中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (12): 2022-2033 DOI: 10.7536/PC200415 Previous Articles   Next Articles

• Review •

Cellulose-Based Dielectric Composite

Lina Shi1, Xin Hu2,*(), Ning Zhu1,*(), Kai Guo1   

  1. 1 College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
    2 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received: Revised: Online: Published:
  • Contact: Xin Hu, Ning Zhu
Richhtml ( 44 ) PDF ( 716 ) Cited
Export

EndNote

Ris

BibTeX

As an electric charge storage device, dielectric capacitor has attracted growing research interest from both academy and industry. The dielectric material is the key component for the capacitor. Fossil based commercial polymers, such as biaxially oriented polypropylene (BOPP) and polyethylene terephthalate (PET), have been widely used as the dielectric materials in the capacitors. However, the change of service condition (e.g. increasing the temperature) will resulted in the low energy storage density of the fossil based polymer dielectric materials because of the reduced dielectric constant and discharge-charge efficiency, and the increased dielectric loss and current leakage. Therefore, novel sustainable polymer dielectric materials with high energy storage density are highly desirable. As the most abundant natural polymer on the earth, cellulose is considered as the candidate for the potential dielectric materials due to the renewable feedstock, low price and biodegradability, etc. Recently, cellulose-based dielectric composites with high energy storage density have been developed, which show improved dielectric constant, breakdown strength and discharge-charge efficiency. This article focuses on the advances in cellulose-based dielectric composites mentioned above. Moreover, the challenges and opportunities are discussed for the further development in the related topics.

Contents

1 Introduction

2 Cellulose nanofiber dielectric composite

2.1 Cellulose nanofiber/conductive filler dielectric composite

2.2 Cellulose nanofiber/ceramic (rare earth ion) dielectric composite

3 Cyanoethyl cellulose dielectric composite

3.1 Cyanoethyl cellulose/ceramic dielectric composite

3.2 Cyanoethyl cellulose/montmorillonite dielectric composite

3.3 Porous cyanoethyl cellulose dielectric composite

4 Regenerated cellulose dielectric composite

4.1 Regenerated cellulose/organic filler dielectric composite

4.2 Regenerated cellulose/ceramic dielectric composite

5 Cellulose acetate dielectric composite

6 Conclusion

Table 1 Dielectric properties of cellulose-based composites
Fig.1 Preparation of the CNF/CNT papers[36]
Fig.2 Frequency dependence of dielectric constant of the CNF/CNT papers with different CNT loadings[36]
Fig.3 RGO/CNF gas drying (xerogel) and directional freezing (cryogel) drying composite material manufacturing schematic[38]
Fig.4 Variation of (a) dielectric constant and (b) dielectric loss of cellulose and its nanocomposites with frequency (at 1.0 V, 25.0% RH and 25.0 ℃)[39]
Fig.5 Schematic of the preparation and structure of the CLTOCN/BNNS film[40]
Fig.6 Frequency dependence of the dielectric constant for CLTOCN/BNNS films with different loadings of BNNSs[40]
Fig.7 Frequency dependence of dielectric constant(loss) of TOCN-Na 1 and TOCN-Eu 1 film[44]
Fig.8 Breakdown strength and discharged energy density of TOCN-Na 1 and TOCN-Eu 1 film[44]
Fig.9 The flow diagram illustrates the preparation of CNF/TiO 2 composite film[45]
Fig.10 Preparation of CNF/BTO nanocomposite films[46]
Fig.11 Schematic diagram of cellulose hydroxycyanation[47]
Fig.12 The schematic illustration of the preparation of CEC/BTO/ATO nanocomposite films[52]
Fig.13 Dependence of dielectric permittivity of (a) CEC/BTO and (b) CEC/BTO/ATO nanocomposite films on frequency [51,52]
Fig.14 Proposed mechanism for the dispersion of RGO with MMT and CEC[63]
Fig.15 Dependence of dielectric permittivity of (a) CEC/MMT and (b)CEC/RGO/MMT nanocomposite films on frequency[59,63]
Fig.16 The dielectric constant as a function of frequency of the CEC solutions(14 wt%, 16 wt%, and 20 wt%) by using different coagulating bath[64]
Fig.17 Schematic of fabrication RC/PPy composite film[73]
Fig.18 Variation of dielectric constant (loss) of RC and RC/PPy with frequency[73]
Fig.19 Schematic of the layered structure of the RC/BN nanocomposite film to achieve high breakdown strength and thermal conduction[76]
Fig.20 Model of interaction between cellulose molecules (top) and BN nanoplate (bottom) in the composite[76]
Fig.21 Schematic of RC/BTNF Preparation[77]
Fig.22 Schematic of the circulation of cellulose films[78]
[1]
Wei J J , Zhu L . Progress in Polymer Science, 2020, 106: 101254.
[2]
Zhang M , Zhang L , Zhu M , Wang Y G , Li N W , Zhang Z J , Chen Q , An L N , Lin Y H , Nan C W . Journal of Materials Chemistry A, 2016, 4: 4797.
[3]
Li Q , Yao F Z , Liu Y , Zhang G Z , Wang H , Wang Q . Annual Review of Materials Research, 2018, 48: 219.
[4]
Qiao Y L , Yin X D , Zhu T Y , Li H , Tang C B . Progress in Polymer Science, 2018, 80: 153.
[5]
Pan Z B , Zhai J W , Shen B . Journal of Materials Chemistry A, 2017, 5: 15217.
[6]
Pan Z B , Yao L M , Zhai J W , Shen B , Liu S H , Wang H T , Liu J H . Journal of Materials Chemistry A, 2016, 4: 13259.
[7]
Liu F H , Li Q , Cui J , Li Z Y , Yang G , Liu Y , Dong L J , Xiong C X , Wang H , Wang Q . Advanced Functional Materials, 2017, 27: 1606292.
[8]
Lei X F , Chen Y H , Qiao M T , Tian L D , Zhang Q Y . Journal of Materials Chemistry C, 2016, 4: 2134.
[9]
Zapsas G , Patil Y , Gnanou Y , Ameduri B , Hadjichristi-dis N . Progress in Polymer Science, 2020, 104: 101231.
[10]
Peng X W , Xu W H , Chen L L , Ding Y C , Chen S L , Wang X Y , Hou H Q . Journal of Materials Chemistry C, 2016, 4: 6452.
[11]
Mohammad S A , Shingdilwar S , Banerjee S , Ameduri Bruno . Progress in Polymer Science, 2020, 106: 101255.
[12]
Hu X , Zhu N , Guo K . Advances in Polymer Technology, 2019, 2019: 7971683.
[13]
Huang W J , Zhai J L , Hu X , Duan J D , Fang Z , Zhu N , Guo K . European Polymer Journal, 2020, 126: 109565.
[14]
Hu X , Zhu N , Fang Z , Li Z J , Guo K . European Polymer Journal, 2016, 80: 117.
[15]
Zhu N , Hu X , Fang Z , Guo K . ChemPhotoChem, 2018, 2: 831.
[16]
Zhu N , Hu X , Zhang Y J , Zhang K , Guo K . Polymer Chemistry, 2016, 2: 474.
[17]
Hu X , Zhang Y J , Cui G P , Zhu N , Guo K . Macromolecular Rapid Communications, 2017, 38: 1700399.
[18]
Hu X , Zhang Y J , Cui G P , Zhu N , Guo K . European Polymer Journal, 2018, 100: 228.
[19]
Hu X , Cui G P , Zhu N , Zhai J L , Guo K . Polymers, 2018, 10: 68.
[20]
Fan B H , Zhou M Y , Zhang C , He D L , Bai J B . Progress in Polymer Science, 2019, 97: 101143.
[21]
Rol F , Belgacem M N , Gandini A , Bras J . Progress in Polymer Science, 2019, 88: 241.
[22]
Takechi S , Teramoto Y , Nishio Y . Cellulose, 2016, 23: 765.
[23]
Wang S , Lue A , Zhang L . Progress in Polymer Science, 2016, 53: 169.
[24]
Yang Q L , Shi Z Q , Qi Z D , Yang J W , Lao J P , Saito T , Xiong C X , Isogai A . Journal Controlled Release, 2017, 259: e115.
[25]
Calvino C , Macke N , Kato R , Rowan S J . Progress in Polymer Science, 2020, 103: 101221.
[26]
Ghosh S K , Mandal D . ACS Sustainable Chemistry & Engineering, 2017, 5: 8836.
[27]
Jung Y H , Chang T H , Zhang H , Yao C , Zheng Q , Yang V , W, Mi H, Kim M, Sang J C, Park D W. Nature Communication, 2015, 6: 7170.
[28]
Cheng H , Li L J , Wang B J , Feng X L , Mao Z P , Vancso G J , Sui X F . Progress in Polymer Science, 2020, 106: 101253.
[29]
Klemm D , Kramer F , Moritz S , Lindstrom T , Anker-fors M , Gray D , Dorris A . Angewandte Chemie-International Edition, 2011, 50: 5438.
[30]
Wicklein B , Kocjan A , Salazar-Alvarez G , Carosio F , Camino G , Antonietti M , Bergstrom L . Nature Nanotechnology, 2015, 10: 277.
[31]
Kargarzadeh H , Huang J , Lin N , Ahmad I , Mariano M , Dufresne A , Thomas S , Galeski A . Progress in Polymer Science, 2018, 87: 197.
[32]
Inui T , Koga H , Nogi M , Komoda N , Suganuma K . Advanced Materials, 2015, 27: 1112.
[33]
Wang Y , Heim L Q , Xu Y , Buntkowsky G , Zhang K . Advanced Functional Materials, 2015, 25: 1434.
[34]
Tang H , Butchosa N , Zhou Q . Advanced Materials, 2015, 27: 2070.
[35]
Sun X M , Sun H , Li H P , Peng H S . Advanced Materials, 2013, 25: 5153.
[36]
Zeng X L , Deng L B , Yao Y M , Sun R , Xu J B , Wong C P . Journal of Materials Chemistry C, 2016, 4: 6037.
[37]
Tong W S , Zhang Y H , Zhang Q , Luan X L , Duan Y , Pan S F , Lv F Z , An Q . Carbon, 2015, 94: 590.
[38]
Pottathara Y B , Bobnar v , Finsgar M , Grohens Y , Thomas S , Kokol V . Polymer, 2018, 147: 260.
[39]
Kafy A , Sadasivuni K K , Kim H , Akther A , Kim J . Physical Chemistry Chemical Physics, 2015, 17: 5923.
[40]
Yang J W , Xie H A , Chen H , Shi Z Q , Wu T , Yang Q L , Xiong C X . Journal of Materials Chemistry A, 2018, 6: 1403.
[41]
Eliseeva S V , Bünzli C G . Chemical Society Reviews, 2010, 39: 189.
[42]
Wang Y H , Zhu G , Xin S Y , Wang Q , Li Y Y , Wu Q S , Wang C , Wang X C , Ding X , Geng W Y . Journal of Rare Earths, 2015, 33: 1.
[43]
Li S , Toprak M S , Jo Y S , Dobson J , Kim D K , Mu-hammed M . Advanced Materials, 2007, 19: 4347.
[44]
Yang Q L , Zhang C G , Shi Z Q , Wang J Y , Xiong C X , Saito T , Isogai A . ACS Applied Nano Materials, 2018, 1: 4972.
[45]
Tao J , Cao S A , Liu W , Deng Y L . Cellulose, 2019, 26: 6087.
[46]
Tao J , Cao S A , Feng R , Deng Y L . RSC Advances, 2020, 10: 5758.
[47]
Bonardd S , Robles E , Barandiaran I , Saldías C , Leiva Á , Kortaberria G . Carbohydrate Polymers, 2018, 199: 20.
[48]
邵自强( Shao Z Q ), 王飞俊( Wang F J ). 纤维素醚(Cellulose Ether). 北京(Beijing):化学工业出版社(Chemical Industry Press), 2007. 10.
[49]
Pan Z B , Yao L M , Zhai J W , Yang K , Shen B , Wang H T . ACS Sustainable Chemistry & Engineering, 2017, 5: 4707.
[50]
Xie L Y , Huang X Y , Huang Y H , Yang K , Jiang P K . Journal of Physical Chemistry C, 2013, 117: 22525.
[51]
Jia C , Shao Z Q , Fan H Y , Wang J Q . RSC Advances, 2015, 5: 15283.
[52]
Jia C , Shao Z Q , Fan H Y , Feng R , Wang F J , Wang W J , Wang J Q , Zhang D L , Lv Y Y . Composites: Part A, 2016, 86: 1.
[53]
Wei S Y , Mavinakuli P , Wang Q , Chen D , Asapu R , Mao Y B , Haldolaarachchige N , Young D P , Guo Z H . Journal of the Electrochemical Society, 2011, 11: 158.
[54]
Abushammala H , Hashaikeh R , Biomass and Bioenergy, 2011, 35: 3970.
[55]
Madusanka N , Shivareddy S G , Hiralal P , Eddleston M D , Choi Y , Oliver R A , Amaratunga G A J . Nanotechnology, 2016, 27: 195402.
[56]
Martin B , Harald G , Andreas F , Klaus W B , Gamal T , Andreas S , Bernhard S . Macromolecules, 2005, 38: 2764.
[57]
Kanapitsas A , Pissis P , Kotsilkova R . Journal of Non-crystalline Solids, 2002, 305: 204.
[58]
Jeon I , Baek J B . Materials, 2010, 3: 3654.
[59]
Madusanka N , Shivareddy S G , Eddleston M D , Hi-ralal P , Oliver R A , Amaratunga G A J . Carbohydrate Polymers, 2017, 172: 315.
[60]
Zhang Z L , Luo H J , Jiang X , Jiang Z L , Jiang Z J , Yang C . RSC Advances, 2015, 5: 47408.
[61]
Capkova P , Matejka V , Tokarsky J , Peikertova P , Neuwirthova L , Kulhankova L , Beno J , Styskala V . Journal of the European Ceramic Society, 2014, 34: 3111.
[62]
Li C P , Li Y Z , She X D , Vongsvivut J , Li J H , She F H , Gao W M , Kong L X . Composites Science and Technology, 2015, 118: 1.
[63]
Wang F J , Wang M H , Shao Z Q . Cellulose, 2018, 25: 7143.
[64]
Wang B , Kang H L , Yang H G , Xie J J , Liu R G . Cellulose, 2019, 26: 1261.
[65]
Swatloski R P , Spear S K , Holbrey J D , Rogers R D . Journal of the American Chemical Society, 2002, 124: 4974.
[66]
Cai J , Zhang L N . Macromolecular Bioscience, 2005, 5: 539.
[67]
Yang Q L , Fujisawa S , Saito T , Isogai A . Cellulose, 2012, 19: 695.
[68]
Yang Q L , Fukuzumi H , Saito T , Isogai A , Zhang L N . Biomacromolecules, 2011, 12: 2766.
[69]
Yang Q L , Saito T , Berglund L A , Isogai A . Nanoscale, 2015, 7: 17957.
[70]
Nystrom G , Mihranyan A , Razaq A , Lindstrom T , Nyholm L , Strømme M . Journal of Physical Chemistry B, 2010, 114: 4178.
[71]
Liu S , He K , Wu X , Luo X , Li B . RSC Advances, 2015, 5: 87266.
[72]
Srivastav S , Tammela P , Brandell D , Sjödin M . Electrochimica Acta, 2015, 182: 1145.
[73]
Raghunathan S P , Narayanan S , Poulose A C , Jo-seph. R. Carbohydrate Polymers, 2017, 157: 1024.
[74]
Golberg D , Bando Y , Huang Y , Terao T , Mitome M , Tang C C , Zhi C Y . ACS Nano, 2010, 4: 2979.
[75]
Huang X Y , Jiang P K , Tanaka T . IEEE Electrical Insulation Magazine, 2011: 27: 8.
[76]
Lao J P , Xie H A , Shi Z Q , Li G , Li B , Hu G H , Yang Q L , Xiong C X . ACS Sustainable Chemistry & Engineering, 2018, 6: 7151.
[77]
Zhang C G , Yin Y A , Yang Q L , Shi Z Q , Hu G H , Xiong C X . ACS Sustainable Chemistry & Engineering, 2019, 7: 10641.
[78]
Yin Y A , Zhang C G , Yu W C , Kang G H , Yang Q L , Shi Z Q , Xiong C X . Energy Storage Materials, 2020, 26: 105.
[79]
Edgar C M , Buchanan J S , Debenham P A , Rund-quist B D , Seiler M C , Shelton D , Tindall. Progress in Polymer Science, 2001, 26: 1605.
[80]
Kung F C , Chou W L , Yang M C . Polymers for Advanced in Technologies, 2006, 17: 453.
[81]
Hoenich N. BioResources, 2006, 1: 270.
[82]
Romero R B , Leite C A P , Goncalves M D C . Polymer, 2009, 50: 161.
[83]
Abedini R , Mousavi S M , Aminizadeh R . Desalination, 2011, 277: 40.
[84]
Anita S , Brabu B , Thiruvadigal D J , Gopalkrishnan C , Natarajan T S . Carbohydrate Polymers, 2012, 87: 1065.
[85]
Figueiriedo A S , Sanchez-Loredo M G , Mauricio A , Pereira M F C , Minhalma M , DePinho M N . Journal of Applied Polymer Science, 2015, 132: 41796.
[86]
Li M , Kim I M , Jeong Y G . Journal of Applied Polymer Science, 118: 2475.
[87]
Liu L , Shen Z G , Liang S S , Yi M , Zhang X J , Ma S L . Journal of Materials Science, 2014, 49: 321.
[88]
Deshmukh K , Ahamed M B , Deshmukh R R , Pasha S K K , Sadasivuni K K , Polu A R , Ponnamma D , AlMaa-deed M A A , Chidambaram K . Journal of Materials Science-Materials in Electronics, 2016, 28: 973.
[1] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[2] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[5] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[6] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[7] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[8] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[9] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[10] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.
[11] Lili Cheng, Yun Zhang, Yekun Zhu, Ying Wu. Selective Oxidation of HMF [J]. Progress in Chemistry, 2021, 33(2): 318-330.
[12] Xiuting Dong, Wen Zhang, Song Zhao, Xinlei Liu, Yuxin Wang. Shaping Methods for Metal-Organic Framework Composites [J]. Progress in Chemistry, 2021, 33(12): 2173-2187.
[13] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[14] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[15] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
Viewed
Full text


Abstract

Cellulose-Based Dielectric Composite