中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Preparation of FeNi Nano-Alloy with Various Morphologies

Yao Yonglin, Zhang Chuanfu*, Zhan Jing, Wu Jianhui, Li Changjun   

  1. School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China
  • Received: Revised: Online: Published:
PDF ( 1100 ) Cited
Export

EndNote

Ris

BibTeX

As an important functional material, FeNi nano-alloy exhibits great potential for using as magnetic recording materials, catalyst, absorbing materials, biomedicine materials and so on for its unique electromagnetic and catalytic properties. Due to the important impact of morphology of the material on its performance, the preparation of FeNi nanostructure with various morphologies including nanosphere, one-dimensional nanostructure, nanodot, nanoring, nanoplate, nanoflower, nanobranch and no particular shape are summarized in this paper. The basic principles and regulation rules of each method are described, and the advantages and disadvantages are evaluated briefly. The mechanism and law of the morphology and size of the material that influence on its properties are also described, and the application fields of FeNi nano-alloy with different morphologies are pointed out. Finally, the future research direction is prospected. Contents
1 Introduction
2 Preparation of FeNi nano-alloy
2.1 Nanospheres
2.2 One-dimensional nanostructure
2.3 Nanodots
2.4 Nanorings
2.5 Nanoplates
2.6 Nanoflowers
2.7 Nanobranches
2.8 No particular shape
3 Conclusion and outlook

CLC Number: 

[1] Hickey M C, Atkinson D, Marrows C H, Hickey B J. J. Appl. Phys., 2008, 103: art. no. 07D518
[2] Chou S Y, Krauss P R, Kong L. J. Appl. Phys., 1996, 79: art. no. 6101
[3] Zhang W H, Quan X, Zhang Z Y. J. Environ. Sci., 2007, 19: 362-366
[4] Schrick B, Blough J L, Jones A D, Mallouk T E. Chem. Mater., 2002, 14: 5140-5147
[5] Tanaka A, Yoon S H, Mochida I. Carbon, 2004, 42: 1291-1298
[6] Li X C, Gong R Z, Nie Y, Zhao Z S, He H H. Mater. Chem. Phys., 2005, 94: 408-411
[7] Feng Y B, Qiu T. J. Alloys Compd., 2012, 513: 455-459
[8] Park K Y, Han J H, Lee S B, Yi J W. Compos. A Appl. Sci. Manuf., 2011, 42: 573-578
[9] Yang H, Li X J, Zhou H, Zhuang Y M, Hu H, Wu H X, Yang S P. J. Alloys Compd., 2011, 509: 1217-1221
[10] Dai M F, Hsiao J K, Lee S C, Chen S T. The Chinese Journal of Process Engineering, 2006, 6: 249-252
[11] Ueda Y, Takahashi M. J. Phys. Soc. Jpn., 1980, 9: 477
[12] Dong X L, Zhang Z D, Jin S R, Sun W M, Zhao X G, Li Z J, Chuang Y C. J. Mater. Res., 1999, 14: 1782-1790
[13] Dong X L, Zhang Z D, Zhao X G, Chuang Y C, Jin S R, Sun W M. J. Mater. Res., 1999, 14: 398-406
[14] Liu Y S, Zhang J C, Yu L M, Jia G Q, Jing C, Cao S X. J. Magn. Magn. Mater., 2005, 285: 138-144
[15] Guillaume C E. C R. Acad. Sci. Paris, 1897, 125: 235-238
[16] Wohlfarth E P. Ferromagnetic Materials, vol. 2. Amsterdam: North-Holland Publishing Co., 1980. 123
[17] 朱俊武(Zhu J W), 张维光( Zhang W G), 王恒志(Wang H Z), 杨绪杰(Yang X J), 陆路德(Lu L D), 汪信(Wang X). 无机化学学报(Chin. J. Inorg. Chem. ), 2004, 20: 863-867
[18] Gleiter H. Acta Mater., 2000, 48: 1-29
[19] Hao E, Bailey R C, Schatz G C, Hupp J T, Li S. Nano Lett., 2004, 4: 327-330
[20] Ramaye Y, Neveu S, Cabuil V. J. Magn. Magn. Mater., 2005, 289: 28-31
[21] He Y, Shi G G. J. Phys. Chem. B, 2005, 109: 17503-17511
[22] Herzer G. IEEE Trans. Magn., 1990, 26: 1397-1402
[23] Herzer G. Scr. Metall. Mater., 1995, 33: 1741-1756
[24] Gurmena S, Ebina B, Stopi Dc' S, Friedrich B. J. Alloys Compd., 2009, 480: 529-533
[25] Chau J L H. Mater. Lett., 2007, 61: 2753-2756
[26] Duhamel C, Champion Y, Tencé M, Walls M. J. Alloys Compd., 2005, 393: 204-210
[27] Liao Q L, Tannenbaum R, Wang Z L. J. Phys. Chem. B, 2006, 110: 14262-14265
[28] Lu X G, Liang G Y, Zhang Y M. Mater. Sci. Eng. B, 2007, 139: 124-127
[29] Chen Y Z, She H D, Luo X H, Yue G H, Mi W B, Bai H L, Peng D L. J. Nanosci. Nanotechnol., 2010, 10: 3053-3059
[30] McNerny K L, Kim Y, Laughlin D E, McHenry M E. J. Appl. Phys., 2010, 107: art. no. 09A312
[31] Larin V S, Torcunov A V, Zhukov A, Gonzalez J, Vazquez M, Panina L. J. Magn. Magn. Mater., 2002, 249: 39-45
[32] Strom-Olsen J. Mater. Sci. Eng. A, 1994, A178: 239-243
[33] Clow B B. Adv. Mater. Processes, 1996, 150: 33-34
[34] Tourillon G, Pontonnier L, Levy J P, Langlais V. Electrochem. Solid-State Lett., 2000, 3: 20-23
[35] Yang Y W, Chen Y B, Liu F, Chen X Y, Wu Y C. Electrochim. Acta, 2011, 56: 6420-6425
[36] Xue T, Wang X, Lee J M. J. Power Sources, 2012, 201: 382-386
[37] Kovtyukhova N I, Mallouk T E. Nanoscale, 2011, 3: 1541-1552
[38] Cortes A, Lavin R, Denardin J C, Marotti R E, Dalchiele E A, Valdivia P, Gomez H. J. Nanosci. Nanotechnol., 2011, 11: 3899-3910
[39] Inguanta R, Rinaldo E, Piazza S, Sunseri C. Electrochem. Solid-State Lett., 2010, 13: K1-K4
[40] Xue S H, Li M, Wang Y H, Xu X M. Thin Solid Films, 2009, 517: 5922-5926
[41] Rousse C, Fricoteaux P. J. Mater. Sci., 2011, 46: 6046-6053
[42] Nur U S, Kok K Y, Ng I K. Adv. Mater. Res., 2012, 364: 303-307
[43] Wang X L. J. Mater. Sci., 2012, 47: 739-745
[44] Kashi M A, Ramazani A, Akhshi N, Esmaeily A S. Jpn. J. Appl. Phys., 2012, 51: art. no. 025003
[45] Fathi R, Sanjabi S, Bayat N. Mater. Lett., 2012, 66: 346-348
[46] Atalay F E, Kaya H, Atalay S, Tari S. J. Alloys Compd., 2009, 469: 458-463
[47] Bogart L K, Atkinson D, O’Shea K, McGrouther D, McVitie S. Phys. Rev. B, 2009, 79: art. no. 054414
[48] O’Shea K J, McVitie S, Chapman J N, Weaver J M R. Appl. Phys. Letts., 2008, 93: art. no. 202505
[49] Petit D, Jausovec A V, Read D, Cowburn R P. J. Appl. Phys., 2008, 103: art. no. 114307
[50] Liew H F, Low S C, Lew W S. J. Phys. Conf. Ser., 2011, 266: art. no. 012058
[51] Aravamudhan S, Singleton J, Goddard P A, Bhansali S. J. Phys. D: Appl. Phys., 2009, 42: art. no. 115008
[52] Aravamudhan S, Luongo K, Poddar P, Srikanth H, Bhansali S. Appl. Phys. A, 2007, 87: 773-780
[53] Lv R T, Kang F Y, Cai D Y, Wang C, Gu J L, Wang K L, Wu D H. J. Phys. Chem. Solids, 2008, 69: 1213-1217
[54] Xu M H, Zhong W, Qi X S, Au C T, Deng Y, Du Y W. J. Alloys Compd., 2010, 495: 200-204
[55] Wei X W, Zhu G X, Zhou J H, Sun H Q. Mater. Chem. Phys., 2006, 100: 481-485
[56] Suh Y J, Jang H D, Chang H, Kim W B, Kim H C. Powder Technol., 2006, 161: 196-201
[57] Jia J, Yu J C, Wang Y X J, Chan K M. ACS Appl. Mater. Interfaces, 2010, 2: 2579-2584
[58] Xu Y B, Hirohata A, Lopez-Diaz L, Leung H T, Tselepi M, Gardiner S M, Lee W Y, Bland J A C, Rousseaux F, Cambril E, Launois H. J. Appl. Phys., 2000, 87: 7019-7021
[59] Terris B D, Albrecht M, Hu G, Thomson T, Rettner C T. IEEE Trans. Magn., 2005, 41: 2822-2827
[60] McClelland G M, Hart M W, Rettner C T, Best M E, Carter K R, Terris B D. Appl. Phys. Lett., 2002, 81: 1483-1485
[61] Ross C A, Haratani S, Castano F J, Hao Y, Hwang M, Shima M, Cheng J Y, Vogeli B, Farhoud M, Walsh M, Smith H I. J. Appl. Phys., 2002, 91: 6848-6853
[62] Tanaka M, Itoh K, Iwamoto H, Yamaguchi A, Miyajima H, Yamaoka T. J. Magn. Magn. Mater., 2007, 310: e792-e793
[63] Liu W, Zhong W, Qiu L, Lu L Y, Du Y W. Eur. Phys. J. B, 2006, 51: 501-506
[64] Weekes S M, Ogrin F Y, Murray W A, Keatley P S. Langmuir, 2007, 23: 1057-1060
[65] Tiberto P, Boarino L, Celegato F, Coisson M, Enrico E, de Leo N, Vinai F, Allia P. J. Nanopart. Res., 2011, 13: 4211-4218
[66] Niu D X, Zou X, Wu J, Xu Y B. IEEE Trans. Magn., 2008, 44: 2749-2752
[67] Miller M M, Prinz G A, Cheng S F, Bounnak S. Appl. Phys. Lett., 2002, 81: 2211-2213
[68] Ren Y, Adeyeye A O. J. Appl. Phys., 2009, 105: art. no. 063901
[69] Ren Y, Jain S, Adeyeye A O, Ross C A. New J. Phys., 2010, 12: art. no. 093003
[70] Wang H Z, Li J G, Kou X L, Zhang L. J. Cryst. Growth, 2008, 310: 3072-3076
[71] Ciszek J W, Huang L, Wang Y, Mirkin C A. Small, 2008, 4: 206-210
[72] Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew. Chem., 2009, 48: 60-103
[73] Zhou X M, Wei X W. Cryst. Growth Des., 2009, 9: 7-12
[74] Liu L J, Guan J G, Shi W D, Sun Z G, Zhao J S. J. Phys. Chem. C, 2010, 114: 13565-13570
[75] Hong Y, Rheem Y, Lai M, Cwiertny D M, Walker S L, Myung N V. Chem. Eng. J., 2009, 151: 66-72
[76] Schlup W, Grewe H. Int. J. Mater. Prod. Technol., 1990, 5: 281-292
[77] Jartych E, Zurawicz J K, Oleszak D, Pekala M. J. Magn. Magn. Mater., 2000, 208: 221-230
[78] Kaloshkin S D, Tcherdyntsev V V, Tomilin I A, Baldokhin Y V, Shelekhov E V. Phys. B Condens. Matter., 2001, 299: 236-241
[79] Zhu L H, Huang Q W. Mater. Lett., 2003, 57: 4070-4073
[80] Fecht H J, Hellstern E, Fu Z, Johnson W L. Metall. Trans. A, 1990, 21A: 2333-2337
[81] Frase H N, Shull R D, Hong L B, Stephens T A, Gao Z Q, Fultz B. Nanostruct. Mater., 1999, 11: 987-993
[82] Le Caer G, Ziller T, Delcroix P, Bellouard C. Hyperfine Interact., 2000, 130: 45-70
[83] Zhou P H, Deng L J, Xie J L, Liang D F, Chen L. J. Electron. Sci. Technol. China, 2005, 3: 164-167
[84] Azizi A, Sadrnezhaad S K. J. Alloys Compd. 2009, 485: 484-487
[85] Azizi A. Mater. Sci. Eng. B, 2011, 176: 1517-1520
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[6] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[7] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[8] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[9] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[10] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[11] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[12] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[13] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[14] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[15] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.