中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (4): 448-462 DOI: 10.7536/PC170830 Previous Articles   

• Review •

Preparation and Industrialization Status of Nanocellulose

Haishun Du, Chao Liu, Miaomiao Zhang, Qingshan Kong, Bin Li*, Mo Xian   

  1. CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period (No. 2015BAD14B06),the National Natural Science Foundation of China (No. 31470609, 31700509), and the Primary Research and Development Plan of Shandong Province (No. 2016CYJS07A02).
PDF ( 3099 ) Cited
Export

EndNote

Ris

BibTeX

Nanocellulose is drawing extensive concern and attention from the academic and industrial circles due to its unique structure and exceptional properties, and it is the research hotspot in the field of new material and cellulose science. Nanocellulose isolated from lignocellulosic biomass can be divided into two main categories: cellulose nanocrystal (CNC) and cellulose nanofibril (CNF). The preparation methods of CNC and CNF are detailedly summarized in this review, with the focus on some new methods developed in recent years, such as the integrated preparation of CNC and CNF via recoverable organic acid hydrolysis, tuneable preparation of lignin-coated CNC and CNF via AVAP method, high efficiency preparation of CNC and CNF via deep eutectic solvents pretreatment combined with mechanical shearing, as well as the controllable isolation of hydrophilic or hydrophobic CNF by mechanical disintegration in polar microenvironment. Meanwhile, the advantages and shortcomings of the preparation methods are discussed, and the industrialization status of nanocellulose production is introduced as well. Finally, it’s believed that the development of green, effective and sustainable preparation methods will be the main trend for manufacturing nanocellulose.
Contents
1 Introduction
2 Preparation of CNC
2.1 Oxidative degradation
2.2 Ionic liquid treatment
2.3 Solid acid hydrolysis
2.4 Organic acid hydrolysis
2.5 Subcritical water hydrolysis
2.6 AVAP method
3 Preparation of CNF
3.1 Mechanical methods
3.2 Pretreatment methods
4 Industrialization status of nanocellulose
5 Conclusion

CLC Number: 

[1] Sticklen M B. Nat. Rev. Genet., 2008, 9(6):433.
[2] Klemm D, Heublein B, Fink H P, Bohn A. Angew. Chem. Int. Ed., 2005, 44(22):3358.
[3] 张金明(Zhang J J), 张军(Zhang J). 高分子学报(Acta Polymerica Sinica), 2012, (12):1376.
[4] Seppala J V. Express Polym. Lett., 2012, 6(4):257.
[5] Song J K, Tang A M, Liu T T, Wang J F. Nanoscale, 2013, 5(6):2482.
[6] Lavoine N, Bergstrom L. J. Mater. Chem., 2017, 5(31):16105.
[7] Laitinen O, Suopajarvi T, Osterberg M, Liimatainen H. ACS Appl. Mater. Interfaces, 2017, 9(29):25029.
[8] Ye C H, Malak S T, Hu K S, Wu W B, Tsukruk V V. ACS Nano, 2015, 9(11):10887.
[9] Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandia C, Makitie A, Partanen J, Ikkala O, Yliperttula M. Biomaterials, 2016, 82:208.
[10] Herrera M A, Mathew A P, Oksman K. Cellulose, 2017, 24(9):3969.
[11] Azeredo H M C, Rosa M F, Mattoso L H C. Ind. Crops Prod., 2017, 97:664.
[12] Moreau C, Villares A, Capron I, Cathala B. Ind. Crops Prod., 2016, 93:96.
[13] Oksman K, Aitomäki Y, Mathew A P, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X J, Hooshmand S. Compos. Part A:Appl. S., 2016, 83:18.
[14] Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A. Angew. Chem. Int. Ed., 2011, 50(24):5438.
[15] Hoeng F, Denneulin A, Bras J. Nanoscale, 2016, 27(8):13131.
[16] Zhu H L, Luo W, Ciesielski P N, Fang Z Q, Zhu J Y, Henriksson G, Himmel M E, Hu L B. Chem. Rev., 2016, 116(16):9305.
[17] Brinchi L, Cotana F, Fortunati E, Kenny J M. Carbohydr. Polym., 2013, 94(1):154.
[18] Nechyporchuk O, Belgacem M N, Bras J. Ind. Crops Prod., 2016, 93:2.
[19] 汪丽粉(Wang L F), 李政(Li Z), 贾士儒(Jia S R), 张健飞(Zhang J F). 微生物学通报(Microbiology China), 2014, 41(8):1675.
[20] 叶代勇(Ye D Y). 化学进展(Progress in Chemistry), 2007, 19(10):1568.
[21] 郭娟丽(Guo J L), 周玉生(Zhou Y S), 刘珊(Liu S), 刘建辉(Liu J H), 周明吉(Zhou M J). 科技导报(Science & Technology Review), 2014, 28:26.
[22] Trache D, Hussin M H, Haafiz M K, Thakur V K. Nanoscale, 2017, 9(5):1763.
[23] Siqueira G, Bras J, Dufresne A. Polymers, 2010, 2(4):728.
[24] Nickerson R, Habrle J. Ind. Eng. Chem., 1947, 39:1507.
[25] Yu H Y, Qin Z Y, Liang B L, Liu N, Zhou Z, Chen L. J. Mater. Chem., 2013, 1(12):3938.
[26] Kontturi E, Meriluoto A, Penttila P A, Baccile N, Malho J M, Potthast A, Rosenau T, Ruokolainen J, Serimaa R, Laine J, Sixta H. Angew. Chem. Int. Ed., 2016, 55(46):14455.
[27] Camarero Espinosa S, Kuhnt T, Foster E J, Weder C. Biomacromolecules, 2013, 14(4):1223.
[28] Li Y, Li G Z, Zou Y L, Zhou Q J, Lian X X. Cellulose, 2013, 21(1):301.
[29] Cheng M, Qin Z Y, Chen Y Y, Liu J M, Ren Z C. Cellulose, 2017, 24(8):3243.
[30] Filson P B, Dawson-Andoh B E, Schwegler-Berry D. Green Chem., 2009, 11(11):1808.
[31] 李伟(Li W), 王锐(Wang R), 刘守新(Liu S X). 化学进展(Progress in Chemistry), 2010, 22(10):2060.
[32] Lagerwall J P F, Schütz C, Salajkova M, Noh J, Hyun-Park J, Scalia G, Bergström L. NPG Asia Mater., 2014, 6(1):e80.
[33] 代林林(Dai L L), 李伟(Li W), 曹军(Cao J), 李坚(Li J), 刘守新(Liu S X). 化学进展(Progress in Chemistry), 2015, 27(7):861.
[34] Cheng S L, Zhang Y P, Cha R T, Yang J L, Jiang X Y. Nanoscale, 2015, 8(2):973.
[35] Wang Q, Zhao X, Zhu J Y. Ind. Eng. Chem. Res., 2014, 53(27):11007.
[36] Leung A C, Hrapovic S, Lam E, Liu Y, Male K B, Mahmoud K A, Luong J H. Small, 2011, 7(3):302.
[37] Miao J J, Yu Y Q, Jiang Z M, Zhang L P. Cellulose, 2016, 23(2):1209.
[38] Liu Y F, Wang H S, Yu G, Yu Q X, Li B, Mu X D. Carbohydr. Polym., 2014, 110:415.
[39] Du H S, Liu C, Mu X D, Gong W B, Lv D, Hong Y M, Si C L, Li B. Cellulose, 2016, 23(4):2389.
[40] Novo L P, Bras J, Garcia A, Belgacem N, Curvelo A A S. ACS Sustainable Chem. Eng., 2015, 3(11):2839.
[41] Nelson K, Retsina T, Iakovlev M, van-Heiningen A, Deng Y, Shatkin J A, Mulyadi A. "American Process:Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications," in:Materials Research for Manufacturing:An Industrial Perspective of Turning Materials into New Products. Madsen L D and Svedberg E B (Eds.), Springer Ser. Mater. Sci., 2016, 224:267.
[42] 刘颖(Liu Y), 任学宏(Ren X H). 材料导报(Materials Review), 2015, 29(11):133.
[43] Yang H, Alam M N, van de Ven T G M. Cellulose, 2013, 20(4):1865.
[44] Hu Y, Tang L R, Lu Q L, Wang S Q, Chen X R, Huang B. Cellulose, 2014, 21(3):1611.
[45] Cheng M, Qin Z Y, Liu Y N, Qin Y F, Li T, Chen L, Zhu M F. J. Mater. Chem. A, 2014, 2(1):251.
[46] Earle M J, Seddon K R. ChemInform, 2002, 819:10.
[47] Man Z, Muhammad N, Sarwono A, Bustam M A, Vignesh Kumar M, Rafiq S. J. Polym. Environ., 2011, 19(3):726.
[48] Mao J, Osorio-Madrazo A, Laborie M P. Cellulose, 2013, 20(4):1829.
[49] Mao J, Heck B, Reiter G, Laborie M P. Carbohydr. Polym., 2015, 117:443.
[50] Lazko J, Sénéchal T, Landercy N, Dangreau L, Raquez J M, Dubois P. Cellulose, 2014, 21(6):4195.
[51] Abushammala H, Krossing I, Laborie M P. Carbohydr. Polym., 2015, 134:609.
[52] Tang L R, Huang B, Ou W, Chen X R, Chen Y D. Bioresour. Technol., 2011, 102(23):10973.
[53] Lu Q L, Cai Z H, Lin F C, Tang L R, Wang S Q, Huang B. ACS Sustainable Chem. Eng., 2016, 4(4):2165.
[54] Torlopov M A, Udoratina E V, Martakov I S, Sitnikov P A. Cellulose, 2017, 24(5):2153.
[55] Li B, Xu W Y, Kronlund D, Maattanen A, Liu J, Smatt J H, Peltonen J, Willfor S, Mu X D, Xu C L. Carbohydr. Polym., 2015, 133:605.
[56] Liu C, Li B, Du H S, Lv D, Zhang Y D, Yu G, Mu X D, Peng H. Carbohydr. Polym., 2016, 151:716.
[57] Du H S, Liu C, Wang D, Zhang Y D, Yu G, Si C L, Li B, Mu X D, Peng H. J. Bioresour. Bioprod., 2017, 2(1):10.
[58] Chen L H, Zhu J Y, Baez C, Kitin P, Elder T. Green Chem., 2016, 18(13):3835.
[59] Jia C, Chen L H, Shao Z Q, Agarwal U P, Hu L B, Zhu J Y. Cellulose, 2017, 24(6):2483.
[60] Bian H Y, Chen L H, Dai H Q, Zhu J Y. Carbohydr. Polym., 2017, 167:167.
[61] Xu W Y, Grénman H, Liu J, Kronlund D, Li B, Backman P, Peltonen J, Willför S, Sundberg A, Xu C L. ChemNanoMat, 2017, 3(2):109.
[62] Novo L P, Bras J, García A, Belgacem N, Curvelo A A D S. Ind. Crops Prod., 2016, 93:88.
[63] Nelson K, Retsina T. Tappi J., 2014, 13(5):19.
[64] Turbak A F, Snyder F W, Sandberg K R. Appl. Polym. Symp., 1983, 815.
[65] Herrick F W, Casebier R L, Hamilton J K, Sandberg K R. Appl. Polym. Symp., 1983:797.
[66] Zimmermann T, Pohler E, Geiger T. Adv. Eng. Mater., 2004, 6(9):754.
[67] Qing Y, Sabo R, Zhu J Y, Agarwal U, Cai Z Y, Wu Y Q. Carbohydr. Polym., 2013, 97(1):226.
[68] Carrillo C A, Laine J, Rojas O J. ACS Appl. Mater. Interfaces, 2014, 6(24):22622.
[69] Taniguchi T, Okamura K. Polym. Int., 1998, 47(3):291.
[70] Hu C S, Zhao Y, Li K C, Zhu J Y, Gleisner R. Holzforschung, 2015, 69(8):993.
[71] Chen W S, Yu H P, Liu Y X. Carbohydr. Polym., 2011, 86(2):453.
[72] Chen W S, Yu H P, Liu Y X, Hai Y F, Zhang M X, Chen P. Cellulose, 2011, 18(2):433.
[73] Alemdar A, Sain M. Bioresour. Technol., 2008, 99(6):1664.
[74] Chakraborty A, Sain M, Kortschot M. Holzforschung, 2005, 59(1):102.
[75] Tian X F, Lu P, Song X P, Nie S X, Liu Y, Liu M Y, Wang Z W. Cellulose, 2017, 24(9):3929.
[76] Tarrés Q, Oliver-Ortega H, Llop M, Pèlach M À, Delgado-Aguilar M, Mutjé P. Cellulose, 2016, 23(5):3077.
[77] Rol F, Karakashov B, Nechyporchuk O, Terrien M, Meyer V, Dufresne A, Belgacem M N, Bras J. ACS Sustainable Chem. Eng., 2017, 5(8):6524.
[78] Ho T T T, Abe K, Zimmermann T, Yano H. Cellulose, 2014, 22(1):421.
[79] Uetani K, Yano H. Biomacromolecules, 2011, 12(2):348.
[80] Chaker A, Alila S, Mutjé P, Vilar M R, Boufi S. Cellulose, 2013, 20(6):2863.
[81] Manhas N, Balasubramanian K, Prajith P, Rule P, Nimje S. RSC Adv., 2015, 5(31):23999.
[82] Mohd Amin K N, Annamalai P K, Morrow I C, Martin D. RSC Adv., 2015, 5(70):57133.
[83] Zhang L Y, Tsuzuki T, Wang X G. Cellulose, 2015, 22(3):1729.
[84] Kondo T, Kose R, Naito H, Kasai W. Carbohydr. Polym., 2014, 112:284.
[85] Hsieh M C, Koga H, Suganuma K, Nogi M. Sci. Rep., 2017, 7:41590.
[86] Eriksen O, Syverud K, Gregersen O. Nord. Pulp Pap. Res. J., 2008, 23(3):299.
[87] Wang Q Q, Zhu J Y, Gleisner R, Kuster T A, Baxa U, McNeil S E. Cellulose, 2012, 19(5):1631.
[88] Du H S, Liu C, Zhang Y D, Yu G, Si C L, Li B. Ind. Crops Prod., 2016, 94:736.
[89] Henriksson M, Henriksson G, Berglund L A, Lindström T. Eur. Polym. J., 2007, 43(8):3434.
[90] Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson P T, Ikkala O, Lindstrom T. Biomacromolecules, 2007, 8(6):1934.
[91] Wang W, Mozuch M D, Sabo R C, Kersten P, Zhu J Y, Jin Y. Cellulose, 2016, 23(3):1859.
[92] Saito T, Nishiyama Y, Putaux J L, Vignon M, Isogai A. Biomacromolecules, 2006, 7(6):1687.
[93] Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A. Biomacromolecules, 2009, 10(1):162.
[94] Isogai A, Saito T, Fukuzumi H. Nanoscale, 2011, 3(1):71.
[95] Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K. Cellulose, 2009, 17(1):19.
[96] Siró I, Plackett D, Hedenqvist M, Ankerfors M, Lindström T. J. Appl. Polym. Sci., 2011, 119(5):2652.
[97] Naderi A, Lindström T, Sundström J. Cellulose, 2014, 21(3):1561.
[98] Ho T T T, Zimmermann T, Hauert R, Caseri W. Cellulose, 2011, 18(6):1391.
[99] Chaker A, Boufi S. Carbohydr. Polym., 2015, 131:224.
[100] Saini S, Yücel Falco Ç, Belgacem M N, Bras J. Carbohydr. Polym., 2016, 135:239.
[101] Lee S Y, Chun S J, Kang I A, Park J Y. J. Ind. Eng. Chem., 2009, 15(1):50.
[102] Bharimalla A K, Deshmukh S P, Patil P G, Vigneshwaran N. World J. Nano Sci. Eng., 2015, 5(4):204.
[103] 周素坤(Zhou S K), 毛健贞(Mao J Z), 许凤(Xu F). 化学进展(Progress in Chemistry), 2014, 26(10):1752.
[104] Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J. Cellulose, 2010, 17(5):1005.
[105] Wang R B, Chen L H, Zhu J Y, Yang R D. ChemNanoMat, 2017, 3(5):328.
[106] Bian H Y, Chen L H, Gleisner R, Dai H Q, Zhu J Y. Green Chem., 2017, 19(14):3370.
[107] Chen L H, Dou J Z, Ma Q L, Li N, Wu R C, Bian H Y, Yelle D J, Vuorinen T, Fu S Y, Pan X J, Zhu J Y. Sci. Adv., 2017, 3(9):e1701735.
[108] Liimatainen H, Visanko M, Sirviö J A, Hormi O E O, Niinimaki J. Biomacromolecules, 2012, 13(5):1592.
[109] Liimatainen H, Visanko M, Sirviö J, Hormi O, Niinimäki J. Cellulose, 2013, 20(2):741.
[110] Liimatainen H, Sirviö J, Pajari H, Hormi O, Niinimäki J. J. Wood Chem. Technol., 2013, 33(4):258.
[111] Abbott A P, Capper G, Davies D L, Rasheed R K, Tambyrajah V. Chem. Commun., 2003, (1):70.
[112] Loow Y L, New E K, Yang G H, Ang L Y, Foo L Y W, Wu T Y. Cellulose, 2017, 24(9):3591.
[113] Alvarez-Vasco C, Ma R, Quintero M, Guo M, Geleynse S, Ramasamy K K, Wolcott M, Zhang X. Green Chem., 2016, 18(19):5133.
[114] Procentese A, Johnson E, Orr V, Garruto Campanile A, Wood J A, Marzocchella A, Rehmann L. Bioresour. Technol., 2015, 192:31.
[115] Qin Y Z, Li Y M, Zong M H, Wu H, Li N. Green Chem., 2015, 17(7):3718.
[116] Tang X, Zuo M, Li Z, Liu H, Xiong C X, Zeng X H, Sun Y, Hu L, Liu S J, Lei T Z, Lin L. ChemSusChem, 2017, 10(13):2696.
[117] Sirviö J A, Visanko M, Liimatainen H. Green Chem., 2015, 17(6):3401.
[118] Selkala T, Sirviö J A, Lorite G S, Liimatainen H. ChemSusChem, 2016, 21(9):3074.
[119] Sirviö J A, Visanko M, Liimatainen H. Biomacromolecules, 2016, 17(9):3025.
[120] Laitinen O, Ojala J, Sirviö J A, Liimatainen H. Cellulose, 2017, 24(4):1679.
[121] Liu Y Z, Guo B T, Xia Q Q, Meng J, Chen W S, Liu S X, Wang Q W, Liu Y X, Li J, Yu H P. ACS Sustainable Chem. Eng., 2017, 5(9):7623.
[122] Huang P, Wu M, Kuga S, Wang D Q, Wu D Y, Huang Y. ChemSusChem, 2012, 5(12):2319.
[123] Huang P, Wu M, Kuga S, Huang Y. Cellulose, 2013, 20(4):2175.
[124] Huang P, Zhao Y, Kuga S, Wu M, Huang Y. Nanoscale, 2016, 8(6):3753.
[125] Zhao M M, Kuga S, Jiang S D, Wu M, Huang Y. Cellulose, 2016, 23(5):2809.
[126] Zhao M M, Kuga S, Wu M, Huang Y. Green Chem., 2016, 18(10):3006.
[127] 王超(Wang C), 赵猛猛(Zhao M M), 黄培(Huang P), 饶显孟(Rao X M), 吴敏(Wu M), 黄勇(Huang Y). 高分子学报(Acta Polymerica Sinica), 2017, (9):1415.
[128] Shen J, He Z B, Xiao H N. J. Bioresour. Bioprod., 2017, 2(3):93.
[129] An X Y, Cheng D, Shen J, Jia Q M, He Z B, Zheng L Q, Khan A, Sun B, Ni Y H, Xiong B T. J. Bioresour. Bioprod., 2017, 2(2):45.
[130] Miller J. Cellulose nanomaterials production-state of the industry,December, 2015.[2017-07].http://www.tappinano.org/media/1114/cellulose-nanomaterials-production-state-of-the-industry-dec-2015.pdf.
[131] CelluForce Inc.[2017-07].http://www.celluforce.com/en/technology/
[132] Nelson K, Retsina T, Pylkkanen V, Iakovlev M, van Heiningen A. AIChE Annual Meeting, 2013.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[6] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[7] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[8] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[9] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[10] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[11] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[12] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[13] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[14] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[15] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.