156a
[51]
Ma Z, Gao G, Luo Z, Tang X, Sun T. J. Phy. Chem. C, 2019, 123: 24973.

doi: 10.1021/acs.jpcc.9b08063
[52]
Li C-J, Zeng Q-D, Wang C, Wan L-J, Xu S-L, Wang C-R, Bai C-L. J. Phy. Chem. B, 2002, 107: 747.

doi: 10.1021/jp0267858
[53]
Xu L F, Zhang M M, Zhu X F, Xue C L, Wang H X, Liu M H. ACS Appl. Mater. Interfaces, 2022, 14: 1765.

doi: 10.1021/acsami.1c20969
[54]
Bruehwiler A, Semagina N, Grasemann M, Renken A, Kiwi-Minsker L, Saaler A, Lehmann H, Bonrath W, Roessler F. Ind. Eng. Chem. Res., 2008, 47: 6862.

doi: 10.1021/ie800070w
[55]
Moret S, Dyson P J, Laurenczy G. Dalton Trans., 2013, 42: 4353.

doi: 10.1039/c3dt00081h
[56]
Kubarev A V, Breynaert E, Van Loon J, Layek A, Fleury G, Radhakrishnan S, Martens J, Roeffaers M B J. ACS Catal., 2017, 7: 4248.

doi: 10.1021/acscatal.7b00782 pmid: 28713643
[57]
Chen X F, Zhang G H, Li B, Wu L X. Sci. Adv., 2021, 7: eabf8413.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[5] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[6] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[9] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[10] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[11] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[12] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[13] Dongmei Yao, Weiqi Zhang, Qian Xu, Li Xu, Huaming Li, Huaneng Su. Membrane Electrode Assembly for High Temperature Polymer Electrolyte Membrane Fuel Cell Based on Phosphoric Acid-Doped Polybenzimidazole [J]. Progress in Chemistry, 2019, 31(2/3): 455-463.
[14] Yuekun Ye, Bin Chi, Shijie Jiang, Shijun Liao. Enhancing the Durability of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2019, 31(12): 1637-1652.
[15] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.