中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (6): 713-726 DOI: 10.7536/PC191016 Previous Articles   Next Articles

• Review •

Preparation of the Ultralow Density Aerogel and Its Application

Jian Li1, Enshuang Zhang1, Yuanyuan Liu1, Hongyan Huang1, Yuefeng Su2, Wenjing Li1,**()   

  1. 1. Aerospace Institute of Advanced Materials and Processing Technology, Beijing 100074, China
    2. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received: Revised: Online: Published:
  • Contact: Wenjing Li
  • Supported by:
    the National Natural Science Foundation of China(21875022)
Richhtml ( 102 ) PDF ( 2105 ) Cited
Export

EndNote

Ris

BibTeX

Ultralow density aerogel is a kind of porous solid material with super lightweight property which has a higher porosity and more diversified surface properties than common aerogel. The unique physical and chemical characteristics make ultralow density aerogel a new nano-porous material to be applied in many new research fields. Recently, it is a research focus of the aerogel field to preserve the highly developed three dimensional pore structure in the fabrication process of the ultralow density aerogel, and make its unique characteristics to be functioned in practical applications. In this review, according to the main types of the ultralow density aerogel, the up to date research progress of its preparation technologies is introduced. Moreover, the application modes and functional characteristics of the ultralow density aerogel in the fields of space exploration, fire and heat resistantance, energy storage, adsorption, catalysis and sensing are discussed. By discussing the existing problems of the current research, perspectives of the ultralow density aerogel, such as breaking through the ambient drying method, carrying out the fabrication of composite aerogel or ultralow density aerogel with controlled structure, systematic studying the influence of the super lightweight property on specific functions are also presented.

Contents

1 Introduction
2 Ultralow density inorganic aerogel

2.1 Inorganic oxide aerogel

2.2 Inorganic and non-oxide aerogel

3 Ultralow density organic aerogel

3.1 Nanocellulose aerogel

3.2 Organic polymer aerogel

4 Ultralow density carbon aerogel

4.1 Carbon nanofiber aerogel

4.2 Carbon nanotube aerogel

4.3 Graphene aerogel

5 Applications of ultralow density aerogel

5.1 Capture of space particles

5.2 Fire and heat resistant material

5.3 Host for electrode material

5.4 Adsorbing material

5.5 Catalyst material

5.6 Sensing material

6 Conclusion and outlook
Fig. 1 Schematic illustration of the fabrication of CNFAs[7]. Copyright 2018, American Association for the Advancement of Science
Fig. 2 TEM images of the (a) Au/Ag, (b) Pd/Ag, (c) Pt/Ag aerogels and (d) magnified TEM image of the Au/Ag aerogel[32]. Copyright 2013, American Chemical Society
Fig. 3 Structure-property relationships of PI aerogels with different cross-linkers[45]. Copyright 2017, Wiley
Fig. 4 (a) The schematic illustration of the synthesis process of the cellular GA;(b) whole view SEM of the GA;(c) and(d)the closely linked pores with polyhedral morphology;(e) ultrathin and wrinkled aerogel wall[74]. Copyright 2016, Springer Nature
Fig. 5 (a) The ultralow density SiO2 aerogel heat shield;(b) The ultralow density and transparent PI aerogel panel;(c) The cold protective jacket based on the low density PI aerogel
Fig. 6 TEM image of CoO x /NG aerogel[93]. Copyright 2017, American Chemical Society
[1]
Pierre A C , Pajonk G M. Chem. Rev., 2002, 102: 4243.https://www.ncbi.nlm.nih.gov/pubmed/12428989

doi: 10.1021/cr0101306 pmid: 12428989
[2]
孔勇 ( Kong Y ), 沈晓冬(Shen X D), 崔升(Cui S) 中国材料进展(Materials China), 2016, 35(8): 569.
[3]
Hrubesh L W .J. Non-Cryst Solids, 1998, 225: 335.
[4]
Kistler S S . Nature, 1931, 127: 741.
[5]
Kistler S S .J. Phys. Chem., 1932, 36(1): 52.https://pubs.acs.org/doi/abs/10.1021/j150331a003

doi: 10.1021/j150331a003
[6]
Liu Z , Xu K , She P , Yin S , Zhu X , Sun H . Chem. Sci., 2016, 7: 1926.https://www.ncbi.nlm.nih.gov/pubmed/29899917

pmid: 29899917
[7]
Si Y , Wang X , Dou L , Yu J , Ding B . Sci. Adv., 2018, 4: 8925.
[8]
Gordon M P , Zaia E W , Zhou P , Russ B , Coates N E , Sahu A , Urban J J . J. Appl. Polym. Sci., 2017, 134: 44070.
[9]
Si Y , Yu J , Tang X , Ge J , Ding B. . Nat. Commun., 2014, 5: 5802.https://www.ncbi.nlm.nih.gov/pubmed/25512095

pmid: 25512095
[10]
Sun H , Xu Z , Gao C. . Adv. Mater.., 2013, 25: 2554.https://www.ncbi.nlm.nih.gov/pubmed/23418099

doi: 10.1002/adma.201204576 pmid: 23418099
[11]
Kucheyev S O , Stadermann M , Shin S J , Satcher H , Gammon S A , Letts S A , Buuren T , Hamza A V. Adv. Mater., 2012, 24: 776.https://www.ncbi.nlm.nih.gov/pubmed/22228389

pmid: 22228389
[12]
Schubert U , Hüsing N. Angew. Chem. Int. Ed., 1998, 37: 22.http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773
[13]
Ziegler C , Wolf A , Liu W , Herrmann A K , Gaponik N , Eychmüller A. Angew. Chem. Int. Ed., 2017, 56: 13200.
[14]
Kocon L , Despetis F , Phalippou J . J. Non-Cryst Solids, 1998, 225: 96.
[15]
Hrubesh L W , Tillotson T M .J. Non-Cryst. Solids, 1992, 145: 45.
[16]
Wang J , Li Q , Shen J , Zhou B , Chen L Y , Jiang W Y . Atomic Energy Science and Technology, 1996, 1: 41.
王珏, 黎青,沈军, 周斌, 陈玲燕, 蒋伟阳 . 原子能科学技术, 1996, 1: 41.
[17]
Xu C , Shen J , Zhou B .J. Non-Cryst. Solids, 2009, 335: 492.
[18]
Biener M M , Ye J , Baumann T F , Wang Y M , Shin S J , Biener J , Hamza A V. Adv. Mater., 2014, 26: 4808.https://www.ncbi.nlm.nih.gov/pubmed/24888421

pmid: 24888421
[19]
Yue Q , Li Y , Kong M , Huang J , Zhao X , Liu J , Williford R E .J. Mater. Chem., 2011, 21: 12041.
[20]
Hong S K , Yoon M Y , Hwang H J .J. Am. Ceram. Soc., 2011, 94(10): 3198.
[21]
Rajanna S K , Kumar D , Vinjamur M , Mukhopadhyay M. Ind. Eng. Chem. Res., 2015, 54: 949.https://pubs.acs.org/doi/10.1021/ie503867p

doi: 10.1021/ie503867p
[22]
Mohanan J L , Brock S L .J. Non-Cryst. Solids, 2004, 350: 1.https://linkinghub.elsevier.com/retrieve/pii/S0022309304008592

doi: 10.1016/j.jnoncrysol.2004.05.020
[23]
Arachchige I , Mohanan J , Brock S L. Chem. Mater., 2005, 17: 6644.
[24]
Mohanan J , Arachchige I , Brock S L . Science, 2005, 307: 397.https://www.ncbi.nlm.nih.gov/pubmed/15662006

pmid: 15662006
[25]
Gaponik N , Wolf A , Marx R , Lesnyak V , Schilling K , Eychmüller A. . Adv. Mater.., 2008, 20: 4257.
[26]
Worsley M A , Shin S J , Merrill M D , Lenhardt J , Nelson A J , Woo L Y , Gash A E , Baumann T F , Orme C A . ACS Nano, 2015, 9(5): 4698.https://www.ncbi.nlm.nih.gov/pubmed/25858296

pmid: 25858296
[27]
Bag S , Arachchige I U , Kanatzidis M G .J. Mater. Chem., 2008, 18: 3628.
[28]
Bag S , Trikalitis P N , Chupas P J , Armatas G S , Kanatzidis M G . Science, 2007, 317: 490.https://www.ncbi.nlm.nih.gov/pubmed/17656718

doi: 10.1126/science.1142535 pmid: 17656718
[29]
Zhang J , Li C M. Chem. Soc. Rev., 2012, 41: 7016.https://www.ncbi.nlm.nih.gov/pubmed/22975622

pmid: 22975622
[30]
Yan P , Brown E , Su Q , Li J , Wang J , Xu C , Zhou C , Lin D . Small, 2017, 13: 1701756.
[31]
Tang Y , Gong S , Chen Y , Yap L W , Cheng W . ACS Nano, 2014, 8(6): 5707.https://www.ncbi.nlm.nih.gov/pubmed/24873318

pmid: 24873318
[32]
Ranmohotti K G S , Gao X , Arachchige I U . Chem. Mater., 2013, 25: 3528.
[33]
Nahar L , Farghaly A A , EstevesR J A, Arachchige I U. Chem. Mater., 2017, 29: 7704.
[34]
Herrmann A K , Formanek P , Borchardt L , Klose M , Giebeler L , Eckert J , Kaskel, S, Gaponik N, Eychmüller A. Chem. Mater., 2014, 26: 1074.https://pubs.acs.org/doi/10.1021/cm4033258

doi: 10.1021/cm4033258
[35]
Pekala R W .J. Mater. Sci., 1989, 24: 3221.
[36]
陈颖( Chen Y ), 邵高峰(Shao G F), 吴晓栋(Wu X D), 沈晓冬(Shen X D), 崔升(Cui S) 材料导报(Materials Reports), 2016, 30: 55.
[37]
France K J D , Hoare T , Cranston E D . Chem. Mater., 2017, 29: 4609.
[38]
Cervin N T , Aulin C , Larsson P T , Wagberg L .Cellul., 2012, 19: 401.
[39]
Mulyadi A , Zhang Z , Deng Y. ACS Appl .Mater Interfaces, 2016, 8: 2732.
[40]
Liu J , Cheng F , Gr nman H , Spoljaric S , Seppala J , Eriksson J E , Willfr S , Xu C . Carbohydr.Polym., 2016, 148: 259.
[41]
Zhang F , Ren H , Tong G , Deng Y .Cellul., 2016, 23: 3665.
[42]
Feng J , Wang X , Jiang Y , Du D , Feng J. ACS Appl . Mater Interfaces, 2016, 8: 12992.https://pubs.acs.org/doi/10.1021/acsami.6b02183

doi: 10.1021/acsami.6b02183
[43]
Meador M A B , Alem n C R , Hanson K , Ramirez N , Vivod S L . ACS Appl. Mater. Interfaces, 2015, 7: 1240.https://www.ncbi.nlm.nih.gov/pubmed/25564878

doi: 10.1021/am507268c pmid: 25564878
[44]
Guo H , Meador M A B, McCorkle L, Quade D J, Guo J, Hamilton B, Cakmak M, Sprowl G. ACS Appl. Mater. Interfaces, 2011, 3: 546.https://www.ncbi.nlm.nih.gov/pubmed/21294517

pmid: 21294517
[45]
Wu Y , Zhang W , Yang R. Macromol. Mater. Eng., 2018, 303: 1700403.
[46]
Qian Z , Wang Z , Chen Y , Tong S , Ge M , Zhao N , Xu J . J. Mater. Chem. A, 2018, 6: 828.
[47]
De Vos R , Biesmans, G. L .J. G. UP 5484818, 1994.
[48]
Biesmans, G, Randall, D, Francais, E, Perrut M. J. Non-Cryst. Solids, 1998, 225: 36.
[49]
Leventis N , Sotiriou-Leventis C , Chandrasekaran N , Mulik S , Larimore Z J , Lu H , Churu G , Mang J T. Chem. Mater., 2010, 22: 6692.
[50]
Du R , Zheng Z , Mao N , Zhang N , Hu W , Zhang J . Adv. Sci., 2015, 2: 1400006.
[51]
Ma C B , Du B , Wang E. Adv. Funct. Mater., 2017, 27: 1604423.
[52]
Song X , Yang S , He L , Yan S , Liao F . RSC Adv., 2014, 4: 49000.
[53]
Moreno-Castilla C , Maldonado-H dar F J. Carbon, 2005, 43: 455.
[54]
Meng Y , Young T M , Liu P , Contescu C I , Huang B , Wang S .Cellul., 2015, 22: 435.
[55]
Zhang J , Li B , Li L , Wang A . J. Mater. Chem. A, 2016, 4: 2069.
[56]
Huang S , Shi J. Ind. Eng. Chem. Res., 2014, 53: 4888.https://pubs.acs.org/doi/10.1021/ie5003558

doi: 10.1021/ie5003558
[57]
Bi H , Yin Z , Cao X , Xie X , Tan C , Huang X , Chen B , Chen F , Yang Q , Bu X , Lu X , Sun L , Zhang H. . Adv. Mater.., 2013, 25: 5916.http://doi.wiley.com/10.1002/adma.201302435

doi: 10.1002/adma.201302435
[58]
Liang H W , Guan Q F , Chen L F , Zhu Z , Zhang W J , Yu S H. Angew. Chem. Int. Ed., 2012, 51: 5101.http://doi.wiley.com/10.1002/anie.201200710

doi: 10.1002/anie.201200710
[59]
Iijima S . Nature, 1991, 354: 56.
[60]
Bryning M B , Milkie D E , Islam M F , Hough L A , Kikkawa J M , Yodh A G. Adv. Mater., 2007, 19: 661.
[61]
Hough L A , Islam M F , Hammouda B , Yodh A G , Heiney P A. Nano Lett., 2006, 6: 313.https://www.ncbi.nlm.nih.gov/pubmed/16464056

doi: 10.1021/nl051871f pmid: 16464056
[62]
Gui X , Wei J , Wang K , Cao A , Zhu H , Jia Y , Shu Q , Wu D. . Adv. Mater.., 2010, 22: 617.https://www.ncbi.nlm.nih.gov/pubmed/20217760

doi: 10.1002/adma.200902986 pmid: 20217760
[63]
Andrews R , Jacques D , Rao A M , Derbyshire F , Qian D , Fan X , Dickey E C , Chen J. Chem. Phys. Lett., 1999, 303: 467.
[64]
Mecklenburg M , Schuchardt A , Mishra Y K , Kaps S , Adelung R , Lotnyk A , Kienle L , Schulte K. . Adv. Mater.., 2012, 24: 3486.https://www.ncbi.nlm.nih.gov/pubmed/22688858

doi: 10.1002/adma.201200491 pmid: 22688858
[65]
Mikhalchan A , Fan Z , Tran T Q , Liu P , Tan V B C, Tay T E, Duong H MCarbon, 2016, 102: 409.
[66]
Khoshnevis H , Mint S M , Yedinak E , Tran T Q , Zadhoush A , Youssefi M , Pasquali M , Duong H M. Chem. Phys. Lett., 2018, 693: 146.https://linkinghub.elsevier.com/retrieve/pii/S0009261418300010

doi: 10.1016/j.cplett.2018.01.001
[67]
Luo S , Wang K , Wang J P , Jiang K L , Li Q Q , Fan S S. Adv Mater., 2012, 24: 2294.https://www.ncbi.nlm.nih.gov/pubmed/22450989

pmid: 22450989
[68]
Luo S , Luo Y , Wu H , Li M , Yan L , Jiang K , Liu L , Li Q , Fan S , Wang J. . Adv. Mater.., 2017, 29: 1603549.
[69]
Chen Z , Ren W , Gao L , Liu B , Pei S , Cheng H M. Nat. Mater., 2011, 10: 424.https://doi.org/10.1038/nmat3001

doi: 10.1038/nmat3001
[70]
Worsley M , Pauzauskie P J , Olson T Y , Biener J , Satcher J H , Baumann T F .J. Am. Chem. Soc., 2010, 132: 14067.https://www.ncbi.nlm.nih.gov/pubmed/20860374

doi: 10.1021/ja1072299 pmid: 20860374
[71]
Hu H , Zhao Z , Wan W , Gogotsi Y , Qiu J. . Adv. Mater.., 2013, 25: 2219.https://www.ncbi.nlm.nih.gov/pubmed/23418081

pmid: 23418081
[72]
Song X , Lin L , Rong M , Wang Y , Xie Z , Chen X . Carbon, 2014, 80: 174.
[73]
Ye S , Liu Y , Feng J . ACS Appl. Mater. Interfaces, 2017, 9: 22456.https://www.ncbi.nlm.nih.gov/pubmed/28618215

doi: 10.1021/acsami.7b04536 pmid: 28618215
[74]
Zhang B , Zhang J , Sang X , Liu C , Luo T , Peng L , Han B , Tan X , Ma X , Wang D , Zhao N . Sci. Rep., 2016, 6: 25830.https://www.ncbi.nlm.nih.gov/pubmed/27174450

doi: 10.1038/srep25830 pmid: 27174450
[75]
Zhu C , Han Y J , Duoss E B , Golobic A M , Kuntz J D , Spadaccini C M , Worsley M A. Nat. Commun., 2015, 6: 6962.https://www.ncbi.nlm.nih.gov/pubmed/25902277

pmid: 25902277
[76]
Yang M , Zhao N , Cui Y , Gao W , Zhao Q , Gao C , Bai H , Xie T . ACS Nano, 2017, 11: 6817.https://www.ncbi.nlm.nih.gov/pubmed/28636356

pmid: 28636356
[77]
Burchell M J , Fairey S A J, Foster N J, Cole M J. Planet. Space Sci., 2009, 57: 58.
[78]
Tsou. J . Non-Cryst. Solids, 1995, 186: 415.
[79]
Martin A A , Lin T , Toth M , Westphal A J , Vicenzi E P , Beeman J , Silver E H. Meteorit. Planet. Sci., 2016, 51: 1223.
[80]
Tabata M , Kawai H , Yano H , Imai E , Hashimoto H , Yokobori S , Yamagishi A .J. Sol-Gel Sci. Technol., 2016, 77: 325.
[81]
Wu Z Y , Li C , Liang H W , Chen J F , Yu S H. Angew. Chem. Int. Ed., 2013, 52: 2925.
[82]
Berthon-Fabry S , Hildenbrand C , Ilbizian P. Eur. Polym. J., 2016, 78: 25.
[83]
张恩爽 ( Zhang E S ), 吕通(Lv T), 刘韬(Liu T),黄红岩(Huang H Y), 刘圆圆(Liu Y Y), 郭慧(Guo H),李文静(Li W J), 赵英民(Zhao Y M), 杨洁颖(Yang J Y)高等学校化学学报(Chemical Journal of Chinese Universities), 2019, 40: 567.
[84]
刘韬 ( Liu T ), 李文静(Li W J), 张恩爽(Zhang E S),钟锦洋(Zhong J Y), 张凡(Zhang F), 刘圆圆(Liu Y Y), 赵英民(Zhao Y M)高等学校化学学报(Chemical Journal of Chinese Universities), 2019, 40: 403.
[85]
张临超 ( Zhang L C ), 陈春华(Chen C H)化学进展(Progress in Chemistry), 2011, 23: 275.http://manu56.magtech.com.cn/progchem/CN/Y2011/V23/I0203/275
[86]
Zhang S , Liu J , Huang P , Wang H , Cao C , Song W . Sci. Bull., 2017, 62: 841.https://linkinghub.elsevier.com/retrieve/pii/S2095927317302645

doi: 10.1016/j.scib.2017.05.019
[87]
Xiao H , Pender J P , Meece-Rayle M A, Souza, J P D, Klavetter K C, Ha H, Lin J, Heller A, Ellison C J, Mullins C B. ACS Appl. Mater. Interfaces, 2017, 9: 22641.https://www.ncbi.nlm.nih.gov/pubmed/28633526

doi: 10.1021/acsami.7b07283 pmid: 28633526
[88]
Chen W , Li S , Chen C , Yan L. . Adv. Mater.., 2011, 23: 5679.https://www.ncbi.nlm.nih.gov/pubmed/22052602

pmid: 22052602
[89]
Li X , Pu X , Han S , Liu M , Du C , Jiang C , Huang X , Liu T , Hu W . Nano Energy, 2016, 30: 193.
[90]
Liu M , Yang Z , Sun H , Lai C , Zhao X , Peng H , Liu T . Nano Res., 2016, 9: 3735.
[91]
Shu D , Feng F , Han H , Ma Z. Chem. Eng. J., 2017, 324: 1.
[92]
Pan M , Shan C , Zhang, X, Zhang Y, Zhu C, Gao G, Pan B. Environ. Sci. Technol., 2018, 52: 739.https://www.ncbi.nlm.nih.gov/pubmed/29244489

pmid: 29244489
[93]
Xia W , Qu C , Liang Z , Zhao B , Dai S , Qiu B , Jiao Y , Zhang Q , Huang X , Guo W , Dang D , Zou R , Xia D , Xu Q , Liu M . Nano Lett., 2017, 17: 2788.https://www.ncbi.nlm.nih.gov/pubmed/28394621

doi: 10.1021/acs.nanolett.6b05004 pmid: 28394621
[94]
Li X , Yang S , Sun J , He P , Xu X , Ding G . Carbon, 2014, 78: 38.https://linkinghub.elsevier.com/retrieve/pii/S0008622314005806

doi: 10.1016/j.carbon.2014.06.034
[95]
Qiu L , Liu D , Wang Y , Cheng C , Zhou K , Ding J , Truong V T , Li D. . Adv. Mater.., 2014, 26: 3333.https://www.ncbi.nlm.nih.gov/pubmed/24634392

doi: 10.1002/adma.201305359 pmid: 24634392
[96]
Xu X , Li H , Zhang Q , Hu H , Zhao Z , Li J , Li J , Qiao Y , Gogotsi Y . ACS Nano, 2015, 9(4): 3969.https://www.ncbi.nlm.nih.gov/pubmed/25792130

doi: 10.1021/nn507426u pmid: 25792130
[97]
Kuang J , Liu L , Gao Y , Zhou D , Chen Z , Han B , Zhang Z . Nanoscale, 2013, 5: 12171.https://www.ncbi.nlm.nih.gov/pubmed/24142261

doi: 10.1039/c3nr03379a pmid: 24142261
[98]
Wu S , Ladani R B , Zhang J , Ghorbani K , Zhang X , Mouritz A P , Kinloch A J , Wang C H. ACS Appl. Mater. Interfaces, 2016, 8: 24853.
[99]
Zhao, S, Zhang G, Gao Y, Deng L, Li J, Sun R, Wong C P. ACS Appl. Mater. Interfaces, 2014, 6: 22823.https://www.ncbi.nlm.nih.gov/pubmed/25423613

doi: 10.1021/am5069936 pmid: 25423613
[100]
Yao Q , Fan B , Xiong Y , Wang C , Wang H , Jin C , Sun Q . Carbohyd. Polym., 2017, 168: 265.https://linkinghub.elsevier.com/retrieve/pii/S0144861717303545

doi: 10.1016/j.carbpol.2017.03.089
[101]
Wang M , Anoshkin I V , Nasibulin A G , Korhonen J T , Seitsonen J , Pere J , Kauppinen E I , Ras R H A, Ikkala O. Adv. Mater., 2013, 25: 2428.https://www.ncbi.nlm.nih.gov/pubmed/23450504

pmid: 23450504
[1] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[2] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[3] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[4] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[5] Yumeng Wang, Rong Yang, Qijiu Deng, Chaojiang Fan, Suzhen Zhang, Yinglin Yan. Application of Bimetallic MOFs and Their Derivatives in Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 460-473.
[6] Geng Gao, Keyu Zhang, Qianwen Wang, Libo Zhang, Dingfang Cui, Yaochun Yao. Metal Oxalate-Based Anode Materials: A New Choice for Energy Storage Materials Applied in Metal Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 434-446.
[7] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[8] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[9] Feiran Wang, Fengjing Jiang. Ion-Conducting Membrane for Vanadium Redox Flow Batteries [J]. Progress in Chemistry, 2021, 33(3): 462-470.
[10] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[11] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[12] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[13] Jianwen Liu, Heyang Jiang, Chihang Sun, Wenbin Luo, Jing Mao, Kehua Dai. P2-Structure Layered Composite Metal Oxide Cathode Materials for Sodium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 803-816.
[14] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[15] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.