中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (6): 1384-1401 DOI: 10.7536/PC210805 Previous Articles   Next Articles

• Review •

Preparation and Application of Ultralight Nanofiber Aerogels

Fengqi Liu, Yonggang Jiang(), Fei Peng, Junzong Feng, Liangjun Li, Jian Feng()   

  1. National University of Defense Technology, Changsha 410073, China
  • Received: Revised: Online: Published:
  • Contact: Yonggang Jiang, Jian Feng
  • Supported by:
    Natural Science Foundation of Hunan Province(2018JJ2469)
Richhtml ( 49 ) PDF ( 1066 ) Cited
Export

EndNote

Ris

BibTeX

Ultralight nanofiber aerogel is a new type of aerogel material with one-dimensional nanofibers as the basic building unit. Compared with traditional aerogels, it not only has a higher porosity and lower density but also with more excellent mechanical properties and physical and chemical properties thus the advanced preparation technology of this material and its innovative applications in emerging fields have become a research hotspot in the field of ultralight aerogels. Based on the research status, this paper systematically reviewed the preparation methods and structural characteristics of ultralight fiber aerogels and their important applications in the fields of thermal insulation, adsorption, electrode, sensing and biomedicine according to different materials systems. Moreover, some challenges faced by the material at this stage are put forward, and its future development direction has prospected.

Contents

1 Introduction

2 Preparation of ultralight nanofiber aerogels

2.1 Ultralight inorganic nanofiber aerogels

2.2 Ultralight carbon nanofiber aerogels

2.3 Ultralight organic nanofiber aerogels

3 Application of ultralight nanofiber aerogels

3.1 Thermal insulation materials

3.2 Adsorption materials

3.3 Electrode materials

3.4 Sensing materials

3.5 Biomedicine materials

4 Conclusion and outlook

Fig. 1 Schematic diagram of the preparation process of ultralight SiO2/PAN nanofiber aerogel[28]. Copyright 2014, Wiley
Fig. 2 Schematic diagram of the process of preparing SiC nanofiber aerogel by CVD method[33]. Copyright 2018, American Chemical Society
Fig. 3 Schematic diagram of the in-situ synthesis of ultralight SiC nanofiber aerogel using bread as the template[38]. Copyright 2021, Elsevier
Fig. 4 (a) The SEM image of the fibrous ceramics sintered at 1500 ℃; (b) the typical fiber node in the fiber block sintered at 1500 ℃[42]. Copyright 2016, Elsevier
Fig. 5 Schematic diagram of the preparation process of ultralight ZrO2-Al3O3 nanofiber aerogels[46]. Copyright 2020, American Chemical Society
Fig. 6 Schematic diagram of GCA aerogel preparation process[49]. Copyright 2016, Nature
Fig. 7 (a) The change curve of the compressive stress, plastic deformation and energy loss coefficient of carbon nanofiber aerogel with the compression cycles (ε=80%); (b) the change curve of loss modulus and storage modulus with the compression cycles at different temperatures (ε=80%)[57]. Copyright 2019, Wiley
Fig. 8 (a) TEM image of cellulose aerogel before modification; (b) SEM image of cellulose aerogel after phthalimide modification[61]. Copyright 2020, Elsevier
Fig. 9 (a) The photograph of PI nanofiber aerogels; (b, c) the SEM images of PI nanofiber aerogels[68]. Copyright 2017, American Chemical Society
Fig. 10 Schematic diagram of the process of preparing PCL nanofiber aerogel by TISA method[71]. Copyright 2015, Wiley
Fig. 11 (a) Thermal conductivity and thermal diffusivity curves of PI nanofiber aerogel under different compressive strains; (b~d) infrared camera pictures of the heat insulation ability of PI nanofiber aerogel in different environments[68]. Copyright 2017, American Chemical Society
Fig. 12 Compression-rebound process picture of ZrO2-Al2O3 nanonfiber aerogels in the flame of n-butane blowtorch[46]. Copyright 2020, American Chemical Society
Fig. 13 (a) Microscopic images of the oil film emulsion before and after separation; (b) the change curve of the separation flux and saturated extent of separation for aerogel with the increase of SiO2 NPs concentration[29]. Copyright 2018, Wiley
Fig. 14 Photographs of removal of oil from the water surface by MHPCA and an external magnetic field[84]. Copyright 2018, Springer
Fig. 15 (a) Specific capacitance at different current densities; (b) cycling test of 2000 cycles at 100 mV/s[49] Copyright 2016, Nature
Fig. 16 (a, b) SEM image and HRTEM image of hybrid fiber aerogel after loading Co3O4; (c, d) specific capacitances and Nyquist plots of hybrid carbon aerogels with different Co3O4 loadings[102]. Copyright 2020, Elsevier
Fig. 17 (a) ΔR/R0 of the CA/PDMS conductor during the stretching process; (b) fatigue resistance of the CA/PDMS composite conductor[60]. Copyright 2018, Wiley
Fig. 18 (a) Photography and (b) SEM photo of fibrous aerogel after growing Jurkat cells (MTT staining); (c-e) 3D confocal microscopy of live (green) and dead (red) Jurkat cells in aerogels after cells are incubated for 13, 20 and 30 d[86]. Copyright 2015, Wiley
Table 1 Fabrication parameters, properties and applications of ultralight nanofiber aerogels
Fiber materials Diameter
(nm)
Binding agents Methods Density
(mg·
cm-3)
Porosity
(%)
SBET
(m2·g-1)
Thermal
conductivity
(W·m-1·K-1)
Applications ref
SiO2/PAN N/A Benzoxazine Electrospinning/Freeze drying 0.12~9.6 99.36~99.992 N/A 0.026 Thermal insulation/Sound absorption/Oil-water
separation
28
SiO2 ~206 AlBSi Electrospinning/Freeze drying 0.15~5 99.993 N/A 0.025~0.032 Thermal insulation 29
SiO2 162 SiO2 sol Freeze drying 0.25~12 99.989 N/A 0.025 Thermal insulation 30
SiC 20~50 N/A CVD 5 99.8 78 0.026
(RT in N2)
Oil absorption 33
SiC/SiOx 20~50 SiOx shell CVD 23 99.3 142 N/A Air filters/
Oil absorption
34
SiC/SiO2 80~100 SiO2 layer Carbon template/
CVD
23~37 99 N/A 0.03
(RT in He)
0.23
(900 ℃ in He)
Thermal insulating 35
SiC/Graphene 20~30 Graphene CVI N/A N/A N/A N/A Electromagnetic wave absorption 36
SiC 40~150 N/A Template method/In-situ synthesis 50~60 N/A N/A 0.038
(200 ℃ in air)
0.067
(600 ℃ in air)
Thermal insulation 38
Al2O3 26~30 N/A Hydrothermal 22~31 N/A 52~161 0.041~0.069 N/A 39
Al2O3 0.8~10 N/A Hydrothermal 1.2~19 99.8 385 N/A Catalysis
Thermal insulation/
Optical devices
40
Mullite 10~15
(μm)
Silicon resin Molding 425~441 81.6~82.3 N/A 0.083~0.089 Thermal insulation 42
Fiber materials Diameter
(nm)
Binding agents Methods Density
(mg·
cm-3)
Porosity
(%)
SBET
(m2·g-1)
Thermal
conductivity
(W·m-1·K-1)
Applications ref
Mullite ~450 Agar/SiO2 sol Electrospinning/Freeze drying 34.64~
48.89
98.9 N/A 0.032~0.043
0.073
(1000 ℃ in air)
Thermal insulation 43
Al2O3-
ZrO2
280~740 Al(H2PO4)3 Electrospinning/Freeze drying N/A >98 N/A 0.032 Thermal insulation 46
C ~200 Graphene Electrospinning/Freeze drying 4.8 N/A N/A N/A Supercapacitors 49
C 20 N/A HTC 3.3 >99 >300 N/A Oil absorption. 56
C N/A N/A Freeze drying 3~18.3 >99 485~
715
N/A Mechanical cushioning/Pressure
Sensors/Energy damping
57
C 50~80 N/A CVD N/A N/A 185 N/A Na-ion storage 59
C 20~200 N/A Templates/Solvothermal 5.8 N/A 967~
1514
N/A Pressure sensors 60
Cellulose 20~50 N/A Freeze drying 10.5~
16.4
98.9~
99.4
272~335 N/A CO2 adsorption 61
Cellulose 22~54 N/A Freeze drying 4 99.68 300 N/A Wastewater
treatment
63
Cellulose N/A N/A Ambient pressure
drying
55 96.5 1.5~5 0.0417 Oil/water
separation
64
Cellulose <100 PAANa Freeze drying 1.5~15.2 99.88 N/A N/A Water absorption 65
PI 328~774 Self-gluing Electrospinning/Freeze drying 7.6~10.1 99.28~
99.46
N/A 0.026 Thermal insulation 68
PI 364±75 DCM vapour, Electrospinning/Freeze drying 4.81 99.66 N/A N/A Air filters 69
PI 235 Self-gluing Electrospinning/Freeze drying 4.6~13.1 99.0~
99.6
12.4 N/A Air filters 70
PCL ~600 Self-
agglomeration
Electrospinning/
Freeze drying
41~63 96.4 N/A N/A Bone tissue
engineering
71
PCL/Gelatin 310~974 Self-
agglomeration
Electrospinning/Freeze drying/TISA N/A N/A N/A N/A Cartilage tissue engineering 72
PCL/CA ~904 Self-
agglomeration
Electrospinning/Freeze drying/TISA 66 95 N/A N/A Drug delivery/Tissue
engineering
73
PVA/Pul 208 Thermal cross-linking Electrospinning/Freeze drying 23.2~
88.5
93.91~
98.40
N/A N/A Air filters 82
PAN/PI 85 PVA Electrospinning/Freeze drying 43.4 97.9 25.0 N/A Dye adsorbent/Catalyst
support
85
PAN/Poly (MA-co-
MMA-co-MABP)
400~500 Photo cross-linking Electrospinning/Freeze drying 2.7 99.6 2.66 N/A Cell culturing 86
1.1±0.2
(μm)
Photo cross-linking Electrospinning/Freeze drying/CVD 3.5 99.5 1 N/A Drug delivery 87
BBB 700~800 PVA Electrospinning/Freeze drying/ 2.9~16.4 >99 N/A 0.028~0.038 Thermal insulation/Oil
absorption
88
[1]
Fricke J, Emmerling A. J. Sol Gel Sci. Technol., 1998, 13(1/3): 299.

doi: 10.1023/A:1008663908431
[2]
Novak Z, Kotnik P, Knez Ž. J. Non Cryst. Solids, 2004, 350: 308.

doi: 10.1016/j.jnoncrysol.2004.06.045
[3]
Kistler S S. Nature, 1931, 127(3211): 741.
[4]
Zhang X H, Zhao H L, He F, Li X, Qiu W H, Wu W J, Qu X H. J. Univ. Sci. Technol. Beijing, 2006, 28(2): 157.
( 张秀华, 赵海雷, 何方, 李雪, 仇卫华, 吴卫江, 曲选辉. 北京科技大学学报, 2006, 28(2): 157.)
[5]
Hu Z J, Zhou J J, Chen X H, Sun C C. Bull. Chin. Ceram. Soc., 2009, 28(5): 1002.
( 胡子君, 周洁洁, 陈晓红, 孙陈诚. 硅酸盐通报, 2009, 28(5): 1002.)
[6]
Zhang H X, He X D, Li Y, Hong C Q. J. Aeronaut. Mater., 2006, 26(3): 337.
( 张贺新, 赫晓东, 李垚, 洪长青. 航空材料学报, 2006, 26(3): 337.)
[7]
Xiao Y Y, Feng J, Jiang Y G, Feng J Z. Mater. Rev., 2014(13): 20.
( 肖芸芸, 冯坚, 姜勇刚, 冯军宗. 材料导报, 2014(13): 20.).
[8]
Xiao Y Y, Feng J Z, Jiang Y G, Feng J. Mater. Rev., 2018, 32(S1): 449.
( 肖芸芸, 冯军宗, 姜勇刚, 冯坚. 材料导报, 2018, 32(S1): 449.)
[9]
Song J W, Chen C J, Yang Z. ACS Nano, 2018, 12: 140.

doi: 10.1021/acsnano.7b04246
[10]
Katti A, Shimpi N, Roy S. Chem. Mater., 2006, 18: 285.

doi: 10.1021/cm0513841
[11]
Nguyen B N, Meador M A B, Tousley M E. ACS Appl. Mater. Interfaces, 2009, 1: 621.

doi: 10.1021/am8001617
[12]
Rao A V, Bhagat S D, Hirashima H J. Colloid Interface Sci., 2006, 300: 279.

doi: 10.1016/j.jcis.2006.03.044
[13]
Chen K, Bao Z, Du A J. Sol-Gel Sci. Technol., 2012, 62: 294.

doi: 10.1007/s10971-012-2722-x
[14]
Biedunkiewicz A, Figiel P M, Krawczy K J. Therm. Anal. Calorim., 2013, 113: 253.
[15]
Li C, Shi G Q. Adv. Mater., 2014, 26(24): 3992.

doi: 10.1002/adma.201306104
[16]
Feng J, Feng J Z, Jiang Y G. Aerosp. Mater. Technol., 2012, 42(2): 42.
( 冯坚, 冯军宗, 姜勇刚. 宇航材料工艺, 2012, 42(2): 42.)
[17]
Xue Y W. Master Thesis of Taiyuan University of Technology, 2018.
( 薛云伟. 太原理工大学硕士论文, 2018.).
[18]
Xiao T Q. Doctoral Dissertation of Tongji University, 2007.
( 肖铁群. 同济大学博士论文, 2007.).
[19]
Li W, Prbstle H, Fricke J J. Non-Cryst. Solids, 2003, 325: 1.

doi: 10.1016/S0022-3093(03)00325-9
[20]
Feng J Z. Master Thesis of National University of Defense Technology, 2007.
( 冯军宗. 国防科技大学硕士论文, 2007.).
[21]
Xu C, Zhou B, Xie D B. Materials Reports, 2006, 20(6): 105.
( 徐超, 周斌, 解德滨. 材料导报, 2006, 20(6): 105.)
[22]
Sun H Y, Xu Z, Gao C. Adv. Mater., 2013, 25(18): 2554.

doi: 10.1002/adma.201204576
[23]
Xu X, Zhang Q Q, Hao M L. Science, 2019, 363: 723.

doi: 10.1126/science.aav7304
[24]
Zhang Q, Xu X, Lin D. Adv. Mater., 2016, 28: 2229.

doi: 10.1002/adma.201505409
[25]
Kim Y J, Ahn C H, Lee M B, Choi M S. Mater. Chem. Phys., 2011, 127(1/2): 137.

doi: 10.1016/j.matchemphys.2011.01.046
[26]
Jiang Y, Chen Y, Liu Y J, Sui G X. Chem. Eng. J., 2018, 337: 522.

doi: 10.1016/j.cej.2017.12.131
[27]
Jan D, Morgiel J, Tatarko P. Scr. Mater., 2009, 61: 253.

doi: 10.1016/j.scriptamat.2009.03.052
[28]
Si Y, Yu J, Tang X. Nat. Commun., 2014, 5: 5802.

doi: 10.1038/ncomms6802
[29]
Si Y, Wang X Q, Dou L Y, Yu J Y, Ding B. Sci. Adv., 2018, 4(4): 1322.
[30]
Wang F, Dou L, Ding B. Angew. Chem. Int. Ed., 2020, 16: 246.

doi: 10.1002/anie.197702461
[31]
Wei G S, Liu Y S, Zhang X X, Yu F, Du X Z. Int. J. Heat Mass Transf., 2011, 54(11/12): 2355.

doi: 10.1016/j.ijheatmasstransfer.2011.02.026
[32]
Shen X D, Chin. J. Inorg. Chem., 2012, 28: 2071.
[33]
Su L, Wang H, Niu M. ACS Nano, 2018, 12: 3103.

doi: 10.1021/acsnano.7b08577
[34]
Ren B, Liu J J, Rong Y D. ACS Nano, 2019, 13: 11603.

doi: 10.1021/acsnano.9b05406 pmid: 31518116
[35]
Li B B, Yuan X S, Gao Y. Mater. Res. Express, 2019, 6: 045030.

doi: 10.1088/2053-1591/aafaef
[36]
Cheng Y H, Tan M Y, Hu P. Appl. Surf. Sci., 2018, 448: 138.

doi: 10.1016/j.apsusc.2018.04.132
[37]
Ferraro C, Garcia T E, Rocha V G. Adv. Funct. Mater., 2016, 26: 1636.

doi: 10.1002/adfm.201504051
[38]
Liang P P, Li H X, Wang G. Mater. Lett., 2021, 284: 129014.

doi: 10.1016/j.matlet.2020.129014
[39]
Zhou L. Master Thesis of Harbin Institute of Technology, 2019.
( 周粮. 哈尔滨工业大学硕士论文, 2019.).
[40]
Hayase G, Nonomura K, Hasegawa G. Chem. Mater., 2015, 27: 3.

doi: 10.1021/cm503993n
[41]
Peng F, Jiang Y G, Feng J. Int. J. Inorg. Mater., 2020, 404.
[42]
Dong X, Sui G, Yun Z. Mater. Des., 2016, 90: 942.

doi: 10.1016/j.matdes.2015.11.043
[43]
Liu R L, Dong X, Xie S T. Chem. Eng. J., 2019, 360: 464.

doi: 10.1016/j.cej.2018.12.018
[44]
Xian L, Zhang Y, Wu Y J. Ceram. Int., 2020, 46: 1869.

doi: 10.1016/j.ceramint.2019.09.163
[45]
Zhang E, Zhang W, Lv T. ACS Appl. Mater. Interfaces, 2021, 13: 20548.

doi: 10.1021/acsami.1c02501
[46]
Zhang X X, Wang F, Dou L Y. ACS Nano, 2020, 14: 15616.

doi: 10.1021/acsnano.0c06423
[47]
Biener J, Stadermann M, Suss M. Energy Environ. Sci., 2011, 4: 656.

doi: 10.1039/c0ee00627k
[48]
ElKhatat A M, Al-Muhtaseb S A. Adv. Mater., 2011, 23(26): 2887.

doi: 10.1002/adma.201100283
[49]
Huang Y, Lai F, Zhang L. Sci. Rep., 2016, 6: 31541.

doi: 10.1038/srep31541
[50]
Lai F L, Huang Y P, Zuo L Z, Gu H H, Miao Y E, Liu T X. J. Mater. Chem. A, 2016, 4(41): 15861.

doi: 10.1039/C6TA04797A
[51]
Xu T, Ding Y C, Wang Z J. Mater. Chem. C., 2017, 5: 10288.

doi: 10.1039/C7TC03456C
[52]
Wu Z Y, Liang H W, Hu B C, Yu S H. Angew. Chem. Int. Ed., 2018, 57(48): 15646.

doi: 10.1002/anie.201802663
[53]
White R J, Brun N, Budarin V L. Chemsuschem., 2014, 7: 670.

doi: 10.1002/cssc.201300961
[54]
Titirici M M, White R J, Brun N. Chem. Soc. Rev., 2014, 44: 250.

doi: 10.1039/C4CS00232F
[55]
Zhao Q, Fellinger T P, Antonietti M, Yuan J Y. J. Mater. Chem. A, 2013, 1(16): 5113.

doi: 10.1039/c3ta10291b
[56]
Liang H W, Guan Q F, Chen L F. Angew. Chem. Int. Ed., 2012, 51: 5101.

doi: 10.1002/anie.201200710
[57]
Yu Z L, Qin B, Yu S H. Adv. Mater., 2019, 21: 4331.
[58]
Meng Y, Yong T M, Liu P. Cellulose, 2015, 22: 435.

doi: 10.1007/s10570-014-0519-5
[59]
Xue Z, Xiong Q, Zou C. Mater. Res. Bull., 2021, 133: 111049.

doi: 10.1016/j.materresbull.2020.111049
[60]
Yu Z L, Qin B, Yu S H. Adv. Mater., 2019, 19: 2151.

doi: 10.1002/adma.200700237
[61]
Sepahvand S, Jonoobi M, Ashori A. Carbohydr. Polym., 2020, 230: 115571.

doi: 10.1016/j.carbpol.2019.115571
[62]
Qin H, Zhang Y, Jiang J. Adv. Funct. Mater., 2021: 2106269.
[63]
Darabitabar F, Yavari V, Hedayati A. Environ. Technol. Innovation, 2020, 18: 100786.

doi: 10.1016/j.eti.2020.100786
[64]
Ebrahimi A, Dahrazma B, Adelifard M. J. Porous Mater., 2020, 27(4): 1219.

doi: 10.1007/s10934-020-00901-4
[65]
Zhang F, Ren H, Tong G. Cellulose, 2016, 23: 1.

doi: 10.1007/s10570-015-0823-8
[66]
Guo H, Meador M A B, Mccorkle L. ACS Appl. Mater. Interfaces, 2011, 3: 546.

doi: 10.1021/am101123h
[67]
Meador M A B, Christlan R A, Hanson K. ACS Appl. Mater. Interface, 2015, 7: 1240.

doi: 10.1021/am507268c pmid: 25564878
[68]
Jiang S H, Uch B, Agarwal S, Greiner A. ACS Appl. Mater. Interfaces, 2017, 9(37): 32308.

doi: 10.1021/acsami.7b11045
[69]
Shen Y, Li D W, Deng B Y R. Soc. Open Sci., 2019, 6: 190596.
[70]
Qian Z C, Wang Z, Chen Y, Tong S R, Ge M F, Zhao N, Xu J. J. Mater. Chem. A, 2018, 6(3): 828.

doi: 10.1039/C7TA09054D
[71]
Xu T, Miszuk J M, Zhao Y, Sun H L, Fong H. Adv. Healthcare Mater., 2015, 4(15): 2238.

doi: 10.1002/adhm.201500345
[72]
Li Y Q, Liu Y Q, Xun X W, Zhang W, Xu Y, Gu D Y. ACS Appl. Mater. Interfaces, 2019, 11(40): 36359.

doi: 10.1021/acsami.9b12206
[73]
Xu T, Liang Z, Ding B. Polymer, 2018, 151: 299.

doi: 10.1016/j.polymer.2018.07.074
[74]
Spearman S S, Irin F, Rivero I V. Polymer, 2015, 56: 476.

doi: 10.1016/j.polymer.2014.11.016
[75]
Sant S, Iyer D, Gaharwar A K. Acta Biomater., 2013, 9: 5963.

doi: 10.1016/j.actbio.2012.11.014
[76]
Chen M C, Sun Y C, Chen Y H. Acta Biomater., 2013, 9(3): 5562.

doi: 10.1016/j.actbio.2012.10.024
[77]
Ghorbani F M, Kaffashi B, Shokrollahi P A. Carbohydr. Polym., 2015, 118: 133.

doi: 10.1016/j.carbpol.2014.10.071
[78]
Ding Y, Yao Q, Li W. Colloids Surf., B., 2015, 136: 93.
[79]
Chen W M, Ma J, Zhu L. Colloids Surf., B., 2016, 142: 165.

doi: 10.1016/S0927-7757(98)00365-3
[80]
Chen W M, Chen S, Morsi Y. ACS Appl. Mater. Interface, 2016, 8: 24415.

doi: 10.1021/acsami.6b06825
[81]
Chen J, Zheng T H, Hua W K. Colloids Surf., A., 2020, 585: 124048.

doi: 10.1016/j.colsurfa.2019.124048
[82]
Deuber F, Mousavi S, Federer L, Hofer M, Adlhart C. ACS Appl. Mater. Interfaces, 2018, 10(10): 9069.

doi: 10.1021/acsami.8b00455
[83]
Deuber F, Mousavi S, Federer L, Adlhart C. Adv. Mater. Interfaces, 2017, 4(12): 1700065.

doi: 10.1002/admi.201700065
[84]
Xu Z Y, Jiang X D, Zhou H, Li J Y. Cellulose, 2018, 25(2): 1217.

doi: 10.1007/s10570-017-1619-9
[85]
Xu T, Zheng F, Chen Z. Chem. Eng. J., 2019, 360: 280.

doi: 10.1016/j.cej.2018.11.233
[86]
Duan G G, Jiang S H, Jerome V. Adv. Funct. Mater., 2015, 25: 2850.

doi: 10.1002/adfm.201500001
[87]
Duan G G, Bagheri A R, Jiang S H. Biomacromolecules, 2017, 18: 3215.

doi: 10.1021/acs.biomac.7b00852
[88]
Zhu J, Ding Y, Agarwal S. Nanoscale, 2017, 9: 18169.

doi: 10.1039/C7NR07159K
[89]
Zhu J, Jiang S, Hou H. Macromol. Mater. Eng., 2018, 303: 1700615.

doi: 10.1002/mame.201700615
[90]
Hu Z, Yan S, Li X. ACS Nano, 2021, 15: 8171.

doi: 10.1021/acsnano.1c00346
[91]
Zhou S, Apostolopoulou-Kalkavoura V, da Costa M V T. Nano-Micro Lett., 2020, 12: 1.
[92]
Huang D M, Guo C N, Zhang M Z, Shi L. Mater. Des., 2017, 129: 82.

doi: 10.1016/j.matdes.2017.05.024
[93]
Ma J, Ye F, Yang C. Mater. Des., 2017, 131: 226.

doi: 10.1016/j.matdes.2017.06.036
[94]
Dou L, Zhang X, Cheng X. ACS Appl. Mater. Interface, 2019, 11: 29056.

doi: 10.1021/acsami.9b10018
[95]
Wang B, Liang W X, Guo Z G, Liu W M. Chem. Soc. Rev., 2015, 44(1): 336.

doi: 10.1039/c4cs00220b pmid: 25311259
[96]
Xu T, Zheng F, Chen Z J, Ding Y C, Liang Z P, Fong H. Chem. Eng. J., 2019, 360:288.
[97]
Xu T, Wang Z, Ding Y. Carbohydr. Polym., 2018, 179: 164.

doi: 10.1016/j.carbpol.2017.09.086
[98]
Chen L F, Feng Y, Liang H W, Wu Z Y, Yu S H. Adv. Energy Mater., 2017, 7(23): 1700826.

doi: 10.1002/aenm.201700826
[99]
Nardecchia S, Carriazo D, Ferrrer M L. Chem. Soc. Rev., 2013, 42: 794.

doi: 10.1039/c2cs35353a pmid: 23160635
[100]
Chabot V, Higgins D, Yu A. Energy Environ. Sci., 2014, 7: 1564.

doi: 10.1039/c3ee43385d
[101]
Wang G P, Zhang L, Zhang J J. Chem. Soc. Rev., 2012, 41(2): 797.

doi: 10.1039/C1CS15060J
[102]
Zhang M, Yang D, Zhang S. Carbon, 2020, 158: 873.

doi: 10.1016/j.carbon.2019.11.071
[103]
He W, Li G, Zhang S. ACS Nano, 2015, 9: 4244.

doi: 10.1021/acsnano.5b00626
[104]
Hsu S H, Hung K C, Chen C W. J. Mater. Chem. B, 2016, 4(47): 7493.

doi: 10.1039/C6TB02176J
[105]
Badylak S F, Freytes D O, Gilbert T W. Acta Biomater., 2009, 5(1): 1.

doi: 10.1016/j.actbio.2008.09.013
[106]
Yao Q, Cosme J G L, Xu T. Acta Biomater., 2017, 115: 115.
[1] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[2] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[3] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[4] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[5] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[6] Botian Li, Xing Wen, Liming Tang. Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials [J]. Progress in Chemistry, 2018, 30(4): 338-348.
[7] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[8] Meng Depeng, Wu Juntao. Adsorption and Separation Materials Produced by Electrospinning [J]. Progress in Chemistry, 2016, 28(5): 657-664.
[9] Gao Yan, Zhou Yongfeng, Yang Qinglin, Guo Lin, Jiang Lei. Ultralight Materials [J]. Progress in Chemistry, 2015, 27(12): 1714-1721.
[10] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.
[11] Liu Ruilai, Liu Haiqing, Liu Junshao, Jiang Huihua. Fabrication of Patterned Inorganic Nanofibers by Electrospinning [J]. Progress in Chemistry, 2012, 24(08): 1484-1496.
[12] Gong Guangming, Wu Juntao, Jiang Lei. Novel Polyimide Materials Produced by Electrospinning [J]. Progress in Chemistry, 2011, 23(4): 750-759.
[13] . Electrospun Nanofiber Membranes as Supports for Enzyme Immobilization and Its Application [J]. Progress in Chemistry, 2010, 22(09): 1808-1818.
[14] Ren Tianbin Cao Chunhong Wang Gang Su Jiansheng Yuan Weizhong Ren Jie. Absorbable Guided Tissue Regeneration Membranes [J]. Progress in Chemistry, 2010, 22(01): 179-185.
[15] Gao Yongfeng Yuan Jinying Sui Xiaofeng Zhou Mi Cai Zhinan. Electrospinning of Cellulose and Cellulose Derivatives [J]. Progress in Chemistry, 2009, 21(0708): 1553-1559.