中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (7): 989-1002 DOI: 10.7536/PC191202 Previous Articles   Next Articles

• Review •

Imprinted Composite Membranes

Runtian Wang1,2, Chunli Liu1,2,**(), Zhenbin Chen1,2,**()   

  1. 1. College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    2. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
  • Received: Online: Published:
  • Contact: Chunli Liu, Zhenbin Chen
  • About author:
    ** e-mail: (Chunli Liu);
    (Zhenbin Chen)
  • Supported by:
    joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals(18LHZD003); joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals(18LHPY004)
Richhtml ( 29 ) PDF ( 470 ) Cited
Export

EndNote

Ris

BibTeX

Imprinted composite membranes(IcMs) not only possess the efficient separation performance of membranes, but also possess the selective separation performance of imprinted polymers, which have attracted extensive attention all over the world for their well and precise separation property for target substances and high membrane flux. However, the research progress on IcMs has not been summarized yet, and problems existed in research process and the future perspective of IcMs are not analyzed and forecast. This paper summarizes the research and development process of IcMs and the research progress in preparation technology of IcMs, then classify IcMs according to their structure to several categories, namely, IcMs of a single-layer structure, IcMs of a dual-layer structure, IcMs of a multi-layer structure, IcMs of 3D macroporous structure and IcMs with smart sensing and separation properties. Finally, the preparation methods, structural characteristics and identification/separation properties of IcMs, and the potential problems coupled with those aspects are summarized and a future developing direction of this field is prospected.

Contents

1 Introduction

2 Imprinted membranes

2.1 History of imprinted membranes

2.2 Recognition mechanism and transfer mechanism of imprinted composite membranes

3 Classification of imprinted composite membranes based on structural differences

3.1 Single-layer structure imprinted composite membranes

3.2 Dual-layer structure imprinted composite membranes

3.3 Multi-layer structure imprinted composite membranes

3.4 3D macroporous imprinted composite membranes

4 Smart imprinted composite membranes

4.1 Switch-smart imprinted composite membrane

4.2 Integrated-smart imprinted composite membrane

5 Conclusion and outlook

Fig.1 The preparation route of imprinted separation layer and recognition mechanism
Fig.2 Mass transfer mechanism solution-diffusion model of imprinting membranes[31] Copyright 2001, Elsevier
Fig.3 “Gate”model[30] Copyright 1999, Elsevier
Fig.4 Schedule of diffusion of template imprinting composite membrane[34]
Fig.5 Schematic illustration of constructing IcMs for Cloxicillin[39]. Copyright 2018, Elsevier
Fig.6 Schematic illustration of constructing IcMs for D-Tryptophan[10].Copyright 2017, Elsevier
Fig.7 Schematic illustration of constructing IcMs for Cu2+[13]. Copyright 2018, Elsevier
Fig.8 Schematic illustration of constructing IcMs for artemisinin[46]. Copyright 2014, Elsevier
Fig.9 Schematic illustration of constructing IcMs for ibuprofen[47]. Copyright 2018, Elsevier
Fig.10 Schematic illustration of constructing IcMs for enrofloxacin[48]. Copyright 2019, Elsevier
Fig.11 Schematic illustration of constructing IcMs for artemisinin[51]. Copyright 2016, Wiley
Fig.12 Schematic illustration of constructing IcMs for Mo(Ⅵ)[52].Copyright 2016, Elsevier
Fig.13 Schematic illustration of constructing IcMs for norfloxacin[53]. Copyright 2018, Elsevier
Fig.14 Schematic illustration of constructing IcMs for norfloxacin[54].Copyright 2017, Royal Society of Chemistry
Fig.15 Schematic illustration of constructing IcMs for ibuprofen[55].Copyright 2018, Elsevier
Fig.16 Schematic illustration of constructing IcMs for enoxacin[56].Copyright 2019, Elsevier
Fig.17 Schematic illustration of constructing IcMs for artemisinin[57]. Copyright 2015, Elsevier
Fig.18 Schematic illustration of constructing IcMs for Li+[58]. Copyright 2018, Elsevier
Fig.19 Schematic illustration of constructing IcMs for ovalbumin[59]. Copyright 2015, Wiley
Fig.20 Schematic illustration of the synthesis of IcMs for artemisinin[60]. Copyright 2019, America Chemistry Society
Fig.21 Schematic illustration of the sythesis of IcMs for Li+[61]. Copyright 2019, Elsevier
Fig.22 Scheme for the preparation of IcMs for Pd2+[62]. Copyright 2020, Elsevier
Fig.23 Scheme for the preparation of IcMs for emodin[63]. Copyright 2019, Elsevier
Fig.24 Scheme for the preparation of IcMs for Dy3+[64]. Copyright 2017, Elsevier
Fig.25 Scheme for the preparation of IcMs for ciprofloxacin[23]. Copyright 2017, Elsevier
Fig.26 Scheme for the preparation of IcMs for Eu3+[66]. Copyright 2018, Elsevier
[1]
Chen A , Zeng G , Chen G , Hu X , Yan M , Guan S , Shang C , Lu L , Zou Z , Xie G . Chem. Eng. J., 2012,191:85. doi: 10.1016/j.cej.2012.02.071 https://linkinghub.elsevier.com/retrieve/pii/S138589471200304X
[2]
Fu J , Chen L , Li J , Zhang Z . J. Mater. Chem. A, 2015,3:13598. doi: 10.1039/C5TA02421H http://xlink.rsc.org/?DOI=C5TA02421H
[3]
Yoshikawa M , Tharpa K , Dima Ş . Chem. Rev., 2016,116, 11500. https://www.ncbi.nlm.nih.gov/pubmed/27610706

pmid: 27610706
[4]
Chen L , Xu S , Li J . Chem. Soc. Rev., 2011,40:2922. https://www.ncbi.nlm.nih.gov/pubmed/21359355

pmid: 21359355
[5]
Qiu X , Xu X , Liang Y , Hua Y , Guo H . J. Chromatogr. A, 2016,1429:79. doi: 10.1016/j.chroma.2015.12.025 https://www.ncbi.nlm.nih.gov/pubmed/26709022

pmid: 26709022
[6]
Shi C , Liu X , Song L , Qiao X , Xu Z . Food Anal. Method., 2015,8:2496. doi: 10.1007/s12161-015-0141-7 http://link.springer.com/10.1007/s12161-015-0141-7
[7]
Zhang R , Guo X , Shi X , Sun A , Wang L , Xiao T , Tang Z , Pan D , Li D , Chen J . Anal. Chem., 2014,86:11705. doi: 10.1021/ac503049s https://www.ncbi.nlm.nih.gov/pubmed/25381696

pmid: 25381696
[8]
Wu Y , Zhang Y , Zhang M , Liu F , Wan Y , Huang Z , Ye L , Zhou Q , Shi Y , Lu B . Food Chem., 2014,164:527. https://www.ncbi.nlm.nih.gov/pubmed/24996366

pmid: 24996366
[9]
DíaZ-Álvarez M , Barahona F , Turiel E , Martín-Esteban A . J. Chromatogr. A, 2014,1357:158. doi: 10.1016/j.chroma.2014.04.038 https://www.ncbi.nlm.nih.gov/pubmed/24780262

pmid: 24780262
[10]
Zhou Z , He L , Mao Y , Chai W , Ren Z . Chem. Eng. J., 2017,310:63. doi: 10.1016/j.cej.2016.10.070 https://linkinghub.elsevier.com/retrieve/pii/S1385894716314802
[11]
Sánchez-González J , García-Carballal S , Cabarcos P , Tabernero M J , Bermejo-Barrera P , Moreda-Piñeiro A . J. Chromatogr. A, 2016,1451:15. doi: 10.1016/j.chroma.2016.05.003 https://www.ncbi.nlm.nih.gov/pubmed/27207577

pmid: 27207577
[12]
Liu Q , Zhao Y , Pan J , Bruggen B V , Shen J . Sep. Purif. Technol., 2016,164:70. doi: 10.1016/j.seppur.2016.03.020 https://linkinghub.elsevier.com/retrieve/pii/S1383586616301241
[13]
Wang Z , Kong D , Qiao N , Wang N , Wang Q , Liu H , Zhou Z , Ren Z . Appl. Surf. Sci., 2018,457:981. doi: 10.1016/j.apsusc.2018.07.031 https://linkinghub.elsevier.com/retrieve/pii/S0169433218319056
[14]
Zhang J , Wang C , Niu Y , Li S , Luo R . Sensor. Actuat. B-Chem., 2017,249:747. doi: 10.1016/j.snb.2016.02.068 https://linkinghub.elsevier.com/retrieve/pii/S0925400516302179
[15]
Yu J , Hu X , Li D , Jiao C . Front. Earth Sci. China, 2009,3(4):480. doi: 10.1007/s11707-009-0055-z http://link.springer.com/10.1007/s11707-009-0055-z
[16]
Liu Z , Lv Y , Gao J , Li X , Zhai X , Zhao J , Xu X . J. Appl. Polym. Sci., 2012,126:1247. doi: 10.1002/app.v126.4 http://doi.wiley.com/10.1002/app.v126.4
[17]
Chen J H , Li G P , Liu Q L , Ni J C , Wu W B , Lin J M . Chem. Eng. J., 2010,165:465. doi: 10.1016/j.cej.2010.09.034 https://linkinghub.elsevier.com/retrieve/pii/S1385894710008648
[18]
Du X , Zhang H , Hao X , Guan G , Abudula A . ACS Appl. Mater. Inter., 2014,6:9543. doi: 10.1021/am501926u https://pubs.acs.org/doi/10.1021/am501926u
[19]
Chen X , Wang Z , Bi S , Li K , Du R , Wu C , Chen L . Chem. Eng. J., 2016,295:518. doi: 10.1016/j.cej.2016.03.043 https://linkinghub.elsevier.com/retrieve/pii/S138589471630273X
[20]
Joshi R K , Carbone P , Wang F C , Kravets V G , Su Y , Grigorieva I V , Wu H A , Geim A K , Nair R R . Science, 2014,343:752. https://www.ncbi.nlm.nih.gov/pubmed/24531966

pmid: 24531966
[21]
Yang H , Waldman R , Wu M , Hou J , Chen L , Darling S B , Xu Z . Adv. Funct. Mater., 2018,28:1705327 doi: 10.1002/adfm.201705327 http://doi.wiley.com/10.1002/adfm.201705327
[22]
Wu Y , Yan M , Liu X , Lv P , Cui J , Meng M , Dai J , Yan Y , Li C . Green Chem., 2015,17, 3338. doi: 10.1039/C5GC00453E http://xlink.rsc.org/?DOI=C5GC00453E
[23]
Wu Y , Yan M , Lu J , Wang C , Zhao J , Cui J , Li C , Yan Y . Chem. Eng. J., 2017,309, 98. doi: 10.1016/j.cej.2016.10.023 https://linkinghub.elsevier.com/retrieve/pii/S1385894716314243
[24]
Pauling L . J. Am. Chem. Soc., 1940,62:2643. doi: 10.1021/ja01867a018 https://pubs.acs.org/doi/abs/10.1021/ja01867a018
[25]
Dickey F H . J. Phys. Chem. 1955,59:695. doi: 10.1021/j150530a006 https://pubs.acs.org/doi/abs/10.1021/j150530a006
[26]
Michaels A S , Baddour R F , Bixler H J ; Choo C Y . Ind. Eng. Chem. Process Des. Dev. 1962,1:14. doi: 10.1021/i260001a003 https://pubs.acs.org/doi/abs/10.1021/i260001a003
[27]
Dzgoev A , Haupt K . Chirality, 1999,11:465. doi: 10.1002/(ISSN)1520-636X http://doi.wiley.com/10.1002/%28ISSN%291520-636X
[28]
Hong J , Anderson P E , Qian J , Martin C R . Chem. Mater., 1998,10:1029. doi: 10.1021/cm970608f https://pubs.acs.org/doi/10.1021/cm970608f
[29]
Ulbricht M . J. Chromatogr. B, 2004,804:113. doi: 10.1016/j.jchromb.2004.02.007 https://linkinghub.elsevier.com/retrieve/pii/S1570023204001345
[30]
Piletsky S A , Panasyuk T L , Piletskaya E V , Nicholls I A , Ulbricht M . J. Membrane Sci., 1999,157:263. doi: 10.1016/S0376-7388(99)00007-1 https://linkinghub.elsevier.com/retrieve/pii/S0376738899000071
[31]
Ent E M , Riet K , Keurentjes J T F , Padt A. J . Membrane Sci., 2001,185:207. doi: 10.1016/S0376-7388(00)00647-5 https://linkinghub.elsevier.com/retrieve/pii/S0376738800006475
[32]
Sellergren B , Shea K J . J. Chromatogr. A, 1993,635:31. doi: 10.1016/0021-9673(93)83112-6 https://linkinghub.elsevier.com/retrieve/pii/0021967393831126
[33]
Piletsky S A , Alcock S , Turner A P F . Trends Biotechnol., 2001,19:9. https://www.ncbi.nlm.nih.gov/pubmed/11146096

pmid: 11146096
[34]
杨座国(Yang Z G) . 华东理工大学博士论文 (Doctorial Dissertation of East China University of Science and Technology), 2005
[35]
Xu G , Wang J , Li C . Chem. Eng. J., 2012,198:310.
[36]
Shawky H A . J. Appl. Polym. Sci., 2009,114:2608. doi: 10.1002/app.v114:5 http://doi.wiley.com/10.1002/app.v114%3A5
[37]
Huang K , Chen Y , Zhou F , Zhao X , Liu J , Mei S , Zhou Y , Jing T . J. Hazard. Mater., 2017,333:137. doi: 10.1016/j.jhazmat.2017.03.035 https://www.ncbi.nlm.nih.gov/pubmed/28342354

pmid: 28342354
[38]
Li F , Jiang H , Zhang S . Talanta, 2007,71:1487. doi: 10.1016/j.talanta.2006.07.023 https://www.ncbi.nlm.nih.gov/pubmed/19071480

pmid: 19071480
[39]
Du W , Sun M , Guo P , Chang C , Fu Q . Food Chem., 2018,259:73. doi: 10.1016/j.foodchem.2018.03.107 https://www.ncbi.nlm.nih.gov/pubmed/29680065

pmid: 29680065
[40]
Liu Y , Meng M , Yao J , Da Z , Feng Y , Yan Y , Li C . Chem. Eng. J., 2016,286:622. doi: 10.1016/j.cej.2015.10.063 https://linkinghub.elsevier.com/retrieve/pii/S1385894715014746
[41]
Reis R , Zydney A . Curr. Opin. Biotech., 2001,12:208. doi: 10.1016/s0958-1669(00)00201-9 https://www.ncbi.nlm.nih.gov/pubmed/11287239

pmid: 11287239
[42]
Oh J K , Min K , Matyjaszewski K . Macromolecules, 2006,39:3161. doi: 10.1021/ma060258v https://pubs.acs.org/doi/10.1021/ma060258v
[43]
Wu Y , Yan Y , Pan J , Dai X , Shi W , Meng M . Chinese Chem. Lett, 2014,252:273.
[44]
Wang C , Hu X , Guan P , Wu D , Yang L , Du C . Adsorpt. Sci. Technol., 2015,33:411. doi: 10.1260/0263-6174.33.4.411 http://journals.sagepub.com/doi/10.1260/0263-6174.33.4.411
[45]
Cui J , Xie A , Zhou S , Liu S , Wang Q , Wu Y , Meng M , Lang J , Zhou Z , Yan Y . J. Colloid. Interf. Sci., 2019,533:278. doi: 10.1016/j.jcis.2018.08.055 https://linkinghub.elsevier.com/retrieve/pii/S0021979718309718
[46]
Wu Y , Meng M , Liu X , Li C , Zhang M , Ji Y , Sun F , He Z , Yan Y . Sep. Purif. Technol., 2014,131:117. doi: 10.1016/j.seppur.2014.05.001 026593f9-608c-4e25-b85e-287cd9d20fa3 http://dx.doi.org/10.1016/j.seppur.2014.05.001
[47]
Wu X , Wu Y , Dong H , Zhao J , Wang C , Zhou S , Lu J , Yan Y , Li H . Appl. Surf. Sci., 2018,428:555. doi: 10.1016/j.apsusc.2017.09.104 https://linkinghub.elsevier.com/retrieve/pii/S0169433217327538
[48]
Wang M , Wang Y , Qiao Y , Wei M , Gao L , Wang L , Yan Y , Li H . Spectrochim. Acta. A, 2019,222:117116. doi: 10.1016/j.saa.2019.05.021 https://linkinghub.elsevier.com/retrieve/pii/S1386142519304974
[49]
韦美华(Wei M H), 王枢(Wang S), 蒋婉莹(Jiang W Y), 陈洪岩(Chen H Y), 王毅(Wang Y) . 高分子材料科学与工程 (Polymer Materials Science and Engineering), 2017,33:126.
[50]
Liu Y , Ai K , Lu L . Chem. Rev. 2014,114, 5057. doi: 10.1021/cr400407a https://www.ncbi.nlm.nih.gov/pubmed/24517847

pmid: 24517847
[51]
Cui J , Wu Y , Meng M , Lu J , Wang C , Zhao J , Yan Y . J. Appl. Polym. Sci., 2016,113:43405.
[52]
Zeng J , Dong Z , Zhang Z , Liu Y . J. Hazard. Mater., 2017,333:128. doi: 10.1016/j.jhazmat.2017.03.016 https://www.ncbi.nlm.nih.gov/pubmed/28342353

pmid: 28342353
[53]
Zhao J , Wu Y , Wang C , Huang H , Lu J , Wu X , Cui J , Li C , Yan Y , Dong H . J. Taiwan Inst. Chem. E., 2018,89:198. doi: 10.1016/j.jtice.2018.03.015 https://linkinghub.elsevier.com/retrieve/pii/S1876107018301536
[54]
Zhao J , Wu Y , Zhou S , Yan L , Dong H , Chen L , Meng M , Li C , Yan Y . New J. Chem., 2017,41:14966. doi: 10.1039/C7NJ03402D http://xlink.rsc.org/?DOI=C7NJ03402D
[55]
Wu X , Wu Y , Chen L , Yan L , Zhou S , Zhang Q , Li C , Yan Y , Li H . J. Membrane Sci., 2018,553:151. doi: 10.1016/j.memsci.2018.02.043 https://linkinghub.elsevier.com/retrieve/pii/S0376738817329423
[56]
Gao J , Zhou S , Hou Z , Zhang Q , Meng M , Li C , Wu Y , Yan Y . Sep. Purif. Technol., 2019,218:59. doi: 10.1016/j.seppur.2019.01.079 https://linkinghub.elsevier.com/retrieve/pii/S1383586618336712
[57]
Wu Y , Liu X , Meng M , Lv P , Yan M , Wei X , Li H , Yan Y , Li C . J. Membrane Sci., 2015,490:169. doi: 10.1016/j.memsci.2015.04.023 https://linkinghub.elsevier.com/retrieve/pii/S037673881500352X
[58]
Lu J , Qin Y , Zhang Q , Wu Y , Cui J , Li C , Wang L , Yan Y . Appl. Surf. Sci., 2018,427:931. doi: 10.1016/j.apsusc.2017.08.016 https://linkinghub.elsevier.com/retrieve/pii/S0169433217323395
[59]
Wu Y , Yan M , Cui J , Yan Y , Li C . Adv. Funct. Mater., 2015,25:5823. doi: 10.1002/adfm.201502465 http://doi.wiley.com/10.1002/adfm.201502465
[60]
Zhang Y , Tan X , Liu X , Li C , Zeng S , Wang H , Zhang S . ACS Sustain. Chem. Eng., 2019,7:3127. doi: 10.1021/acssuschemeng.8b04908 https://pubs.acs.org/doi/10.1021/acssuschemeng.8b04908
[61]
Cui J , Zhou Z , Xie A , Liu S , Wang Q , Wu Y , Yan Y , Li C . Carbohyd. Polym., 2019,205:492. doi: 10.1016/j.carbpol.2018.10.094 https://linkinghub.elsevier.com/retrieve/pii/S0144861718312943
[62]
Lu J , Qin Y , Yu C , Lin X , Meng M , Yan Y , Fan H , Wu Y , Li C . Sep. Purif. Technol., 2020,235:116220. doi: 10.1016/j.seppur.2019.116220 https://linkinghub.elsevier.com/retrieve/pii/S1383586619309438
[63]
Lu J , Qin Y , Zhang Q , Yu C , Wu Y , Yan Y , Fan H , Meng M , Li C . Chem. Eng. J., 2019,360, 483. doi: 10.1016/j.cej.2018.12.014 https://linkinghub.elsevier.com/retrieve/pii/S1385894718324860
[64]
Liu E , Xu X , Zheng X , Zhang F , Liu E , Li C . Sep. Purif. Technol., 2017,189:288. doi: 10.1016/j.seppur.2017.06.079 https://linkinghub.elsevier.com/retrieve/pii/S1383586617309462
[65]
Tanaka T , Fillmore D J . J. Chem. Phys., 1979,70:1214. doi: 10.1063/1.437602 http://aip.scitation.org/doi/10.1063/1.437602
[66]
Lu J , Wu Y , Lin X , Dong H , Chen L , Qin Y , Wang L , Yan Y . J. Hazard. Mater., 2018,353:244. doi: 10.1016/j.jhazmat.2018.04.014 https://www.ncbi.nlm.nih.gov/pubmed/29674099

pmid: 29674099
[67]
Cheng H , Zhu X , Yang S , Wu Y , Cao Q , Ding Z . J. Appl. Polym. Sci., 2013,128:363. doi: 10.1002/app.38144 http://doi.wiley.com/10.1002/app.38144
[68]
Tomicki F , Krix D , Nienhaus H , Ulbricht M . J. Membrane Sci., 2011,377:124. doi: 10.1016/j.memsci.2011.04.028 8c375807-9f55-49b9-ba11-bc94ba226dd9 http://dx.doi.org/10.1016/j.memsci.2011.04.028
[69]
Aoki T , Yamagiwa K , Yoshino E , Oikawa E . Polymer, 1993,34:1538. doi: 10.1016/0032-3861(93)90876-C https://linkinghub.elsevier.com/retrieve/pii/003238619390876C
[70]
Hester J F , Olugebefola S C , Mayes A M . J. Membrane Sci., 2002,208:375. doi: 10.1016/S0376-7388(02)00317-4 https://linkinghub.elsevier.com/retrieve/pii/S0376738802003174
[71]
Ying L , Zhai G Q , Winata A , Kang E T , Neoh K G . J. Colloid Interf. Sci., 2003,265:396. doi: 10.1016/S0021-9797(03)00507-1 https://linkinghub.elsevier.com/retrieve/pii/S0021979703005071
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[3] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[4] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[5] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[6] Ze Feng, Dan Sun, Yougen Tang, Haiyan Wang. Rich-Nickel Ternary Layered Oxide LiNi0.8Co0.1Mn0.1O2 Cathode Material [J]. Progress in Chemistry, 2019, 31(2/3): 442-454.
[7] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[8] Wenhao Yao, Fei Yu, Jie Ma. Preparation of Alginate Composite Gel and Its Application in Water Treatment [J]. Progress in Chemistry, 2018, 30(11): 1722-1733.
[9] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[10] Xu Zhao, Keqing Wang, Bo Li, Changqing Li, Yuqing Lin*. Preparation, Surface Modification and in vivo/Single Cell Electroanalytical Application of Microelectrode [J]. Progress in Chemistry, 2017, 29(10): 1173-1183.
[11] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.
[12] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[13] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[14] Tang Yuanyuan, Xu Jia, Chen Xing, Gao Congjie. Core of Forward Osmosis for Desalination——Forward Osmosis Membrane [J]. Progress in Chemistry, 2015, 27(7): 818-830.
[15] Ying Hangjun, Tian Huajun, Meng Zhen, Han Weiqiang. TinO2n-1 Series Compounds——Properties, Preparation Methods and Applications [J]. Progress in Chemistry, 2015, 27(4): 361-372.
Viewed
Full text


Abstract

Imprinted Composite Membranes