中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (0203): 345-357 DOI: 10.7536/PC130745 Previous Articles   Next Articles

• Review •

Reaction Mechanisms of Olefin Hydrosilylation Catalyzed by Several Transition Metal Complexes

Zhao Yan, Guo Caihong*, Wu Haishun*   

  1. School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21203115)

PDF ( 3124 ) Cited
Export

EndNote

Ris

BibTeX

Silicon-based products such as oil, grease, rubbers, resin, etc. are widely used in the industrial, agricultural, medicinal, and other areas. The above-mentioned are not naturally substances, and organosilicon compounds as the effective component are manufactured artificially. The hydrosilylation of olefins is one of the most straightforward and atom-economical methods for the generation of versatile silicon-containing intermediates in silicon chemistry. Also the catalysts are very necessary. Transition metal complexes are confirmed to have high activity and selectivity. The Pt-based complexes, such as Karstedts and Speiers catalysts, are most widely used in the past. Over the past years, the transition-metal-based catalysts such as Pd, Rh, Ru, Zr, etc. have been reported to be efficient in the alkene hydrosilylation reaction. In this paper, we mainly introduce the advances in new reaction mechanisms of olefin hydrosilylation catalyzed by several transition metal complexes. In particular, we highlight the new mechanistic pathways from the experimental studies and quantum mechanics calculations. Not only a summary of previous works is given, but also some ideas and inspirations are provided for future research.

Contents
1 Introduction
2 Mechanisms of olefin hydrosilylation catalyzed by late transition metal complexes
2.1 Platinum complexes catalysts
2.2 Reaction mechanism catalyzed by platinum complexes
2.3 Ruthenium complexes catalysts and reaction mechanisms of olefin hydrosilylation
3 Mechanisms of olefin hydrosilylation catalyzed by middle transition metal complexes
3.1 Family of chromium (Cr、Mo、W) complexes catalysts and reaction mechanism
3.2 Family of manganese (Mn、Tc、Re) complexes catalysts and reaction mechanism
4 The mechanism of olefin hydrosilylation catalyzed by early transition metal (Zr、Ti、Hf) complexes
5 Conclusion and outlook

CLC Number: 

[1] 杜作栋(Du Z D), 陈剑华(Chen J H), 贝小来(Bei X L). 有机硅化学(Organosilicon Chemistry). 北京: 高等教育出版社(Beijing: Higher Education Press), 1990. 40: 102.
[2] Sommer L H, Pietrusza E W, Whitmore F C. J. Am. Chem. Soc., 1947, 69(1): 188.
[3] El-Abbady A M, Anderson L C. J. Am. Chem. Soc., 1958, 80(7): 1737.
[4] Burkhard C A, Krieble R H. J. Am. Chem. Soc., 1947, 69(11): 2687.
[5] Speier J L, Webster J A, Barnes G H. J. Am. Chem. Soc., 1957, 79(4): 974.
[6] Johnson C R, Raheja R K. J. Org. Chem., 1994, 59(9): 2287.
[7] Watanabe H, Aoki M, Sakurai N, Watanabe K, Nagai Y. J. Organomet. Chem., 1978, 160(2): C1.
[8] Skvortsov N K, Spevak V N, Pashnova L V. Russ. J. Gen. Chem., 1997, 67(3): 487.
[9] 黄光佛(Huang G F), 李盛彪(Li S B), 孙争光(Sun Z G), 黄世强(Huang S Q). 分子催化(Journal of Molecular Catalysis), 2000, 14(6): 409.
[10] 黄锁义(Huang S Y), 田华(Tian H), 郝振文(Hao Z W), 王麟生(Wang L S). 化工技术与开发(Technology & Development of Chemical Industry), 2003, 32(6): 33.
[11] 管雁(Guan Y), 吴清州(Wu Q Z), 陈关喜(Chen G X), 冯建跃(Feng J Y), 莫卫民(Mo W M). 化学研究(Chemical Research), 2010, 21(2): 100.
[12] 柯颖芬(Ke Y F). 浙江大学硕士学位论文(Master Dissertation of Zhejiang University), 2006.
[13] Chalk A J, Harrod J F. J. Am. Chem. Soc., 1965, 87(1): 16.
[14] Schuerman J A, Fronczek F R, Selbin J. J. Am. Chem. Soc., 1986, 108(2): 336.
[15] Seitz F, Wrighton M S. Angew. Chem. Int. Ed. Engl., 1988, 27(2): 289.
[16] Bergens S H, Noheda P, Whelan J, Bosnich B. J. Am. Chem. Soc., 1992, 114(6): 2128.
[17] Brookhart M, Grant B E. J. Am. Chem. Soc., 1993, 115(6): 2151.
[18] LaPointe A M, Rix F C, Brookhart M. J. Am. Chem. Soc., 1997, 119(5): 906.
[19] Sakaki S, Mizoe N, Sugimoto M. Organometallics, 1998, 17(12): 2510.
[20] Sakaki S, Sumimoto M, Fukuhara M, Sugimoto M, Fujimoto H, Matsuzaki S. Organometallics, 2002, 21(18): 3788.
[21] Giorgi G, Angelis F D, Re N, Sgamellotti A. J. Mol. Struc. THEOCHEM, 2003, 623(1/3): 277.
[22] Corey J Y, Braddock-Wilking J. Chem. Rev., 1999, 99(1): 175.
[23] Brost R D, Bruce G C, Joslin F L, Stobart S R. Organometallics, 1997, 16(26): 5669.
[24] Yamashita H, Tanaka M, Goto M. Organometallics, 1997, 16(21): 4696.
[25] Roy A K, Taylor R B. J. Am. Chem. Soc., 2002, 124(32): 9510.
[26] Stein J, Lewis L N, Gao Y, Scott R A. J. Am. Chem. Soc., 1999, 121(15): 3693.
[27] Steffanut P, Osborn J A, DeCian A, Fisher J. Chem. Eur. J., 1998, 4(10): 2008.
[28] Caseri W, Pregosin P S. Organometallics, 1988, 7(6): 1373.
[29] Caseri W, Pregosin P S. J. Organomet. Chem., 1988, 356(2): 259.
[30] Jagadeesh M N, Thiel W, Köhler J, Fehn A. Organometallics, 2002, 21(10): 2076.
[31] Tsipis C A, Kefalidis C E. J. Organomet. Chem., 2007, 692(23): 5245.
[32] Lewis L N, Uriarte R J. Organometallics, 1990, 9(3): 621.
[33] Lewis L N, Lewis N. J. Am. Chem. Soc., 1986, 108(23): 7228.
[34] Lewis L N. J. Am. Chem. Soc., 1990, 112(16): 5998.
[35] Marciniec B, Maciejewski H, Duczmal W, Fiedorow R, Kityński. Appl. Organomet. Chem., 2003, 17: 127.
[36] Gigler P, Drees M, Riener K, Bechlars B, Herrmann W A. J. Catal., 2012, 295: 1.
[37] Glaser P B, Tilley T D. J. Am. Chem. Soc., 2003, 125(45): 13640.
[38] Böhme U. J. Organomet. Chem., 2006, 691(21): 4400.
[39] Beddie C, Hall M B. J. Phys. Chem. A, 2006, 110(4): 1416.
[40] Beddie C, Hall M B. J. Am. Chem. Soc., 2004, 126(42): 13564.
[41] Chung L W. PhD thesis of the Hong Kong University of Science ang Technology, 2006.
[42] Tuttle T, Wang D, Thiel W, Köhler J, Hofmann M, Weis J. Organometallics, 2006, 25(19): 4504.
[43] Tuttle T, Wang D, Thiel W, Köhler J, Hofmann M, Weis J. J. Organomet. Chem., 2007, 692(11): 2282.
[44] Wrighton M S, Schroeder M A. J. Am. Chem. Soc., 1974, 96(19): 6235.
[45] Abdelqader W, Özkar S, Peynircioglu N B Z. Naturforsch, 1993, 48B: 539.
[46] Abdelqader W, Chmielewski D, Grevels F W, Özkar S, Peynircioglu N B. Organometallics, 1996, 15(2): 604.
[47] Wrighton M S, Schroeder M A. J. Am. Chem. Soc., 1974, 96(19): 6235.
[48] Wrighton M, Hammond G S, Gray H B. J. Organomet. Chem., 1974, 70(2): 283.
[49] Wang I H, Dobson G R. J. Organomet. Chem., 1988, 356(1): 77.
[50] Wang I H, Dobson G R, Jones P R. Organometallics, 1990, 9(9): 2510.
[51] Khalimon A Y, Simionescu R, Nikonov G I. J. Am. Chem. Soc., 2011, 133(18): 7033.
[52] Schmidt T. Tetrahedron Lett., 1994, 35(21): 3513.
[53] Mao Z, Gregg B T, Cutler A R. J. Am. Chem. Soc., 1995, 117(40): 10139.
[54] Gregg B T, Cutler A R. J. Am. Chem. Soc., 1996, 118(42): 10069.
[55] Chung L W, Lee H G, Lin Z, Wu Y. J. Org. Chem., 2006, 71(16): 6000.
[56] Liu L, Bi S, Sun M, Yuan X, Zheng N, Li P. J. Organomet. Chem., 2009, 694(20): 3343.
[57] Kesti M R, Waymouth R M. Organometallics, 1992, 11(3): 1095.
[58] Kesti M R, Abdulrahman M, Waymouth R M. J. Organomet. Chem., 1991, 417(1/2): C12.
[59] Takahashi T, Hasegawa M, Suzuki N, Saburi M, Rousset C J, Fanwick P E, Negishi E. J. Am. Chem. Soc., 1991, 113(22): 8564.
[60] Corey J Y, Zhu X H. Organometallics, 1992, 11(2): 672.
[61] Harrod J F, Yun S S. Organometallics, 1987, 6(7): 1381.
[62] Wu Y D, Chung L W, Zhang X H. Computational Modeling for Homogeneous and Enzymatic Catalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 285.
[63] Ura Y, Hara R, Takahashi T. Chem. Lett., 1998, 27(3): 195.
[64] Terao J, Torii K, Saito K, Kambe N, Baba A, Sonoda N. Angew. Chem. Int. Ed., 1998, 37(19): 2653.
[65] Sakaki S, Takayama T, Sumimoto M, Sugimoto M. J. Am. Chem. Soc., 2004, 126(10): 3332.
[66] Sakaki S, Takayama T, Sugimoto M. Chem. Lett., 2001, 30(12): 1222.

[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[7] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[8] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[9] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[12] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[13] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[14] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[15] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.