中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (5): 505-518 DOI: 10.7536/PC190938   Next Articles

Special Issue: 电化学有机合成

• Review •

Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts

Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin**   

  • Revised: Online: Published:
  • Contact: Jianzhong Yin
  • About author:
  • Supported by:
    National Natural Science Foundation of China(U1662130); National Natural Science Foundation of China(21978043)
Richhtml ( 151 ) PDF ( 2516 ) Cited
Export

EndNote

Ris

BibTeX

Single-atom catalyst has the advantages of low coordination number, special coordination environment, high atomic utilization, and high uniformity of catalytic sites. It is the bridge between homogeneous and heterogeneous catalysts, which helps to better understand the nature of catalytic reaction. In this paper, the synthetic methods of graphene-based single-atom catalysts in recent years are reviewed, including atomic layer deposition, impregnation-calcination, defect trapping, coordination anchoring and some other novel methods, with a focus on the preparation process, principle and characterization results of these methods. Based on this, the performance of graphene-based metal single-atom catalysts in catalysis is illustrated and analyzed, and the purpose is to provide guidance and reference for the preparation of single-atom catalysts.

Contents

1 Introduction

2 Synthetic method

2.1 Atomic layer deposition method

2.2 Impregnation-calcination method

2.3 Defect trapping method

2.4 Coordination anchoring method

2.5 Other methods

3 Performance evaluation and characterization

3.1 Hydrogen evolution reaction

3.2 Carbon dioxide reduction reaction

3.3 Oxidation reaction

3.4 Hydrogenation reaction

4 Conclusion and outlook

Table 1 The related parameters of Pt loading with different cycle times
Fig. 1 (a) HAADF-STEM images of Pt atom clusters[42];(b) HAADF-STEM images of Pd atom[49];(c) HAADF-STEM images of Pt diatomics[51];(d) schematic diagram of single atom prepared by atomic layer deposition[52]
Fig. 2 (a) HAADF-STEM images of Co-NG[24];(b) schematic of the synthesis process of the Fe/NG catalyst[62];(c) the Ni-NG/CdS composite materials[26];(d) EDX elemental mapping of Ni-NG within the selected area[26]
Fig. 3 (a) The mass production of catalyst[65];(b) Schematic illustration of preparation route to Co-NG-MW[66]
Fig. 4 (a) Schematic illustration of the fabrication process of Ni-doped np-G[76];(b) HAADF-STEM image of Ni-doped graphene[76];(c) synthetic route towards single-atom FeN4 and FeN5 catalysts[79]
Fig. 5 (a) LSV of NG, Co-G, Co-NG and Pt/C in 0.5 M H2SO4 at scan rate of 2 mV·s-1[24];(b) Gibbs free energy of HER at equilibrium potential for different materials[76];(c) illustration of Pt atoms configurations on N-doped graphene[45];(d) XPS spectra of materials at different dissolution times[76]
Table 2 Overpotential of hydrogen evolution reaction with different catalysts
Fig. 6 (a) Photocatalytic hydrogen production rate over Ni-NG/CdS, Pt/CdS, NG/CdS and bare CdS under visible light irradiation[26];(b) catalytic activities of various Pt catalysts in AB hydrolysis[51]
Fig. 7 (a) LSV of Ni-N-MEGO, NiPc, N-MEGO and MEGO in CO2 saturated 0.5 M KHCO3 solution[63];(b) theoretical calculations and proposed mechanism on the nitrogen-coordinated Fe catalytic site[62]
Fig. 8 Faradaic efficiencies for formate at each applied potentials and TOF of the catalyst[65]
Fig. 9 (a) The XANES spectra at Pt L3 edge of Pt foil, Pt/C, ALD150Pt/GNS, Pt/GNS, ALD100Pt/GNS, ALD50Pt/GNS[42];(b) schematic illustration of improvement of butenes selectivity on single atom Pd1/graphene catalyst[49];(c) durability test for the Pd1/N-graphene catalyst for over 24 h at 125 ℃[67]
[1]
Yang X, Wang A, Qiao B, Li J, Liu J, Zhang T. Accounts Chem. Res., 2013,46(8):1740. https://pubs.acs.org/doi/10.1021/ar300361m

doi: 10.1021/ar300361m
[2]
Liu L, Corma A. Chem. Rev., 2018,118(10):4981. https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00776

doi: 10.1021/acs.chemrev.7b00776
[3]
Sahoo S, Suib S L, Alpay S P. ChemCatChem, 2018,10(15):3229. http://doi.wiley.com/10.1002/cctc.201800465

doi: 10.1002/cctc.201800465
[4]
Zhu C, Fu S, Song J, Shi Q, Su D, Engelhard M H, Li X, Xiao D, Li D, Estevez L, Du D, Lin Y. Small, 2017,13(15):1603407. http://doi.wiley.com/10.1002/smll.v13.15

doi: 10.1002/smll.v13.15
[5]
Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat. Chem., 2011,3(8):634. https://doi.org/10.1038/nchem.1095

doi: 10.1038/nchem.1095
[6]
Yin P, Yao T, Wu Y, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Deng Z, Zhou G, Wei S, Li Y. Angew. Chem. Int. Ed., 2016,55(36):10800. http://doi.wiley.com/10.1002/anie.201604802

doi: 10.1002/anie.201604802
[7]
Yang S, Kim J, Tak Y J, Soon A, Lee H. Angew. Chem. Int. Ed., 2016,55(6):2058. http://doi.wiley.com/10.1002/anie.201509241

doi: 10.1002/anie.201509241
[8]
Jones J, Xiong H, Delariva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernandez X I, Wang Y, Datye A K. Science, 2016,353(6295):150. https://www.sciencemag.org/lookup/doi/10.1126/science.aaf8800

doi: 10.1126/science.aaf8800
[9]
Gao G, Jiao Y, Waclawik E R, Du A. J. Am. Chem. Soc., 2016,138(19):6292. https://pubs.acs.org/doi/10.1021/jacs.6b02692

doi: 10.1021/jacs.6b02692
[10]
Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Chem. Rev., 2019,119(3):1806. https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00501

doi: 10.1021/acs.chemrev.8b00501
[11]
Chen Z W, Chen L X, Yang C C, Jiang Q. J. Mater. Chem. A, 2019,7(8):3492. http://xlink.rsc.org/?DOI=C8TA11416A

doi: 10.1039/C8TA11416A
[12]
Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y. Angew. Chem. Int. Ed., 2017,56(24):6937. http://doi.wiley.com/10.1002/anie.201702473

doi: 10.1002/anie.201702473
[13]
Liu J. ACS Catal., 2016,7(1):34. https://pubs.acs.org/doi/10.1021/acscatal.6b01534

doi: 10.1021/acscatal.6b01534
[14]
Zhang L, Liu H, Huang X, Sun X, Jiang Z, Schlögl R, Su D. Angew. Chem. Int. Ed., 2015,54(52):15823. http://doi.wiley.com/10.1002/anie.201507821

doi: 10.1002/anie.201507821
[15]
Domínguez-Domínguez S, Berenguer-Murcia Á, Pradhan B K, Linares-Solano Á, Cazorla-Amorós D. J. Phys. Chem. C, 2008,112(10):3827. https://pubs.acs.org/doi/10.1021/jp710693u

doi: 10.1021/jp710693u
[16]
Ji G, Duan Y, Zhang S, Fei B, Chen X, Yang Y. ChemSusChem, 2017,10(17):3427. http://doi.wiley.com/10.1002/cssc.201701127

doi: 10.1002/cssc.201701127
[17]
Ji G, Duan Y, Zhang S, Yang Y. Catal. Today, 2019,330(SI):101. https://linkinghub.elsevier.com/retrieve/pii/S0920586118304814

doi: 10.1016/j.cattod.2018.04.036
[18]
Toumi N, Bonnamour I, Joly J P, Finqueneisel G, Retailleau L, Kalfat R, Lamartine R. Mater. Sci. Eng. C-Mater. Biol. Appl., 2006,26(2/3):490. https://linkinghub.elsevier.com/retrieve/pii/S0928493105003851

doi: 10.1016/j.msec.2005.10.020
[19]
Dantas S, Struckhoff K C, Thommes M, Neimark A V. Langmuir, 2019,35(35):11291. https://pubs.acs.org/doi/10.1021/acs.langmuir.9b01748

doi: 10.1021/acs.langmuir.9b01748
[20]
Funk M. J. Build Phys., 2014,39(3):207. http://journals.sagepub.com/doi/10.1177/1744259114527809

doi: 10.1177/1744259114527809
[21]
Matsuoka T, Hatori H, Kodama M, Yamashita J, Miyajima N. Carbon, 2004,42(11):2346. http://www.sciencedirect.com/science/article/pii/S0008622304002994

doi: 10.1016/j.carbon.2004.04.031
[22]
Llewellyn P L, Grillet Y, Schüth F, Reichert H, Unger K K. Microporous Materials, 1994,3(3):345. https://linkinghub.elsevier.com/retrieve/pii/0927651394000425

doi: 10.1016/0927-6513(94)00042-5
[23]
Cong H, Chen J, Yu S. Chem. Soc. Rev., 2014,43(21):7295. http://xlink.rsc.org/?DOI=C4CS00181H

doi: 10.1039/C4CS00181H
[24]
Fei H, Dong J, Arellano-Jiménez M J, Ye G, Dong Kim N, Samuel E L G, Peng Z, Zhu Z, Qin F, Bao J, Yacaman M J, Ajayan P M, Chen D, Tour J M. Nat. Commun., 2015,6(1):8668. https://doi.org/10.1038/ncomms9668

doi: 10.1038/ncomms9668
[25]
Peng Y, Lu B, Chen S. Adv. Mater., 2018,30(48):e1801995.
[26]
Zhao Q, Sun J, Li S, Huang C, Yao W, Chen W, Zeng T, Wu Q, Xu Q J. ACS Catal., 2018,8(12):11863. https://pubs.acs.org/doi/10.1021/acscatal.8b03737

doi: 10.1021/acscatal.8b03737
[27]
Tzadikov J, Auinat M, Barrio J, Volokh M, Peng G, Gervais C, Ein-Eli Y, Shalom M. ChemSusChem, 2018,11(17):2912. http://doi.wiley.com/10.1002/cssc.201801438

doi: 10.1002/cssc.201801438
[28]
Jiang K T, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D, Attenkofer K, Wang H T. Energy Environ. Sci., 2018,11(4):893. http://xlink.rsc.org/?DOI=C7EE03245E

doi: 10.1039/C7EE03245E
[29]
Lü F, Zhao S, Guo R, He J, Peng X, Bao H, Fu J, Han L, Qi G, Luo J, Tang X, Liu X. Nano Energy, 2019,61:420. https://linkinghub.elsevier.com/retrieve/pii/S2211285519303933

doi: 10.1016/j.nanoen.2019.04.092
[30]
Wang Y, Zhang W, Deng D, Bao X. Chinese J. Catal., 2017,38(9):1443. https://linkinghub.elsevier.com/retrieve/pii/S1872206717628390

doi: 10.1016/S1872-2067(17)62839-0
[31]
Dubray F, Moldovan S, Kouvatas C, Grand J, Aquino C, Barrier N, Gilson J P, Nesterenko N, Minoux D, Mintova S. J. Am. Chem. Soc., 2019,141(22):8689. https://pubs.acs.org/doi/10.1021/jacs.9b02589

doi: 10.1021/jacs.9b02589
[32]
Zhang L, Jia Y, Gao G, Yan X, Chen J, Chen N, Soo M T, Wood B, Yang D, Du A, Yao X D. Chem-Us, 2018,4(2):285.
[33]
Scheidegger A M, Lamble G M, Sparks D L. Environ. Sci. Technol., 1996,30(2):548. https://pubs.acs.org/doi/10.1021/es950293%2B

doi: 10.1021/es950293+
[34]
Pei G X, Liu X Y, Wang A, Lee A F, Isaacs M A, Li L, Pan X, Yang X, Wang X, Tai Z, Wilson K, Zhang T. ACS Catal., 2015,5(6):3717. https://pubs.acs.org/doi/10.1021/acscatal.5b00700

doi: 10.1021/acscatal.5b00700
[35]
Rehr J J, Mustre De Leon J, Zabinsky S I, Albers R C. J. Am. Chem. Soc., 1991,113(14):5135. https://pubs.acs.org/doi/abs/10.1021/ja00014a001

doi: 10.1021/ja00014a001
[36]
Tuomo Suntola J A. US4058430, 1977
[37]
Xie S, Choi S I, Lu N, Roling L T, Herron J A, Zhang L, Park J, Wang J, Kim M J, Xie Z, Mavrikakis M, Xia Y. Nano Lett., 2014,14(6):3570. https://pubs.acs.org/doi/10.1021/nl501205j

doi: 10.1021/nl501205j
[38]
Zhang J, Yu Z, Gao Z, Ge H, Zhao S, Chen C, Chen S, Tong X, Wang M, Zheng Z, Qin Y. Angew. Chem. Int. Ed., 2017,56(3):816. http://doi.wiley.com/10.1002/anie.201611137

doi: 10.1002/anie.201611137
[39]
Lin Y, Xu Y, Mayer M T, Simpson Z I, Mcmahon G, Zhou S, Wang D. J. Am. Chem. Soc., 2012,134(12):5508. http://dx.doi.org/10.1021/ja300319g

doi: 10.1021/ja300319g
[40]
Lu J. ECS Transactions, 2016,75(6):85.
[41]
Lu J, Elam J W, Stair P C. Surf. Sci. Rep., 2016,71(2):410. https://linkinghub.elsevier.com/retrieve/pii/S0167572916300024

doi: 10.1016/j.surfrep.2016.03.003
[42]
Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis M N, Li R, Ye S, Knights S, Botton G A, Sham T, Sun X L. Sci. Rep., 2013,3(1):1775. https://doi.org/10.1038/srep01775

doi: 10.1038/srep01775
[43]
Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80(6):1339. https://pubs.acs.org/doi/abs/10.1021/ja01539a017

doi: 10.1021/ja01539a017
[44]
Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X, Zhang J, Ye J. Angew. Chem. Int. Ed., 2016,55(46):14310. http://doi.wiley.com/10.1002/anie.v55.46

doi: 10.1002/anie.v55.46
[45]
Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T, Liu L, Botton G A, Sun X L. Nat. Commun., 2016,7(1):13638. https://doi.org/10.1038/ncomms13638

doi: 10.1038/ncomms13638
[46]
Zhang L, Banis M N, Sun X L. Natl. Sci. Rev., 2018,5(5):628. https://academic.oup.com/nsr/article/5/5/628/5001433

doi: 10.1093/nsr/nwy054
[47]
Stambula S, Gauquelin N, Bugnet M, Gorantla S, Turner S, Sun S, Liu J, Zhang G, Sun X, Botton G A. J. Phys. Chem. C, 2014,118(8):3890. https://pubs.acs.org/doi/10.1021/jp408979h

doi: 10.1021/jp408979h
[48]
Lu J L, Elam J W, Stair P C. Accounts Chem. Res., 2013,46(8):1806. https://pubs.acs.org/doi/10.1021/ar300229c

doi: 10.1021/ar300229c
[49]
Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S, Lu J L. J. Am. Chem. Soc., 2015,137(33):10484. https://pubs.acs.org/doi/10.1021/jacs.5b06485

doi: 10.1021/jacs.5b06485
[50]
Grillo F, Van Bui H, La Zara D, Aarnink A A I, Kovalgin A Y, Kooyman P, Kreutzer M T, van Ommen J R. Small, 2018,14(23):1800765. http://doi.wiley.com/10.1002/smll.v14.23

doi: 10.1002/smll.v14.23
[51]
Yan H, Lin Y, Wu H, Zhang W, Sun Z, Cheng H, Liu W, Wang C, Li J, Huang X, Yao T, Yang J, Wei S, Lu J. Nat. Commun., 2017,8(1):1070. http://www.nature.com/articles/s41467-017-01259-z

doi: 10.1038/s41467-017-01259-z
[52]
Yan H, Zhao X, Guo N, Lyu Z, Du Y, Xi S, Guo R, Chen C, Chen Z, Liu W, Yao C, Li J, Pennycook S J, Chen W, Su C L, Zhang C, Lv J. Nat. Commun., 2018,9:3197. https://doi.org/10.1038/s41467-018-05754-9

doi: 10.1038/s41467-018-05754-9
[53]
Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X. Energy Environ. Sci., 2015,8(5):1594. http://xlink.rsc.org/?DOI=C5EE00751H

doi: 10.1039/C5EE00751H
[54]
Chu Z, Kang Y, Jiang Z, Li G, Hu T, Wang J, Zhou Z, Li Y, Wang X. RSC Adv., 2014,4(51):26855. http://xlink.rsc.org/?DOI=C4RA02775B

doi: 10.1039/C4RA02775B
[55]
Kang Y, Chu Z, Ma T, Li W, Zhang D, Tang X. Optoelectronics Letters, 2016,12(1):1. http://link.springer.com/10.1007/s11801-016-5227-y

doi: 10.1007/s11801-016-5227-y
[56]
He T, Zhang C, Du A. Chem. Eng. Sci., 2019,194(SI):58. https://linkinghub.elsevier.com/retrieve/pii/S0009250918301623

doi: 10.1016/j.ces.2018.03.028
[57]
Dai G, Dai G, Chen L, Chen L, Zhao X, Zhao X. J. Mater. Sci., 2019,54(2):1395. https://doi.org/10.1007/s10853-018-2896-x

doi: 10.1007/s10853-018-2896-x
[58]
Esrafili M D, Asadollahi S. Appl. Surf. Sci., 2019,463:526. https://linkinghub.elsevier.com/retrieve/pii/S0169433218323924

doi: 10.1016/j.apsusc.2018.08.249
[59]
Tang Y, Yang Z, Dai X. Phys. Chem. Chem. Phys., 2012,14(48):16566. http://xlink.rsc.org/?DOI=c2cp41441d

doi: 10.1039/c2cp41441d
[60]
Cheng Y, Zhao S, Johannessen B, Veder J, Saunders M, Rowles M R, Cheng M, Liu C, Chisholm M F, De Marco R, Cheng H, Yang S, Jiang S P. Adv. Mater., 2018,30(13):1706287. https://onlinelibrary.wiley.com/toc/15214095/30/13

doi: 10.1002/adma.v30.13
[61]
Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y. Adv. Mater., 2016,28(12):2427. http://doi.wiley.com/10.1002/adma.201505281

doi: 10.1002/adma.201505281
[62]
Zhang C, Yang S, Wu J, Liu M, Yazdi S, Ren M, Sha J, Zhong J, Nie K, Jalilov A S, Li Z, Li H, Yakobson B I, Wu Q, Ringe E, Xu H, Ajayan P M, Tour J M. Adv. Energy Mater., 2018,8(19):1703487. http://doi.wiley.com/10.1002/aenm.201703487

doi: 10.1002/aenm.201703487
[63]
Cheng Y, Zhao S, Li H, He S, Veder J, Johannessen B, Xiao J, Lu S, Pan J, Chisholm M F, Yang S, Liu C, Chen J G, Jiang S P. Appl. Catal. B-Environ., 2019,243:294. https://linkinghub.elsevier.com/retrieve/pii/S0926337318310026

doi: 10.1016/j.apcatb.2018.10.046
[64]
Fei H L, Dong J, Feng Y, Allen C S, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland A I, Duan X, Huang Y. Nat. Catal., 2018,1(1):63. http://www.nature.com/articles/s41929-017-0008-y

doi: 10.1038/s41929-017-0008-y
[65]
Zu X, Li X, Liu W, Sun Y F, Xu J, Yao T, Yan W, Gao S, Wang C, Wei S, Xie Y. Adv. Mater., 2019,31(15):1808135. https://onlinelibrary.wiley.com/toc/15214095/31/15

doi: 10.1002/adma.v31.15
[66]
Fei H, Dong J, Wan C, Zhao Z, Xu X, Lin Z, Wang Y, Liu H, Zang K, Luo J, Zhao S, Hu W, Yan W, Shakir I, Huang Y, Duan X F. Adv. Mater., 2018,30(35):e1802146.
[67]
Zhou S, Shang L, Zhao Y, Shi R, Waterhouse G I N, Huang Y C, Zheng L, Zhang T R. Adv. Mater., 2019,31(18):1900509. https://onlinelibrary.wiley.com/toc/15214095/31/18

doi: 10.1002/adma.v31.18
[68]
Zhang J, Wu X, Cheong W, Chen W, Lin R, Li J, Zheng L, Yan W, Gu L, Chen C, Peng Q, Wang D, Li Y. Nat. Commun., 2018,9:1002. https://doi.org/10.1038/s41467-018-03380-z

doi: 10.1038/s41467-018-03380-z
[69]
Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y. Adv. Mater., 2018,30(11):1705369. http://doi.wiley.com/10.1002/adma.201705369

doi: 10.1002/adma.201705369
[70]
Tang N, Cong Y, Shang Q, Wu C, Xu G, Wang X. ACS Catal., 2017,7(9):5987. https://pubs.acs.org/doi/10.1021/acscatal.7b01816

doi: 10.1021/acscatal.7b01816
[71]
Liu P, Zhao Y, Qin R, Gu L, Zhang P, Fu G, Zheng N. Sci. Bull., 2018,63(11):675. https://linkinghub.elsevier.com/retrieve/pii/S2095927318301130

doi: 10.1016/j.scib.2018.03.002
[72]
Liu J, Wang Y, Li J. J. Am. Chem. Soc., 2017,139(17):6190. https://pubs.acs.org/doi/10.1021/jacs.7b01602

doi: 10.1021/jacs.7b01602
[73]
Jia Y, Zhang L, Gao G, Chen H, Wang B, Zhou J, Soo M T, Hong M, Yan X D, Qian G, Zou J, Du A, Yao X. Adv. Mater., 2017,29(17):1700017. http://doi.wiley.com/10.1002/adma.v29.17

doi: 10.1002/adma.v29.17
[74]
Yan X D, Jia Y, Chen J, Zhu Z, Yao X. Adv. Mater., 2016,28(39):8771. http://doi.wiley.com/10.1002/adma.201601651

doi: 10.1002/adma.201601651
[75]
Yan X D, Jia Y, Zhang L, Teng Soo M, Yao X. Chem. Commun., 2017,53(89):12140. http://xlink.rsc.org/?DOI=C7CC07501D

doi: 10.1039/C7CC07501D
[76]
Qiu H J, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M W. Angew. Chem. Int. Ed., 2015,54(47):14031. http://doi.wiley.com/10.1002/anie.201507381

doi: 10.1002/anie.201507381
[77]
Ye S, Luo F, Zhang Q, Zhang P, Xu T, Wang Q, He D, Guo L, Zhang Y, He C, Ouyang X, Gu M, Liu J H, Sun X L. Energy Environ. Sci., 2019,12(3):1000. http://xlink.rsc.org/?DOI=C8EE02888E

doi: 10.1039/C8EE02888E
[78]
Jeong H Y, Balamurugan M, Choutipalli V S K, Jo J, Baik H, Subramanian V, Kim M, Sim U, Nam K T. Chem. Eur. J., 2018,24(69):18444. https://onlinelibrary.wiley.com/toc/15213765/24/69

doi: 10.1002/chem.v24.69
[79]
Zhang H, Li J, Xi S, Du Y, Hai X, Wang J, Xu H, Wu G, Zhang J, Lv J, Wang J. Angew. Chem. Int. Ed., 2019,58(42):14871. https://onlinelibrary.wiley.com/toc/15213773/58/42

doi: 10.1002/anie.v58.42
[80]
Qu Y, Li Z, Chen W, Lin Y, Yuan T, Yang Z, Zhao C, Wang J, Zhao C, Wang X, Zhou F, Zhuang Z, Wu Y, Li Y D. Nat. Catal., 2018,1(10):781. https://doi.org/10.1038/s41929-018-0146-x

doi: 10.1038/s41929-018-0146-x
[81]
Cui X, Li H, Wang Y, Hu Y, Hua L, Li H, Han X, Liu Q, Yang F, He L, Chen X, Li Q, Xiao J, Deng D H, Bao X H. Chem-Us, 2018,4(8):1902.
[82]
Wang K, Wu H, Yuan W, Xi W, Luo J. Nanoscale, 2019,11(16):7595. http://xlink.rsc.org/?DOI=C9NR01479A

doi: 10.1039/C9NR01479A
[83]
Bakandritsos A, Kadam R G, Kumar P, Zoppellaro G, Medved’ M, Tuček J, Montini T, Tomanec O, Andr$\check{y}$sková P, Drahoš B, Varma R S, Otyepka M, Gawande M B, Fornasiero P, Zbo$\check{r}$il R. Adv. Mater., 2019,31(17):1900323. https://onlinelibrary.wiley.com/toc/15214095/31/17

doi: 10.1002/adma.v31.17
[84]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K, Jaramillo T F. Science, 2017,355(6321):d4998.
[85]
Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S. Chem. Rev., 2018,118(13):6337. https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00689

doi: 10.1021/acs.chemrev.7b00689
[86]
Wang H, Yuan X, Wu Y, Huang H, Peng X, Zeng G, Zhong H, Liang J, Ren M. Adv. Colloid Interfac., 2013,195/196:19. https://linkinghub.elsevier.com/retrieve/pii/S0001868613000341

doi: 10.1016/j.cis.2013.03.009
[87]
Conway B E, Tilak B V. Electrochim. Acta, 2002,47(22/23):3571.
[88]
Liao G, Gong Y, Zhang L, Gao H, Yang G, Fang B. Energy Environ. Sci., 2019,12(7):2080.
[89]
Zhang G, Ji Q, Wu Z, Wang G, Liu H, Qu J, Li J. Adv. Funct. Mater., 2018,28(14):1706462. http://doi.wiley.com/10.1002/adfm.v28.14

doi: 10.1002/adfm.v28.14
[90]
Han G, Jin Y, Burgess R A, Dickenson N E, Cao X, Sun Y. J. Am. Chem. Soc., 2017,139(44):15584. https://pubs.acs.org/doi/10.1021/jacs.7b08657

doi: 10.1021/jacs.7b08657
[91]
Zhang H, Zhang P, Qiu M, Dong J, Zhang Y, Lou X W D. Adv. Mater., 2018,31:1804883.
[92]
Xu J, Yang W, Huang S, Yin H, Zhang H, Radjenovic P, Yang Z, Tian Z, Li J. Nano Energy, 2018,49:363. https://linkinghub.elsevier.com/retrieve/pii/S2211285518302763

doi: 10.1016/j.nanoen.2018.04.048
[93]
Lum Y, Ager J W. Nat. Catal., 2019,2(1):86. https://doi.org/10.1038/s41929-018-0201-7

doi: 10.1038/s41929-018-0201-7
[94]
Kim C, Dionigi F, Beermann V, Wang X, Möller T, Strasser P. Adv. Mater., 2018,31(31):1805617. https://onlinelibrary.wiley.com/toc/15214095/31/31

doi: 10.1002/adma.v31.31
[95]
Jiang K, Chen G, Wang H. JoVE, 2018, ( 134):e57380.
[96]
Gao D, Arán-Ais R M, Jeon H S, Roldan Cuenya B. Nat. Catal., 2019,2(3):198. https://doi.org/10.1038/s41929-019-0235-5

doi: 10.1038/s41929-019-0235-5
[97]
Bai X, Chen W, Zhao C, Li S, Song Y, Ge R, Wei W, Sun Y. Angew. Chem. Int. Ed., 2017,56(40):12219. http://doi.wiley.com/10.1002/anie.201707098

doi: 10.1002/anie.201707098
[98]
Gu J, Hsu C S, Bai L, Chen H M, Hu X. Science, 2019,364(6445):1091. https://www.sciencemag.org/lookup/doi/10.1126/science.aaw7515

doi: 10.1126/science.aaw7515
[99]
Zheng X, Ji Y, Tang J, Wang J, Liu B, Steinrück H, Lim K, Li Y, Toney M F, Chan K, Cui Y. Nat. Catal., 2019,2(1):55. https://doi.org/10.1038/s41929-018-0200-8

doi: 10.1038/s41929-018-0200-8
[100]
Li X, Huang X, Xi S, Miao S, Ding J, Cai W, Liu S, Yang X, Yang H, Gao J, Wang J, Huang Y, Zhang T, Liu B. J. Am. Chem. Soc., 2018,140(39):12469. https://pubs.acs.org/doi/10.1021/jacs.8b05992

doi: 10.1021/jacs.8b05992
[101]
Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P, Si R, Wang J, Cui X, Li H, Xiao J, Xu T, Deng J, Yang F, Duchesne P N, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X. Sci. Adv., 2015,1(11):e1500462. https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1500462

doi: 10.1126/sciadv.1500462
[102]
Yan H, Lv H, Yi H, Liu W, Xia Y, Huang X, Huang W, Wei S, Wu X, Lu J. J. Catal., 2018,366:70. https://linkinghub.elsevier.com/retrieve/pii/S0021951718302963

doi: 10.1016/j.jcat.2018.07.033
[103]
Zhang X, Guo J, Guan P, Liu C, Huang H, Xue F, Dong X, Pennycook S J, Chisholm M F. Nat. Commun., 2013,4(5):1924. https://doi.org/10.1038/ncomms2929

doi: 10.1038/ncomms2929
[104]
Borrome M, Gronert S. Angew. Chem. Int. Ed. Engl., 2019,58(42):14906. https://onlinelibrary.wiley.com/toc/15213773/58/42

doi: 10.1002/anie.v58.42
[105]
Li Y, Wen H, Yang J, Zhou Y, Cheng X. Carbon, 2019,142:1. https://linkinghub.elsevier.com/retrieve/pii/S0008622318309011

doi: 10.1016/j.carbon.2018.09.079
[106]
Yang Q, Yang C C, Lin C H, Jiang H L. Angew. Chem. Int. Ed. Engl., 2019,58(11):3511. http://doi.wiley.com/10.1002/anie.201813494

doi: 10.1002/anie.201813494
[107]
Liu W, Chen Y, Qi H, Zhang L, Yan W, Liu X, Yang X, Miao S, Wang W, Liu C, Wang A, Li J, Zhang T. Angew. Chem. Int. Ed., 2018,57(24):7071. http://doi.wiley.com/10.1002/anie.v57.24

doi: 10.1002/anie.v57.24
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[6] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[7] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[8] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[9] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[10] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[11] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[12] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[13] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[14] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[15] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.