中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (5): 760-772 DOI: 10.7536/PC181004 Previous Articles   Next Articles

Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment

Jinxin Yi1,2, Zhipeng Huo1,**(), Abdullah M. Asiri3, Khalid A. Alamry3, Jiaxing Li1,3,**()   

  1. 1. Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
    2. University of Science and Technology of China, Hefei 230026, China
    3. Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • Received: Online: Published:
  • Contact: Zhipeng Huo, Jiaxing Li
  • About author:
    ** E-mail: (Zhipeng Huo);
    (Jiaxing Li)
  • Supported by:
    National High Technology Research and Development Program of China(21677146); National Natural Science Foundation of China(U1607102); Anhui Provincial Natural Science Foundation(1708085MB31)
Richhtml ( 64 ) PDF ( 1122 ) Cited
Export

EndNote

Ris

BibTeX

Environmental pollution has become one of the great challenges to the sustainable development of human society. Wastewater discharged from chemical, smelting and nuclear fuel cycle processes contain a lot of heavy metal ions, organic matter, and radionuclides. If discharged without treatment, it will bring great harm to the environment. The adsorption method for wastewater treatment has many advantages such as high efficiency, simple operation, no by-products, recyclability, and no secondary pollution, thus making it one of the significant methods for wastewater treatment. Due to the low cost, abundance in raw materials, and renewability of agroforestry waste biomass, the adsorption materials prepared on the basis of it are widely studied. In this paper, the research focuses on biochar, cellulose, and lignin, which are prepared from agroforestry waste biomass as raw materials, the preparation and modification methods of biochar, modification methods of natural cellulose, methods of modifying lignin, and their application in wastewater treatment are reviewed. The effects of adsorption properties on the adsorption of pollutants in water are discussed from the aspects of raw materials, preparation process, and modification methods. The problems of pollutant adsorption by biomass-based adsorption materials are pointed out and an outlook on their future research direction is made.

Fig. 1 Preparation and modification methods of agroforestry waste biomass based adsorbing materials
Table 1 Typical operating conditions for thermochemical processes and char production[33]
Fig. 2 TGA of CDPC and CDPCO(A1); TOTH of CDPC and CDPCO(B1); BET specific surface areas of CDPC and CDPCO before and after MB adsorption(C1); size distributions of CDPC and CDPCO before and after MB adsorption(D1).Comparisons of(A2) the adsorption capacities toward organic pollutants of CDPC, CDPCO and cotton and the adsorption of MB on cotton(B2) and CDPCO(C2). C0=200 mg · L-1, m/V=0.1 g · L-1, T=298K[66]
Fig. 3 Modification methods for cellulose-based adsorbents and their usage in water treatment[96]
Fig. 4 Synthesis and metal ions adsorption scheme of SESD-PAA. Effect of(a) pH value(25 ℃, C0=150 mg · L-1, contact time=30 min),(b) initial concentration(25 ℃, pH=3.5 for Fe(Ⅲ) and 6 for other ions, contact time=30 min) and(c) contact time(25 ℃, C0=150 mg·L-1, pH=3.5 for Fe(Ⅲ) and 6 for other ions) on Zn(Ⅱ), Fe(Ⅲ), Cu(Ⅱ), and Cr(Ⅲ) ion adsorption[111]
Fig. 5 Schematic drawing of synthesis of cellulose-based bioadsorbents. Effects of(a) bioadsorbent dosage,(b) contact time,(c) solution pH, and(d) temperature on the dye removal efficiencies of AB93 and MB using the cellulose-based bioadsorbents[112]
Fig. 6 Modification methods for lignin-based adsorbents and their usage in water treatment[127]
[1]
Fu F, Wang Q . Journal of Environmental Management, 2011,92:407. https://www.ncbi.nlm.nih.gov/pubmed/21138785

doi: 10.1016/j.jenvman.2010.11.011 pmid: 21138785
[2]
Rudnicki P, Hubicki Z, Kołodyńska D . Chemical Engineering Journal, 2014,252:362. bcaa36ab-2b48-4858-8e22-1ab5310d582dhttp://dx.doi.org/10.1016/j.cej.2014.04.035

doi: 10.1016/j.cej.2014.04.035
[3]
Kurniawan T A, Chan G Y S, Lo W H, Babel S . Chemical Engineering Journal, 2006,118:83. https://linkinghub.elsevier.com/retrieve/pii/S1385894706000362

doi: 10.1016/j.cej.2006.01.015
[4]
Meng N C, Bo J, Chow C W K, Saint C . Water Research, 2010,44:2997. https://www.ncbi.nlm.nih.gov/pubmed/20378145

doi: 10.1016/j.watres.2010.02.039 pmid: 20378145
[5]
Lee K M, Lai C W, Ngai K S, Juan J C . Water Research, 2016,88:428. https://www.ncbi.nlm.nih.gov/pubmed/26519627

doi: 10.1016/j.watres.2015.09.045 pmid: 26519627
[6]
Zhong Y J, You S J, Wang X H, Zhou X, Gan Y, Ren N Q . Chemical Engineering Journal, 2013,226:217. https://linkinghub.elsevier.com/retrieve/pii/S1385894713004713

doi: 10.1016/j.cej.2013.03.132
[7]
Thong Z, Han G, Cui Y, Gao J, Chung T S, Chan S Y, Wei S . Environmental Science & Technology, 2014,48:13880. https://www.ncbi.nlm.nih.gov/pubmed/25369240

doi: 10.1021/es5031239 pmid: 25369240
[8]
Ali I, Gupta V K . Nature Protocols, 2006,1:2661. https://www.ncbi.nlm.nih.gov/pubmed/17406522

doi: 10.1038/nprot.2006.370 pmid: 17406522
[9]
Andjelkovic I, Tran D N, Kabiri S, Azari S, Markovic M, Losic D . ACS Appl Mater Interfaces, 2015,7:9758. https://www.ncbi.nlm.nih.gov/pubmed/25871444

doi: 10.1021/acsami.5b01624 pmid: 25871444
[10]
庞宏伟(Pang H W), 王祥学(Wang X X), 姚文(Yao W), 于淑君(Yu S J), 王祥科(Wang X K) . 中国科学:化学 (Scientia Sinica Chimica), 2018,48(1):58.
[11]
Fan Y, Ma W, Han D, Gan S, Dong X, Niu L . Adv. Mater., 2015,27:3767. https://www.ncbi.nlm.nih.gov/pubmed/25994835

doi: 10.1002/adma.201500391 pmid: 25994835
[12]
杨姗也(Yang S Y), 王祥学(Wang X X), 陈中山(Chen Z S), 李倩(Li Q), 韦犇犇(Wei B B), 王祥科(Wang X K) . 化学进展 (Progress in Chemistry), 2018,30(2/3):225.
[13]
Xu M, Han X, Wang T, Li S, Hua D . Journal of Materials Chemistry A, 2018,6:13894.
[14]
Annadurai G, Juang R S, Lee D J . Journal of Hazardous Materials, 2002,92:263. https://www.ncbi.nlm.nih.gov/pubmed/12031611

doi: 10.1016/s0304-3894(02)00017-1 pmid: 12031611
[15]
Cai T, Li H, Yang R, Wang Y, Li R, Yang H, Li A, Cheng R . Cellulose, 2015,22:1439.
[16]
Hamid S B A, Chowdhury Z Z, Zain S M . Materials, 2014,7:2815. https://www.ncbi.nlm.nih.gov/pubmed/28788595

doi: 10.3390/ma7042815 pmid: 28788595
[17]
Jin H, Capareda S, Chang Z, Gao J, Xu Y, Zhang J . Bioresource Technology, 2014,169:622. https://www.ncbi.nlm.nih.gov/pubmed/25103038

doi: 10.1016/j.biortech.2014.06.103 pmid: 25103038
[18]
Qian L, Chen B . Environmental Science & Technology, 2013,47:8759. https://www.ncbi.nlm.nih.gov/pubmed/23826729

doi: 10.1021/es401756h pmid: 23826729
[19]
Xu X, Cao X, Zhao L . Chemosphere, 2013,92:955. https://www.ncbi.nlm.nih.gov/pubmed/23591132

doi: 10.1016/j.chemosphere.2013.03.009 pmid: 23591132
[20]
Yao Y, Gao B, Chen H, Jiang L, Inyang M, Zimmerman A R, Cao X, Yang L, Xue Y, Li H . Journal of Hazardous Materials, 2012,209/210:408. https://www.ncbi.nlm.nih.gov/pubmed/22321858

doi: 10.1016/j.jhazmat.2012.01.046 pmid: 22321858
[21]
Chen W, Parette R, Zou J, Cannon F S, Dempsey B A . Water Research, 2007,41:1851. https://www.ncbi.nlm.nih.gov/pubmed/17367839

doi: 10.1016/j.watres.2007.01.052 pmid: 17367839
[22]
Faria P C, Orfão J J, Pereira M F . Water Research, 2004,38:2043. https://www.ncbi.nlm.nih.gov/pubmed/15087185

doi: 10.1016/j.watres.2004.01.034 pmid: 15087185
[23]
Lehmann J . Nature, 2007,447:143. https://www.ncbi.nlm.nih.gov/pubmed/17495905

doi: 10.1038/447143a pmid: 17495905
[24]
Liu W, Dai X, Bai Z, Wang Y, Yang Z, Zhang L, Xu L, Chen L, Li Y, Gui D, Diwu J, Wang J, Zhou R, Chai Z, Wang S . Environmental Science & Technology, 2017,51:3911. https://www.ncbi.nlm.nih.gov/pubmed/28271891

doi: 10.1021/acs.est.6b06305 pmid: 28271891
[25]
Ahmad M, Lee S S, Dou X, Mohan D, Sung J K, Yang J E, Ok Y S . Bioresource Technology, 2012,118:536. https://www.ncbi.nlm.nih.gov/pubmed/22721877

doi: 10.1016/j.biortech.2012.05.042 pmid: 22721877
[26]
Gao X, Zhang H, Chen K, Zhou J, Liu Q . Cellulose, 2018,25:2531.
[27]
Özbaş Z, Şahin C P, Esen E, Gürdağ G, Kaşgöz H . Journal of Environmental Chemical Engineering, 2016,4:1948. https://linkinghub.elsevier.com/retrieve/pii/S2213343716300859

doi: 10.1016/j.jece.2016.03.006
[28]
Yamaki S B, Barros D S, Garcia C M, Socoloski P, OliveiraO N, Atvars T D . Langmuir, 2005,21:5414. https://www.ncbi.nlm.nih.gov/pubmed/15924470

doi: 10.1021/la046842j pmid: 15924470
[29]
Bhatnagar A, Sillanpaa M, Witek-Krowiak A . Chemical Engineering Journal, 2015,270:244.
[30]
Kim Y N, Choi M K . Environmental Science & Technology, 2014,48:7503. https://www.ncbi.nlm.nih.gov/pubmed/24894447

doi: 10.1021/es501003m pmid: 24894447
[31]
Meng X Y, Vaccari D A, Zhang J F, Fiume A, Meny X G . Environmental Science & Technology, 2014,48:1541. https://www.ncbi.nlm.nih.gov/pubmed/24410613

doi: 10.1021/es4043534 pmid: 24410613
[32]
Ling C, Li X, Zhang Z, Liu F, Deng Y, Zhang X, Li A, He L, Xing B . Environmental Science & Technology, 2016,50:10015. https://www.ncbi.nlm.nih.gov/pubmed/27574832

doi: 10.1021/acs.est.6b02846 pmid: 27574832
[33]
Ahmad M, Rajapaksha A U, Lim J E, Zhang M, Bolan N, Mohan D, Vithanage M, Lee S S, Ok Y S . Chemosphere, 2014,99:19. https://www.ncbi.nlm.nih.gov/pubmed/24289982

doi: 10.1016/j.chemosphere.2013.10.071 pmid: 24289982
[34]
Lian F, Xing B . Environmental Science & Technology, 2017,51:13517. https://www.ncbi.nlm.nih.gov/pubmed/29116778

doi: 10.1021/acs.est.7b02528 pmid: 29116778
[35]
Chen Z, Chen B, Chiou C T . Environmental Science & Technology, 2016,46:11104. https://www.ncbi.nlm.nih.gov/pubmed/22970831

doi: 10.1021/es302345e pmid: 22970831
[36]
Tong X J, Li J Y, Yuan J H, Xu R K . Chemical Engineering Journal, 2011,172:828.
[37]
Xiao X, Chen B, Chen Z, Zhu L, Schnoor J L . Environmental Science & Technology, 2018,52:5027. https://pubs.acs.org/doi/10.1021/acs.est.7b06487

doi: 10.1021/acs.est.7b06487
[38]
Chen Z, Chen B, Zhou D, Chen W . Environmental Science & Technology, 2012,46:12476. https://www.ncbi.nlm.nih.gov/pubmed/23121559

doi: 10.1021/es303351e pmid: 23121559
[39]
Kim W K, Shim T, Kim Y S, Hyun S, Ryu C . Bioresource Technology, 2013,138:266. 5eac4a11-b02e-4ef5-b8a4-c349806b6193http://dx.doi.org/10.1016/j.biortech.2013.03.186

doi: 10.1016/j.biortech.2013.03.186
[40]
Kumar S, Loganathan V A, Gupta R B, Barnett M O . Journal of Environmental Management, 2011,92:2504. 74cc8c6f-3319-47dc-8076-8b6dd0f0e503http://www.sciencedirect.com/science/article/pii/S030147971100168X

doi: 10.1016/j.jenvman.2011.05.013
[41]
Pintor A M, Ferreira C I, Pereira J C, Correia P, Silva S P, Vilar V J, Botelho C M, Boaventura R A . Water Research, 2012,46:3152. 748db84a-3816-4424-9f27-4050287a3e4ehttp://dx.doi.org/10.1016/j.watres.2012.03.048

doi: 10.1016/j.watres.2012.03.048
[42]
Lee J W, Kidder M, Evans B R, Paik S, Iii A C B, Garten C T, Brown R C . Environmental Science & Technology, 2010,44:7970. https://www.ncbi.nlm.nih.gov/pubmed/20836548

doi: 10.1021/es101337x pmid: 20836548
[43]
Yuan J H, Xu R K, Zhang H . Bioresource Technology, 2011,102:3488. https://www.ncbi.nlm.nih.gov/pubmed/21112777

doi: 10.1016/j.biortech.2010.11.018 pmid: 21112777
[44]
Harvey O R, Herbert B E, Rhue R D, Kuo L J . Environmental Science & Technology, 2011,45:5550. https://www.ncbi.nlm.nih.gov/pubmed/21630654

doi: 10.1021/es104401h pmid: 21630654
[45]
Malghani S, Gleixner G, Trumbore S E . Soil Biology & Biochemistry, 2013,62:137.
[46]
Sabio E, Álvarez-Murillo A, Román S, Ledesma B . Waste Management, 2015,47:122. https://www.ncbi.nlm.nih.gov/pubmed/25981156

doi: 10.1016/j.wasman.2015.04.016 pmid: 25981156
[47]
Huff M D, Kumar S, Lee J W . Journal of Environmental Management, 2014,146:303. https://www.ncbi.nlm.nih.gov/pubmed/25190598

doi: 10.1016/j.jenvman.2014.07.016 pmid: 25190598
[48]
Liu Z G, Zhang F S . Journal of Hazardous Materials, 2009,167:933. https://www.ncbi.nlm.nih.gov/pubmed/19261383

doi: 10.1016/j.jhazmat.2009.01.085 pmid: 19261383
[49]
Elaigwu S E, Rocher V, Kyriakou G, Greenway G M . Journal of Industrial & Engineering Chemistry, 2014,20:3467.
[50]
Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, Kern J . Bioresource Technology, 2011,102:9255. https://www.ncbi.nlm.nih.gov/pubmed/21802284

doi: 10.1016/j.biortech.2011.06.099 pmid: 21802284
[51]
Coronella C J, Lynam J G, Reza M T, Uddin M H . Energy Fuels, 2011,25:1802.
[52]
Regmi P, Moscoso J L G, Kumar S, Cao X, Mao J, Schafran G . Journal of Environmental Management, 2012,109:61. https://www.ncbi.nlm.nih.gov/pubmed/22687632

doi: 10.1016/j.jenvman.2012.04.047 pmid: 22687632
[53]
Gao Y, Wang X, Wang J, Li X, Cheng J, Yang H, Chen H . Energy, 2013,58:376.
[54]
Parshetti G K, Hoekman S K, Balasubramanian R . Bioresour. Technol., 2013,135:683. https://www.ncbi.nlm.nih.gov/pubmed/23127830

doi: 10.1016/j.biortech.2012.09.042 pmid: 23127830
[55]
Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J . ACS Sustainable Chemistry & Engineering, 2013,1:1092.
[56]
Zhang Z B, Cao X H, Liang P, Liu Y H . Journal of Radioanalytical & Nuclear Chemistry, 2013,295:1201.
[57]
Xiao L P, Shi Z J, Xu F, Sun R C . Bioresource Technology, 2012,118:619. https://www.ncbi.nlm.nih.gov/pubmed/22698445

doi: 10.1016/j.biortech.2012.05.060 pmid: 22698445
[58]
吴艳姣(Wu Y J), 李伟(Li W), 吴琼(Wu Q), 刘守新(Liu S X) . 化学进展 (Progress in Chemistry), 2016,28(1):121.
[59]
Kumar S, Kothari U, Kong L Z, Lee Y Y, Gupta R B . Biomass Bioenerg., 2011,35:956.
[60]
Sevilla M, Fuertes A B . Carbon, 2009,47:2281. https://www.ncbi.nlm.nih.gov/pubmed/19524009

doi: 10.1016/j.fct.2009.06.015 pmid: 19524009
[61]
Bai M, Wilske B, Bueqqer F, Esperschütz J, Kammann C I, Eckhardt C, Koestler M, Keraft P, Bach M, Frede H G, Breuer L . Plant & Soil, 2013,372:375.
[62]
Hadjittofi L, Prodromou M, Pashalidis I . Bioresource Technology, 2014,159:460. https://www.ncbi.nlm.nih.gov/pubmed/24718356

doi: 10.1016/j.biortech.2014.03.073 pmid: 24718356
[63]
Iriarte-Velasco U, Sierra I, Zudaire L, Ayastuy J L . Food & Bioproducts Processing, 2016,98:341.
[64]
Petrović J T, Stojanović M D, Milojković J V, Petrović M S, Šoštarić T D, Laušević M D, Mihajlović M L . Journal of Environmental Management, 2016,182:292. https://www.ncbi.nlm.nih.gov/pubmed/27494605

doi: 10.1016/j.jenvman.2016.07.081 pmid: 27494605
[65]
Goswami R, Shim J, Deka S, Kumari D, Kataki R, Kumar M . Ecological Engineering, 2016,97:444.
[66]
Chen H, Wang X, Li J, Wang X . Journal of Materials Chemistry A, 2015,3:6073.
[67]
Zhou L, Huang Y, Qiu W, Sun Z, Liu Z, Song Z . Molecules, 2017,22:173.
[68]
Michálekovárichveisová B, Frišták V, Pipíška M $breve{D}$uriška L Moreno-Jimenez E Soja G . Environmental Science & Pollution Research, 2017,24:463. https://www.ncbi.nlm.nih.gov/pubmed/27730505

doi: 10.1007/s11356-016-7820-9 pmid: 27730505
[69]
Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R . Dalton Transactions, 2013,42:5682. https://www.ncbi.nlm.nih.gov/pubmed/23443993

doi: 10.1039/c3dt33097d pmid: 23443993
[70]
Zhao G X, Li J X, Ren X M, Chen C L, Wang X K . Environmental Science & Technology, 2011,45:10454. https://www.ncbi.nlm.nih.gov/pubmed/22070750

doi: 10.1021/es203439v pmid: 22070750
[71]
Abdul G, Zhu X, Chen B . Chemical Engineering Journal, 2017,319:9.
[72]
Tang J, Lv H, Gong Y, Huang Y . Bioresource Technology, 2015,196:355. https://www.ncbi.nlm.nih.gov/pubmed/26255599

doi: 10.1016/j.biortech.2015.07.047 pmid: 26255599
[73]
Shang M, Liu Y, Liu S, Zeng G, Tan X, Jiang L, Huang X, Ding Y, Guo Y, Wang S . RSC Adv., 2016,6:85202.
[74]
Inyang M, Gao B, Zimmerman A, Zhang M, Chen H . Chemical Engineering Journal, 2014,236:39.
[75]
Inyang M, Gao B, Zimmerman A, Zhou Y, Cao X . Environmental Science & Pollution Research, 2015,22:1868. https://www.ncbi.nlm.nih.gov/pubmed/25212810

doi: 10.1007/s11356-014-2740-z pmid: 25212810
[76]
Ma Y, Liu W J, Zhang N, Li Y S, Jiang H, Sheng G P . Bioresource Technology, 2014,169:403. https://www.ncbi.nlm.nih.gov/pubmed/25069094

doi: 10.1016/j.biortech.2014.07.014 pmid: 25069094
[77]
Zhou Y, Gao B, Zimmerman A R, Chen H, Zhang M, Cao X . Bioresource Technology, 2014,152:538. https://www.ncbi.nlm.nih.gov/pubmed/24300585

doi: 10.1016/j.biortech.2013.11.021 pmid: 24300585
[78]
Yang G X, Jiang H . Water Research, 2014,48:396. https://www.ncbi.nlm.nih.gov/pubmed/24183556

doi: 10.1016/j.watres.2013.09.050 pmid: 24183556
[79]
Zhou Y, Gao B, Zimmerman A R, Fang J, Sun Y, Cao X . Chemical Engineering Journal, 2013,231:512.
[80]
Zhang M, Liu Y, Li T, Xu W, Zheng B, Tan X, Wang H, Guo Y, Guo F, Wang S . RSC Adv., 2015,5:46955.
[81]
Menon P M, Selvakumar R, Kumar P S, Ramakrishna S . RSC Adv., 2017,7:42750.
[82]
Bhatnagar A, Sillanpää M, Witekkrowiak A . Chemical Engineering Journal, 2015,270:244.
[83]
Deepa B, Abraham E, Cordeiro N, Mozetic M, Mathew A P, Oksman K, Faria M, Thomas S, Pothan L A . Cellulose, 2015,22:1075.
[84]
Kalia S, Boufi S, Celli A, Kango S . Colloid & Polymer Science, 2014,292:5.
[85]
Khalil H P S A, Davoudpour Y, Islam M N, Mustapha A, Sudesh K, Dungani R, Jawaid M . Carbohydr. Polym., 2014,99:649. https://www.ncbi.nlm.nih.gov/pubmed/24274556

doi: 10.1016/j.carbpol.2013.08.069 pmid: 24274556
[86]
杜海顺(Du H S), 刘超(Liu C), 张苗苗(Zhang M M), 孔庆山(Kong Q S), 李滨(Li B), 咸漠(Xian M) . 化学进展 (Progress in Chemistry), 2018,30(4):448.
[87]
Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K . Cellulose, 2011,18:775. http://link.springer.com/10.1007/s10570-011-9501-7

doi: 10.1007/s10570-011-9501-7
[88]
茹静(Ru J), 耿璧垚(Geng B Y), 童聪聪(Tong C C), 王海英(Wang H Y), 吴胜春(Wu S C), 刘宏治(Liu H Z) . 化学进展 (Progress in Chemistry), 2017,29(10):1228.
[89]
Faruk O, Bledzki A K, Fink H P, Sain M . Progress in Polymer Science, 2012,37:1552. 00ee3556-d869-4aab-94c2-3758d224e6cdhttp://dx.doi.org/10.1016/j.progpolymsci.2012.04.003

doi: 10.1016/j.progpolymsci.2012.04.003
[90]
O’Connell D W, Birkinshaw C, O’Dwyer T F . Bioresource Technology, 2008,99:6709. https://www.ncbi.nlm.nih.gov/pubmed/18334292

doi: 10.1016/j.biortech.2008.01.036 pmid: 18334292
[91]
Gamze G, Gülten G, Saadet Ö . J. Appl. Polym. Sci., 2010,90:2034.
[92]
Liu X, Zhou Y, Nie W, Song L, Chen P . J. Mater. Sci., 2015,50:6113.
[93]
Liu L, Xie J P, Li Y J, Zhang Q, Yao J M . Cellulose, 2016,23:723.
[94]
Song K, Xu H, Xu L, Xie K, Yang Y . Bioresource Technology, 2017,232:252.
[95]
Mohammed N, Grishkewich N, Berry R, Tam K . Cellulose, 2015,22:3725.
[96]
Hokkanen S, Bhatnagar A, Sillanpää M . Water Research, 2016,91:156. https://www.ncbi.nlm.nih.gov/pubmed/26789698

doi: 10.1016/j.watres.2016.01.008 pmid: 26789698
[97]
Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimaa J, Sillanpää M . Cellulose, 2014,21:1471.
[98]
Zhou Y, Hu X, Zhang Q, Ma T . J. Mater. Sci., 2012,47:5019.
[99]
Batmaz R, Mohammed N, Zaman M, Minhas G, Berry R M, Tam K C . Cellulose, 2014,21:1655.
[100]
Memon S Q, Memon N, Shah S W, Khuhawar M Y, Bhanger M I . Journal of Hazardous Materials, 2007,139:116. https://www.ncbi.nlm.nih.gov/pubmed/16844287

doi: 10.1016/j.jhazmat.2006.06.013 pmid: 16844287
[101]
Jorgetto A O, Silva R I V, Longo M M, Saeki M J, Padilha P M, Martines M A U, Rocha B P, Castro G R . Applied Surface Science, 2013,264:368.
[102]
Hokkanen S, Repo E, Sillanpää M . Chemical Engineering Journal, 2013,223:40.
[103]
Henriksson M, Berglund L A . Journal of Applied Polymer Science, 2010,106:2817.
[104]
Peng T, Cheng Y L . Polymer, 2001,42:2091.
[105]
Yamada K, Nagano R, Hirata M . Journal of Applied Polymer Science, 2010,99:1895.
[106]
Hemvichian K, Chanthawong A, Suwanmala P . Radiation Physics & Chemistry, 2014,103:167.
[107]
Desmet G, Takács E, Wojnárovits L, Borsa J . Radiation Physics & Chemistry, 2011,80:1358.
[108]
Nasef M M, Hegazy E S A . Progress in Polymer Science, 2004,29:499.
[109]
Bhattacharya A, Misra B N . Progress in Polymer Science, 2004,29:767.
[110]
Wojnárovits L, Földváry C M, Takács E . Radiation Physics & Chemistry, 2010,79:848.
[111]
Zhang M, Song L H, Jiang H, Li S, Shao Y, Yang J, Li J . Journal of Materials Chemistry A, 2017,5:3434.
[112]
Liu L, Gao Z Y, Su X P, Chen X, Jiang L, Yao J M . ACS Sustainable Chemistry, 2015,3:432.
[113]
Anirudhan T S, Nima J, Divya P L . Applied Surface Science, 2013,279:441.
[114]
Zhou Y, Zhang M, Hu X, Wang X, Niu J, Ma T . Journal of Chemical & Engineering Data, 2013,58:413.
[115]
Hajeeth T, Vijayalakshmi K, Gomathi T, Sudha P N . Int. J. Biol. Macromol., 2013,62:59. https://www.ncbi.nlm.nih.gov/pubmed/23994787

doi: 10.1016/j.ijbiomac.2013.08.029 pmid: 23994787
[116]
Ramos S N D C, Xavier A L P, Teodoro F S, Gil L F, Gurgel L V A . Industrial Crops & Products, 2016,79:116.
[117]
Zhu H X, Cao X J, He Y C, Kong Q P, He P, Wang J . Carbohydrate Polymers, 2015,129:115. https://www.ncbi.nlm.nih.gov/pubmed/26050896

doi: 10.1016/j.carbpol.2015.04.049 pmid: 26050896
[118]
Zakzeski J, Bruijnincx P C A, Jongerius A L, Weckhuysen B M . Chemical Reviews, 2013,110:3552. https://www.ncbi.nlm.nih.gov/pubmed/20218547

doi: 10.1021/cr900354u pmid: 20218547
[119]
蒋叶涛(Jiang Y T), 宋晓强(Song X Q), 孙勇(Sun Y), 曾宪海(Zeng X H), 唐兴(Tong X), 林鹿(Lin L) . 化学进展 (Progress in Chemistry), 2017,29(10):1273.
[120]
Thakur V K, Thakur M K, Raghavan P, Kessler M R . ACS Sustainable Chemistry, 2014,2:1072.
[121]
Harmita H, Karthikeyan K, Pan X . Bioresour Technol, 2009,100:6183. https://www.ncbi.nlm.nih.gov/pubmed/19643604

doi: 10.1016/j.biortech.2009.06.093 pmid: 19643604
[122]
Tian J, Ren S, Fang G, Ma Y, Ai Q . BioResources, 2014,9:1930.
[123]
Lü Q F, Luo J J, Lin T T, Zhang Y Z . ACS Sustainable Chemistry & Engineering, 2013,2:465.
[124]
Ge Y, Xiao D, Li Z, Cui X . Journal of Materials Chemistry A, 2015,3:7666.
[125]
Klapiszewski Ł, Siwińska-Stefańska K, Kołodyńska D . Chemical Engineering Journal, 2017,314:169.
[126]
Yao Q, Xie J, Liu J, Kang H, Liu Y . Journal of Polymer Research, 2014,21:465.
[127]
Ge Y, Li Z . ACS Sustainable Chemistry & Engineering, 2018,6:7192.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[9] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[10] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[11] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[12] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[13] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[14] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[15] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.