中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1415-1423 DOI: 10.7536/PC180126 Previous Articles   Next Articles

• Review •

High Efficient Hydrolysis of Cellulose into Sugar by Chemical Catalytic Method

Ying Qiao1,2, Na Teng1, Chengkai Zhai1,3, Haining Na1*, Jin Zhu1*   

  1. 1. Key Laboratory of Bio-Based Polymeric Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
    2. Department of Polymer, College of Material Science and Engineering, Shanghai University, Shanghai 200444, China;
    3. Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.51773217), the Youth Innovation Promotion Association of CAS(No.2017339), and the Ningbo Innovation Project(No.2015B11003).
PDF ( 860 ) Cited
Export

EndNote

Ris

BibTeX

Using chemical method to efficiently hydrolyze cellulose into sugar is a key support technology for converting renewable non-food biomass into energy and materials, which has great significance to maintain the sustainable development of resources and the environment in the future. In recent years, with the development of the research on the hydrolysis of cellulose, the research content has been shifted from exploring the feasibility of hydrolysis into building a technology of highly efficient (i.e., high conversion rate, high selectivity and high conversion speed) hydrolysis of cellulose into sugar. The principle and method of highly efficient hydrolysis of cellulose into sugar are systematically reviewed. On basis of the relationship between the crystalline structure of cellulose and the high efficiency of hydrolysis, the advantages and disadvantages of various technical methods are discussed in detail. Combining with the latest progress of hydrolysis research, some ideas and suggestions are also provided with the aim to successfully achieve highly efficient hydrolysis of cellulose into sugar in the future.
Contents
1 Introduction
2 Mechanism of highly efficient hydrolysis of cellulose into sugar by chemical catalytic method
2.1 Dissociation of glycosidic bond
2.2 Inhibition of highly crystalline structure
2.3 Recrystallization in hydrolysis
3 Technology and methods to hydrolyze cellulose into sugar
3.1 Catalyst
3.2 System of hydrolysis
3.3 Hydrolytic and driving methods
4 Conclusion and outlook

CLC Number: 

[1] Gallezot P. Chem. Soc. Rev., 2012, 41:1538.
[2] Dodds D R, Gross R A. Science, 2007, 318:1250.
[3] Liu S, Amidon T E, Francis R C, Ramarao B V, Lai Y Z, Scott G M. Ind. Biotechnol., 2006, 2:113.
[4] Klemm D, Heublein B, Fink H P, Bohn A. Angew. Chem. Int. Ed., 2005, 44:3358.
[5] Zhang Y H, Wang A Q, Zhang T. Chem. Commun., 2010, 46:862.
[6] Kobayashi H, Komanoya T, Guha S K, Hara K, Fukuoka A. Appl. Catal. A-Gen., 2011, 409:13.
[7] Rinaldi R, Schuth F. ChemSusChem, 2009, 2:1096.
[8] Krassig H A. PA:Gordon and Breach Science, 1993. 376.
[9] Bak J S, Ko J K, Han Y H, Lee B C, Choi I G, Kim K H. Bioresour. Technol., 2009, 100:1285.
[10] Harmer M A, Fan A, Liauw A, Kumar R K. Chem. Commun., 2009, 43:6610.
[11] Da Silva A S, Inoue H, Endo T, Yano S, Bon E P S. Bioresour. Technol., 2010, 101:7402.
[12] Ni J P, Wang H L, Chen Y Y, She Z, Na H N, Zhu J. Bioresour. Technol., 2013, 137:106.
[13] Ni J P, Na H N, She Z, Wang J G, Xue W W, Zhu J. Bioresour. Technol., 2014, 167:69.
[14] Ni J P, Teng N, Chen H Z, Wang J G, Zhu J, Na H N. Bioresour. Technol., 2015, 191:229.
[15] Kocherbitov V, Ulvenlund S, Kober M, Jarring K, Arnebrant T. J. Phys. Chem. B, 2008, 112:3728.
[16] Camacho F, GonzalezTello P, Jurado E, Robles A. J. Chem. Technol. Biotechnol., 1996, 67:350.
[17] Hermans P H, Weidinger A. J. Am. Chem. Soc., 1946, 68:2547.
[18] Wadehra I L, Manley R S J. J. Appl. Polym. Sci., 1965, 9:2627.
[19] Teng N, Ni J P, Chen H Z, Ren Q H, Na H N, Liu X Q, Zhang R Y, Zhu J. ACS Sustain. Chem. Eng., 2016, 4:1507.
[20] Wang J J, Xi J X, Wang Y Q. Green. Chem., 2015, 17:737.
[21] Chang V S, Holtzapple M T. Appl. Biochem. Biotech., 2000, 84:5.
[22] Laureano-Perez L, Teymouri F, Alizadeh H, Dale B E. Appl. Biochem. Biotech., 2005, 121:1081.
[23] Shaikh H M, Adsul M G, Gokhale D V, Varma A J. Carbohyd. Polym., 2011, 86:962.
[24] Abdullah R, Saka S. Cellulose, 2014, 21:4049.
[25] Sun Y, Zhuang J P, Lin L, Ouyang P K. Biotechnol. Adv., 2009, 27:625.
[26] Kupiainen L, Ahola J, Tanskanen J. Bioresour. Technol., 2012, 116:29.
[27] Kootstra A M J, Beeftink H H, Scott E L, Sanders J P M. Biochem. Eng. J., 2009, 46:126.
[28] Kootstra A M J, Beeftink H H, Scott E L, Sanders J P M. Biotechnol. Biofuels, 2009, 2:14.
[29] Vom Stein T, Grande P, Sibilla F, Commandeur U, Fischer R, Leitner W, de Maria P D. Green Chem., 2010, 12:1844.
[30] Yang H, Wang L Q, Jia L S, Qiu C C, Pang Q, Pan X W. Ind. Eng. Chem. Res., 2014, 53:6562.
[31] Shaveta, Bansal N, Singh P. Tetrahedron. Lett., 2014, 55:2467.
[32] Kang K E, Park D H, Jeong G T. Carbohyd. Polym., 2013, 92:1321.
[33] Zhou N, Zhang Y M, Wu X B, Gong X W, Wang Q H. Bioresour. Technol., 2011, 102:10158.
[34] Amarasekara A S, Wiredu B. Bioresour. Technol., 2012, 417:259.
[35] Onda A, Ochi T, Yanagisawa K. Green Chem., 2008, 10:1033.
[36] Onda A, Ochi T, Yanagisawa K. Top. Catal., 2009, 52:801.
[37] Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. J. Am. Chem. Soc., 2008, 130:12787.
[38] Kitano M, Yamaguchi D, Suganuma S, Nakajima K, Kato H, Hayashi S, Hara M. Langmuir, 2009, 25:5068.
[39] Yamaguchi D, Kitano M, Suganuma S, Nakajima K, Kato H, Hara M. J. Phys. Chem.C, 2009, 113:3181.
[40] Pang J F, Wang A Q, Zheng M Y, Zhang T. Chem. Commun., 2010, 46:6935.
[41] van de Vyver S, Peng L, Geboers J, Schepers H, de Clippel F, Gommes C J, Goderis B, Jacobs P A, Sels B F. Green Chem., 2010, 12:1560.
[42] Lai D M, Deng L, Li J A, Liao B, Guo Q X, Fu Y. ChemSusChem, 2011, 4:55.
[43] Zhou L P, Liu Z, Shi M T, Du S S, Su Y L, Yang X M, Xu J. Carbohyd. Polym., 2013, 98:146.
[44] Yang J, Janik M J, Ma D, Zheng A M, Zhang M J, Neurock M, Davis R J, Ye C H, Deng F. J. Am. Chem. Soc., 2005, 127:18274.
[45] Shimizu K, Furukawa H, Kobayashi N, Itaya Y, Satsuma A. Green Chem., 2009, 11:1627.
[46] Tian J, Wang J H, Zhao S, Jiang C Y, Zhang X, Wang X H. Cellulose, 2010, 17:587.
[47] Bian J, Peng F, Peng X P, Xiao X, Peng P, Xu F, Sun R C. Carbohyd. Polym., 2014, 100:211.
[48] Shafiei M, Zilouei H, Zamani A, Taherzadeh M J, Karimi K. Appl. Energ., 2013, 102:163.
[49] Li C, Wang Q, Zhao Z K. Green Chem., 2008, 10:177.
[50] Sasaki M, Adschiri T, Arai K. AICHE J., 2004, 50:192.
[51] Ehara K, Saka S. J. Wood. Sci., 2005, 51:148.
[52] Zhao Y, Lu W J, Wang H T. Chem. Eng. J., 2009, 150:411.
[53] Luterbacher J S, Rand J M, Alonso D M, Han J, Youngquist J T, Maravelias, C T, Pfleger B F, Dumesic J A. Science, 2014, 343:277.
[54] Carr R T, Neurock M, Iglesia E. J. Catal., 2011, 278:78.
[55] Mellmer M A, Sener C, Gallo J M R, Luterbacher J S, Alonso D M, Dumesic J A. Angew. Chem. Int. Ed., 2014, 53:11872.
[56] Gallo J M R, Alonso D M, Mellmer M A, Dumesic J A. Green Chem., 2013, 15:85.
[57] Selig M J, Viamajala S, Decker S R, Tucker M P, Himmel M E, Vinzant T B. Biotechnol. Prog., 2007, 23:1333.
[58] Zhang Z H, Zhao Z B K. Carbohydr. Res., 2009, 344:2069.
[59] Luque R, Menendez J A, Arenillas A, Cot J. Energ. Environ. Sci., 2012, 5:5481.
[60] Fan J J, de Bruyn M, Budarin V L, Gronnow M J, Shuttleworth P S, Breeden S, Macquarrie D J, Clark J H. J. Am. Chem. Soc., 2013, 135:11728.
[1] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[2] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[3] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[4] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[5] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[6] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[7] Lina Shi, Xin Hu, Ning Zhu, Kai Guo. Cellulose-Based Dielectric Composite [J]. Progress in Chemistry, 2020, 32(12): 2022-2033.
[8] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[9] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[10] Haishun Du, Chao Liu, Miaomiao Zhang, Qingshan Kong, Bin Li*, Mo Xian. Preparation and Industrialization Status of Nanocellulose [J]. Progress in Chemistry, 2018, 30(4): 448-462.
[11] Maiyong Zhu*, Qi Chen, Wenjie Tong, Jiarui Kan, Weichen Sheng. Preparation and Application of Fe3O4 Nanomaterials [J]. Progress in Chemistry, 2017, 29(11): 1366-1394.
[12] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[13] Jing Ru, Biyao Geng, Congcong Tong, Haiying Wang, Shengchun Wu, Hongzhi Liu. Nanocellulose-Based Adsorption Materials [J]. Progress in Chemistry, 2017, 29(10): 1228-1251.
[14] Gao Yurong, Huang Pei, Sun Peipei, Wu Min, Huang Yong. Preparation and Application of Graphene/Cellulose Composites [J]. Progress in Chemistry, 2016, 28(5): 647-656.
[15] Yang Yue, Liu Qiying, Cai Chiliu, Tan Jin, Wang Tiejun, Ma Longlong. Advances in DMF and C5/C6 Alkanes Production from Lignocellulose [J]. Progress in Chemistry, 2016, 28(2/3): 363-374.