中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (8): 1280-1292 DOI: 10.7536/PC200774 Previous Articles   Next Articles

Special Issue: 金属有机框架材料

• Review •

Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials

Lizhong Chen1,2, Qiaobin Gong1, Zhe Chen1()   

  1. 1 College of Environmental Science and Engineering, North China Electric Power University,Beijing 102206, China
    2 State Grid Corporation of China,Beijing 100871, China
  • Received: Revised: Online: Published:
  • Contact: Zhe Chen
  • Supported by:
    Science and Technology Projects of State Grid Corporation of China(5419-201999542A-0-0-00)
Richhtml ( 105 ) PDF ( 2497 ) Cited
Export

EndNote

Ris

BibTeX

Ultra-thin two dimensional metal-organic framework(MOF) nanomaterial is a kind of MOF materials. Different from the traditional bulk MOF materials, the ultra-thin sheet structure endows it with unique properties such as high specific surface area, rich coordination unsaturated metal sites and so on, which can effectively improve the performance of MOF in catalysis, separation and sensors. In this paper, the research progress on the construction and preparation methods of ultra-thin two dimensional MOF nanomaterials in recent years is reviewed, including top-down method, bottom-up method and 2D oxide sacrifice approach. At the same time, this paper discusses the application prospects of ultra-thin two dimensional MOF nanomaterials in the fields of gas adsorption and gas separation, catalysis, energy storage, sensing platform, and further analyzes the challenges and opportunities faced by the research of ultra-thin two dimensional MOF nanomaterials in the future.

Contents

1 Introduction

2 Preparation methods for the ultra-thin 2D MOF nanomaterials

2.1 Top-down preparation method

2.2 Bottom-up preparation method

2.3 2D oxide sacrifice approach

3 Applications of the ultra-thin 2D MOF nanomaterials

3.1 Gas separation and adsorption

3.2 Catalysis

3.3 Sensors

3.4 Energy Storage

3.5 Other application

4 Conclusion and outlook

Figure. 1 The timeline of important breakthroughs in the synthesis of ultra-thin 2D MOF nanomaterials. Copyright 2010, Springer Nature[16]. Copyright 2015, Springer Nature[17]. Copyright 2019, Wiley[18]. Copyright 2014, AAAS[19]. Copyright 2017, American Chemical Society[20]
Fig. 2 Schematic diagram of the synthesis of ultra-thin 2D MOF nanosheets by intercalation and exfoliation approach[20]. Copyright 2017, ACS Publication
Fig. 3 Schematic fabrication of the CoTCPP-py-Cu with Langmuir-Blodgett method[16]. Copyright 2010, Springer Nature
Fig. 4 (a) Conventional and surfactant assisted method for the synthesis of Zn-TCPP nanosheets and ultra-thin 2D Zn-TCPP nanosheets. (b) TEM images of ultra-thin 2D Zn-TCPP nanosheets; the inset shows the Tyndall effect in aqueous solution. (c~f) are TEM images of Cu-TCPP, Cd-TCPP, Co-TCPP and Zn-TCPP nanosheets, respectively[36]. Copyright 2015, Wiley
Fig. 5 Micro-droplet method for the synthesis of ultra-thin 2D MOF nanosheets[63]. Copyright 2018, ACS Publication
Fig. 6 Schematic diagram for preparation of ultra-thin 2D ZIF-67 nanosheets by constrained synthesis in salt template. Copyright 2017, the Royal Society of Chemistry[41]
Fig. 7 Schematic diagram for preparation of 2D MOF-74 by 2D metal oxide sacrifice approach[18]. Copyright 2019, Wiley
Fig. 8 Gas separation on MOF membrane composed of ultra-thin 2D nanosheets[66]. Copyright 2019, Wiley
[1]
Wang Q, Astruc D. Chem. Rev., 2020, 120(2): 1438.

doi: 10.1021/acs.chemrev.9b00223 pmid: 31246430
[2]
Xiao X, Zou L L, Pang H, Xu Q. Chem. Soc. Rev., 2020, 49(1): 301.

doi: 10.1039/c7cs00614d pmid: 31832631
[3]
Safaei M, Foroughi M M, Ebrahimpoor N, Jahani S, Omidi A, Khatami M. Trac Trends Anal. Chem., 2019, 118: 401.

doi: 10.1016/j.trac.2019.06.007
[4]
Sun T T, Xu L B, Wang D S, Li Y D. Nano Res., 2019, 12(9): 2067.

doi: 10.1007/s12274-019-2345-4
[5]
Zhong M, Kong L J, Li N, Liu Y Y, Zhu J, Bu X H. Coord. Chem. Rev., 2019, 388: 172.

doi: 10.1016/j.ccr.2019.02.029
[6]
Ding M L, Flaig R W, Jiang H L, Yaghi O M. Chem. Soc. Rev., 2019, 48(10): 2783.

doi: 10.1039/C8CS00829A
[7]
Pascanu V, González Miera G, Inge A K, Martín-Matute B. J. Am. Chem. Soc., 2019, 141(18): 7223.

doi: 10.1021/jacs.9b00733 pmid: 30974060
[8]
Yuan S, Feng L, Wang K C, Pang J D, Bosch M, Lollar C, Sun Y J, Qin J S, Yang X Y, Zhang P, Wang Q, Zou L F, Zhang Y M, Zhang L L, Fang Y, Li J L, Zhou H C. Adv. Mater., 2018, 30(37): 1870277.
[9]
Liu Y, Liu Z F, Huang D L, Cheng M, Zeng G M, Lai C, Zhang C, Zhou C Y, Wang W J, Jiang D N, Wang H, Shao B B. Coord. Chem. Rev., 2019, 388: 63.

doi: 10.1016/j.ccr.2019.02.031
[10]
Kirchon A, Feng L, Drake H F, Joseph E A, Zhou H C. Chem. Soc. Rev., 2018, 47(23): 8611.

doi: 10.1039/c8cs00688a pmid: 30234863
[11]
Chen Y Z, Zhang R, Jiao L, Jiang H L. Coord. Chem. Rev., 2018, 362: 1.

doi: 10.1016/j.ccr.2018.02.008
[12]
Liu W X, Yin R L, Xu X L, Zhang L, Shi W H, Cao X H. Adv. Sci., 2019, 6(12): 1802373.
[13]
Zhao M T, Huang Y, Peng Y W, Huang Z Q, Ma Q L, Zhang H. Chem. Soc. Rev., 2018, 47(16): 6267.

doi: 10.1039/C8CS00268A
[14]
Wang B Q, Zhao M T, Li L X, Huang Y, Zhang X, Guo C, Zhang Z C, Cheng H F, Liu W X, Shang J, Jin J, Sun X M, Liu J F, Zhang H. Natl. Sci. Rev., 2020, 7(1): 46.

doi: 10.1093/nsr/nwz118
[15]
Song X Y, Wang X Y, Li Y S, Zheng C Z, Zhang B W, Di C A, Li F, Jin C, Mi W B, Chen L, Hu W P. Angew. Chem. Int. Ed., 2020, 59(3): 1118.

doi: 10.1002/anie.v59.3
[16]
Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H. Nat. Mater., 2010, 9(7): 565.

doi: 10.1038/nmat2769 pmid: 20512155
[17]
Huang X, Sheng P, Tu Z Y, Zhang F J, Wang J H, Geng H, Zou Y, Di C A, Yi Y P, Sun Y M, Xu W, Zhu D B. Nat. Commun., 2015, 6(1): 7408.

doi: 10.1038/ncomms8408
[18]
Zhuang L Z, Ge L, Liu H L, Jiang Z R, Jia Y, Li Z H, Yang D J, Hocking R K, Li M R, Zhang L Z, Wang X, Yao X D, Zhu Z H. Angew. Chem. Int. Ed., 2019, 58(38): 13565.
[19]
Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Science, 2014, 346(6215): 1356.

doi: 10.1126/science.1254227
[20]
Ding Y J, Chen Y P, Zhang X L, Chen L, Dong Z H, Jiang H L, Xu H X, Zhou H C. J. Am. Chem. Soc., 2017, 139(27): 9136.

doi: 10.1021/jacs.7b04829
[21]
Liu Q, Li X F, Wen Y H, Xu Q D, Wu X T, Zhu Q L. Adv. Mater. Interfaces, 2020, 7(16): 2000813.
[22]
Lin Y F, Wan H, Wu D, Chen G, Zhang N, Liu X H, Li J H, Cao Y J, Qiu G Z, Ma R Z. J. Am. Chem. Soc., 2020, 142(16): 7317.

doi: 10.1021/jacs.0c01916
[23]
Wang J, Li N, Xu Y X, Pang H. Chem. Eur. J., 2020, 26(29): 6402.

doi: 10.1002/chem.v26.29
[24]
Peng Y, Yang W S. Adv. Mater. Interfaces, 2020, 7: 30.
[25]
Hwang J, Ejsmont A, Freund R, Goscianska J, Schmidt B V K J, Wuttke S. Chem. Soc. Rev., 2020, 49(11): 3348.

doi: 10.1039/C9CS00871C
[26]
Nielsen R B, Kongshaug K O, Fjellvåg H. J. Mater. Chem., 2008, 18(9): 1002.

doi: 10.1039/b712479a
[27]
Amo-Ochoa P, Welte L, González-Prieto R, Sanz Miguel P J, Gómez-García C J, Mateo-Martí E, Delgado S, Gómez-Herrero J, Zamora F. Chem. Commun., 2010, 46(19): 3262.

doi: 10.1039/b919647a
[28]
Luo Y H, Chen C, He C, Zhu Y Y, Hong D L, He X T, An P J, Wu H S, Sun B W. ACS Appl. Mater. Interfaces, 2018, 10(34): 28860.
[29]
Razavi S A A, Masoomi M Y, Morsali A. Ultrason. Sonochemistry, 2018, 41: 17.

doi: 10.1016/j.ultsonch.2017.09.009
[30]
Wang X Z, Mao X Y, Zhang Z Q, Guo R, Zhang Y Y, Zhu N J, Wang K, Sun P P, Huo J Z, Wang X R, Ding B. Inorg. Chem., 2020, 59(5): 2910.

doi: 10.1021/acs.inorgchem.9b03272
[31]
Li P Z, Maeda Y, Xu Q. Chem. Commun., 2011, 47(29): 8436.

doi: 10.1039/c1cc12510a
[32]
Tan J C, Saines P J, Bithell E G, Cheetham A K. ACS Nano, 2012, 6(1): 615.

doi: 10.1021/nn204054k
[33]
Saines P J, Tan J C, Yeung H H M, Barton P T, Cheetham A K. Dalton Trans., 2012, 41(28): 8585.

doi: 10.1039/c2dt30648d pmid: 22669489
[34]
Zhu W S, Gao X, Li Q, Li H P, Chao Y H, Li M J, Mahurin S M, Li H M, Zhu H Y, Dai S. Angew. Chem. Int. Ed., 2016, 55(36): 10766.
[35]
Wang X R, Chi C L, Zhang K, Qian Y H, Gupta K M, Kang Z X, Jiang J W, Zhao D. Nat. Commun., 2017, 8(1): 1.

doi: 10.1038/s41467-016-0009-6
[36]
Zhao M T, Wang Y X, Ma Q L, Huang Y, Zhang X, Ping J F, Zhang Z C, Lu Q P, Yu Y F, Xu H, Zhao Y L, Zhang H. Adv. Mater., 2015, 27(45): 7372.

doi: 10.1002/adma.201503648
[37]
Abhervé A, Mañas-Valero S, Clemente-León M, Coronado E. Chem. Sci., 2015, 6(8): 4665.

doi: 10.1039/C5SC00957J
[38]
Dai R H, Peng F, Ji P F, Lu K D, Wang C, Sun J L, Lin W B. Inorg. Chem., 2017, 56(14): 8128.

doi: 10.1021/acs.inorgchem.7b00845
[39]
Chaudhari A K, Kim H J, Han I, Tan J C. Adv. Mater., 2017, 29(27): 201770193.
[40]
Jiang Y, Liu H Q, Tan X H, Guo L M, Zhang J T, Liu S N, Guo Y J, Zhang J, Wang H F, Chu W G. ACS Appl. Mater. Interfaces, 2017, 9(30): 25239.
[41]
Huang L, Zhang X P, Han Y J, Wang Q Q, Fang Y X, Dong S J. J. Mater. Chem. A, 2017, 5(35): 18610.
[42]
Zhao S L, Wang Y, Dong J C, He C T, Yin H J, An P F, Zhao K, Zhang X F, Gao C, Zhang L J, Lv J, Wang J X, Zhang J Q, Khattak A M, Khan N A, Wei Z X, Zhang J, Liu S Q, Zhao H J, Tang Z Y. Nat. Energy, 2016, 1(12): 1.

doi: 10.1038/ng0492-1
[43]
Li C, Hu X S, Tong W, Yan W S, Lou X B, Shen M, Hu B W. ACS Appl. Mater. Interfaces, 2017, 9(35): 29829.
[44]
Zhu D D, Guo C X, Liu J L, Wang L, Du Y, Qiao S Z. Chem. Commun., 2017, 53(79): 10906.
[45]
Li Z Q, Qiu L G, Wang W, Xu T, Wu Y, Jiang X. Inorg. Chem. Commun., 2008, 11(11): 1375.

doi: 10.1016/j.inoche.2008.09.010
[46]
Ning Y Q, Lou X B, Li C, Hu X S, Hu B W. Chem. Eur. J., 2017, 23(63): 15984.
[47]
Rui K, Zhao G Q, Chen Y P, Lin Y, Zhou Q, Chen J Y, Zhu J X, Sun W P, Huang W, Dou S X. Adv. Funct. Mater., 2018, 28(26): 1801554.
[48]
Clough A J, Skelton J M, Downes C A, de la Rosa A A, Yoo J W, Walsh A, Melot B C, Marinescu S C. J. Am. Chem. Soc., 2017, 139(31): 10863.
[49]
Clough A J, Yoo J W, Mecklenburg M H, Marinescu S C. J. Am. Chem. Soc., 2015, 137(1): 118.

doi: 10.1021/ja5116937
[50]
Makiura R, Kitagawa H, Akita Y, Yoshimoto M. J. Colloid Interface Sci., 2014, 413: 71.

doi: 10.1016/j.jcis.2013.09.024
[51]
Motoyama S, Makiura R, Sakata O, Kitagawa H. J. Am. Chem. Soc., 2011, 133(15): 5640.

doi: 10.1021/ja110720f
[52]
Hoshiko K, Kambe T, Sakamoto R, Takada K, Nishihara H. Chem. Lett., 2014, 43(2): 252.

doi: 10.1246/cl.130882
[53]
Dong R H, Pfeffermann M, Liang H W, Zheng Z K, Zhu X, Zhang J, Feng X L. Angew. Chem. Int. Ed., 2015, 54(41): 12058.
[54]
Qiao Z H, Liang Y Y, Zhang Z Q, Mei D H, Wang Z, Guiver M D, Zhong C L. Adv. Mater., 2020, 32(34): 2002165.
[55]
Sakaida S, Otsubo K, Sakata O, Song C, Fujiwara A, Takata M, Kitagawa H. Nat. Chem., 2016, 8(4): 377.

doi: 10.1038/nchem.2469 pmid: 27001734
[56]
Sakaida S, Haraguchi T, Otsubo K, Sakata O, Fujiwara A, Kitagawa H. Inorg. Chem., 2017, 56(14): 7606.

doi: 10.1021/acs.inorgchem.7b01113 pmid: 28661137
[57]
Otsubo K, Haraguchi T, Sakata O, Fujiwara A, Kitagawa H. J. Am. Chem. Soc., 2012, 134(23): 9605.

doi: 10.1021/ja304361v
[58]
Dmitriev A, Spillmann H, Lin N, Barth J V, Kern K. Angew. Chem., 2003, 115(23): 2774.

doi: 10.1002/ange.200250610
[59]
Spillmann H, Dmitriev A, Lin N, Messina P, Barth J V, Kern K. J. Am. Chem. Soc., 2003, 125(35): 10725.
[60]
Li Y, Xiao J, Shubina T E, Chen M, Shi Z L, Schmid M, Steinrück H P, Gottfried J M, Lin N. J. Am. Chem. Soc., 2012, 134(14): 6401.

doi: 10.1021/ja300593w
[61]
Zhao M T, Lu Q P, Ma Q L, Zhang H. Small Methods, 2017, (1/2): 1600030.
[62]
Wang Y X, Zhao M T, Ping J F, Chen B, Cao X H, Huang Y, Tan C L, Ma Q L, Wu S X, Yu Y F, Lu Q P, Chen J Z, Zhao W, Ying Y B, Zhang H. Adv. Mater., 2016, 28(21): 4149.

doi: 10.1002/adma.201600108
[63]
Wang Y, Li L J, Yan L T, Gu X, Dai P C, Liu D D, Bell J G, Zhao G M, Zhao X B, Thomas K M. Chem. Mater., 2018, 30(9): 3048.

doi: 10.1021/acs.chemmater.8b00765
[64]
Xiao X, Song H B, Lin S Z, Zhou Y, Zhan X J, Hu Z M, Zhang Q, Sun J Y, Yang B, Li T Q, Jiao L Y, Zhou J, Tang J, Gogotsi Y. Nat. Commun., 2016, 7(1): 1.
[65]
Hu Z G, Mahdi E M, Peng Y W, Qian Y H, Zhang B, Yan N, Yuan D Q, Tan J C, Zhao D. J. Mater. Chem. A, 2017, 5(19): 8954.

doi: 10.1039/C7TA00413C
[66]
Peng Y, Yang W S. Adv. Mater. Interfaces, 2020, 7(1): 1901514.
[67]
Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Science, 2014, 346(6215): 1356.

doi: 10.1126/science.1254227
[68]
Peng Y, Li Y S, Ban Y J, Yang W S. Angewandte Chemie, 2017, 129(33): 9889.

doi: 10.1002/ange.v129.33
[69]
Tanh Jeazet H B, Staudt C, Janiak C. Dalton Trans., 2012, 41(46): 14003.
[70]
Nik O G, Chen X Y, Kaliaguine S. J. Membr. Sci., 2012, 413/414: 48.

doi: 10.1016/j.memsci.2012.04.003
[71]
Monteiro B, Nabais A, Casimiro M, Martins A, Francisco R, Neves L, Pereira C. Membranes, 2018, 8(4): 93.

doi: 10.3390/membranes8040093
[72]
Chen R Z, Yao J F, Gu Q F, Smeets S, Baerlocher C, Gu H X, Zhu D R, Morris W, Yaghi O M, Wang H T. Chem. Commun., 2013, 49(82): 9500.

doi: 10.1039/c3cc44342f
[73]
Li W X, Fang W, Wu C, Dinh K N, Ren H, Zhao L, Liu C T, Yan Q Y. J. Mater. Chem. A, 2020, 8(7): 3658.

doi: 10.1039/C9TA13473E
[74]
Wei X D, Li N, Liu N. Electrochimica Acta, 2019, 318: 957.

doi: 10.1016/j.electacta.2019.06.141
[75]
Zhu D D, Qiao M, Liu J L, Tao T, Guo C X. J. Mater. Chem. A, 2020, 8(17): 8143.

doi: 10.1039/D0TA03138K
[76]
Miner E M, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dincă M. Nat. Commun., 2016, 7(1): 1.
[77]
Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H. Chem. Rev., 2017, 117(9): 6225.

doi: 10.1021/acs.chemrev.6b00558
[78]
Han B, Ou X W, Deng Z Q, Song Y, Tian C, Deng H, Xu Y J, Lin Z. Angew. Chem. Int. Ed., 2018, 57(51): 16811.
[79]
He L H, Duan F H, Song Y P, Guo C P, Zhao H, Tian J Y, Zhang Z H, Liu C S, Zhang X J, Wang P Y, Du M, Fang S M. 2D Mater., 2017, 4(2): 025098.
[80]
Lu W B, Wu X F. New J. Chem., 2018, 42(5): 3180.

doi: 10.1039/C7NJ04754A
[81]
Zhao Y W, Jiang L, Shangguan L, Mi L, Liu A R, Liu S Q. J. Mater. Chem. A, 2018, 6(6): 2828.

doi: 10.1039/C7TA07911G
[82]
Su F F, Zhang S, Ji H F, Zhao H, Tian J Y, Liu C S, Zhang Z H, Fang S M, Zhu X L, Du M. ACS Sens., 2017, 2(7): 998.

doi: 10.1021/acssensors.7b00268
[83]
Dong R H, Zhang Z T, Tranca D C, Zhou S Q, Wang M C, Adler P, Liao Z Q, Liu F, Sun Y, Shi W J, Zhang Z, Zschech E, Mannsfeld S C B, Felser C, Feng X L. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w
[84]
Guo J, Zhang Y, Zhu Y F, Long C, Zhao M T, He M, Zhang X F, Lv J, Han B, Tang Z Y. Angew. Chem. Int. Ed., 2018, 57(23): 6873.

doi: 10.1002/anie.v57.23
[85]
Gao X C, Cui R X, Zhang M, Liu Z L. Mater. Lett., 2017, 197: 217.

doi: 10.1016/j.matlet.2017.02.082
[86]
He C B, Lu K D, Liu D M, Lin W B. J. Am. Chem. Soc., 2014, 136(14): 5181.

doi: 10.1021/ja4098862
[87]
Felsher D W. Nat. Rev. Cancer, 2003, 3(5): 375.

pmid: 12724735
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[5] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[6] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[7] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[8] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[9] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[10] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[11] Ying Geng, Mohe Zhang, Jin Fu, Ruisha Zhou, Jiangfeng Song. MOF-74 and Its Compound: Diverse Synthesis and Broad Application [J]. Progress in Chemistry, 2021, 33(12): 2283-2307.
[12] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[13] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[14] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[15] Shijia Li, Ernan Pang, Caihong Hao, Tingting Cai, Shengliang Hu. Preparation of Solid-State Fluorescent Carbon Dots [J]. Progress in Chemistry, 2020, 32(5): 548-561.