中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (9): 1525-1537 DOI: 10.7536/PC210216 Previous Articles   Next Articles

• Review •

Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods

Xiangkang Cao1, Xiaoguang Sun2, Guangyi Cai1, Zehua Dong1()   

  1. 1 Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology,Wuhan 430074, China
    2 CRRC Qingdao Sifang Co., Ltd, Qingdao 266111, China
  • Received: Revised: Online: Published:
  • Contact: Zehua Dong
  • Supported by:
    National Natural Science Foundation of China(51371087); National Natural Science Foundation of China(51771079); CRRC Qingdao Sifang Co., Ltd(SF/JG-吕字-2020-50)
Richhtml ( 60 ) PDF ( 1146 ) Cited
Export

EndNote

Ris

BibTeX

Superhydrophobic surface has broad applications in daily life and industries owing to its unique wettability. However, the micro-nano structures and low surface energy substance of surface are vulnerable to mechanical damage and chemical erosion, often prone to lose their superhydrophobicity. It is of great practical significance to construct durable superhydrophobic surface through morphologic design and performance optimization for its commercialization. In this review, based on the surface wettability model, including classical theory, metastable theory and contact line theory, the development history of superhydrophobic theoretical model is first reviewed, as well as their key guiding roles in the design of superhydrophobic durability. Then, the preparation strategies for durable superhydrophobic surface, such as micro-nano structure design, adhesive + coating, armor protection, self-healing, air cushion replenishment or replacement, are summarized. And the advantages and limitations of each strategy are reviewed. In addition, according to mechanical and chemical stability, the evaluation methods of superhydrophobic durability are illustrated. Finally, the problems and prospects of durable superhydrophobic surface are summarized for the future research of durable superhydrophobic coating.

Contents

1 Introduction

2 Theoretical model of wettability

2.1 Classical wetting theory

2.2 Metastable wetting theory

2.3 Contact line theory

3 Preparation strategy of durable superhydrophobic surface

3.1 Micro-nano structure regulation

3.2 Adhesive + coating

3.3 Armor protection

3.4 Self-healing policy

3.5 Air cushion replenishment or replacement

4 Evaluation methods for durable superhydrophobic surface

4.1 Mechanical durability

4.2 Chemical durability

5 Existing problems

6 Conclusion and outlook

Fig.1 Schematic diagram of the solid surface wetting state: (A) Surface tension in the equilibrium state of the droplet; (B) Wenzel state; (C) Cassie state
Fig.2 Visualized dynamic formation process of metastable state of superhydrophobic surface by confocal microscopy[20]. after 5 min immersion under (A) 0 kPa; (B)14 kPa; (C) 50 kPa; and (D)15 min immersion under 50 kPa
Fig.3 Schematic diagram of the microstructure design of super-hydrophobic surface and the actual SEM morphology[39]
Fig.4 Schematic diagram of preparation of organic/inorganic composite superhydrophobic coating[48]
Fig.5 Preparation schematic diagram of armored super-hydrophobic surface[51]
Fig.6 Schematic diagram of silicone oil self-replenishment repair for low surface energy substances at room temperature[53]
Fig.7 Diagram of self-repairing micro-nano rough morphology of surface under high temperature stimulation[56]
Fig.8 Schematic diagram of the dual self-repair of micro-nano structures and low surface energy substances under heating and acid stimulation as well as the actual repair effect[46]
Fig.9 Three-dimensional superhydrophobic surface: (A~E) Schematic diagram of block preparation and SEM morphology[63]
Fig.10 Gas supplementation promotes the transition from Wenzel state to Cassie state[66]
Fig.11 Evaluation methods of mechanical stability of superhydrophobic surface. (A) Friction and wear; (B) Tape peeling; (C) Water impact
Table 1 Comparison of wear resistance and acid and alkali resistance of superhydrophobic surface under different preparation strategies
[1]
Si Y F, Guo Z G. Nanoscale, 2015, 7(14): 5922.

doi: 10.1039/C4NR07554D
[2]
Jiang D, Xia X C, Hou J, Cai G Y, Zhang X X, Dong Z H. Chem. Eng. J., 2019, 373: 285.

doi: 10.1016/j.cej.2019.05.046
[3]
Ding Y R, Xue C H, Fan Q Q, Zhao L L, Tian Q Q, Guo X J, Zhang J, Jia S T, An Q F. Chem. Eng. J., 2021, 404: 126489.

doi: 10.1016/j.cej.2020.126489
[4]
Pakdel E, Wang J F, Kashi S M, Sun L, Wang X G. Adv. Colloid Interface Sci., 2020, 277: 102116.

doi: 10.1016/j.cis.2020.102116
[5]
Liu J, Ye L J, Sun Y L, Hu M H, Chen F, Wegner S, Mailänder V, Steffen W, Kappl M, Butt H J. Adv. Mater., 2020, 32(11): 1908008.

doi: 10.1002/adma.v32.11
[6]
Long M Y, Peng S, Deng W S, Miao X R, Wen N, Zhou Q N, Yang X J, Deng W L. J. Mater. Chem. A, 2017, 5(43): 22761.

doi: 10.1039/C7TA06190K
[7]
Barthlott W, Neinhuis C. Planta, 1997, 202(1): 1.

doi: 10.1007/s004250050096
[8]
Xia F, Jiang L. Adv. Mater., 2008, 20(15): 2842.

doi: 10.1002/adma.v20:15
[9]
Blossey R. Nat. Mater., 2003, 2(5): 301.

pmid: 12728235
[10]
Wenzel R N. Ind. Eng. Chem., 1936, 28(8): 988.

doi: 10.1021/ie50320a024
[11]
Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 546.

doi: 10.1039/tf9444000546
[12]
Nosonovsky M. Nature, 2011, 477(7365): 412.

doi: 10.1038/477412a
[13]
Bico J, Marzolin C, Quéré D. Europhys. Lett., 1999, 47: 220.

doi: 10.1209/epl/i1999-00548-y
[14]
Wang B, Zhang Y B, Shi L, Li J, Guo Z G. J. Mater. Chem., 2012, 22(38): 20112.

doi: 10.1039/c2jm32780e
[15]
Dupuis A, Yeomans J M. Langmuir, 2005, 21: 2624.

pmid: 15752062
[16]
Emami B, Tafreshi H V, Gad-El-hak M, Tepper G C. J. Appl. Phys., 2012, 111(6): 064325.

doi: 10.1063/1.3697895
[17]
Lobaton E J, Salamon T R. J. Colloid Interface Sci., 2007, 314(1): 184.

doi: 10.1016/j.jcis.2007.05.059
[18]
Patankar N A. Langmuir, 2004, 20(17): 7097.

pmid: 15301493
[19]
Marmur A. Langmuir, 2003, 19(20): 8343.

doi: 10.1021/la0344682
[20]
Lv P, Xue Y H, Shi Y P, Lin H, Duan H L. Phys. Rev. Lett., 2014, 112(19): 196101.

doi: 10.1103/PhysRevLett.112.196101
[21]
Lafuma A, Quéré D. Nat. Mater., 2003, 2(7): 457.

doi: 10.1038/nmat924
[22]
Bormashenko E. Adv. Colloid Interface Sci., 2015, 222: 92.

doi: 10.1016/j.cis.2014.02.009
[23]
Lambley H, Schutzius T M, Poulikakos D. PNAS, 2020, 117(44): 27188.

doi: 10.1073/pnas.2008775117 pmid: 33077603
[24]
Bocquet L, Lauga E. Nat. Mater., 2011, 10(5): 334.

doi: 10.1038/nmat2994
[25]
Chen A Y F W, Hsieh M C, Oner D, Youngblood J, Thomas J. McCarthy. Langmuir, 1999, 15: 3395.

doi: 10.1021/la990074s
[26]
Extrand C W. Langmuir, 2002, 18(21): 7991.

doi: 10.1021/la025769z
[27]
Luo S Q, Chen Z D, Dong Z C, Fan Y X, Chen Y, Liu B, Yu C L, Li C X, Dai H Y, Li H F, Wang Y L, Jiang L. Adv. Mater., 2019, 31(41): 1904475.

doi: 10.1002/adma.v31.41
[28]
Sun Y H, Huang J X, Guo Z G, Liu W M. J. Mater. Chem. A, 2021, 9(3): 1471.

doi: 10.1039/D0TA11686F
[29]
Quéré D. Annu. Rev. Mater. Res., 2008, 38(1): 71.

doi: 10.1146/matsci.2008.38.issue-1
[30]
Wang F, Pi J, Song F, Feng R, Xu C, Wang X L, Wang Y Z. Chem. Eng. J., 2020, 381: 122539.

doi: 10.1016/j.cej.2019.122539
[31]
Su Y W, Ji B H, Huang Y G, Hwang K C. Langmuir, 2010, 26(24): 18926.

doi: 10.1021/la103442b
[32]
Hemeda A A, Gad-El-hak M, Tafreshi H V. Phys. Fluids, 2014, 26(8): 082103.

doi: 10.1063/1.4891363
[33]
Shirtcliffe N J, McHale G, Newton M I, Chabrol G, Perry C C. Adv. Mater., 2004, 16(21): 1929.

doi: 10.1002/(ISSN)1521-4095
[34]
Hensel R, Finn A, Helbig R, Killge S, Braun H G, Werner C. Langmuir, 2014, 30(50): 15162.

doi: 10.1021/la503601u pmid: 25496232
[35]
Xiang Y L, Huang S L, Lv P, Xue Y H, Su Q, Duan H L. Phys. Rev. Lett., 2017, 119(13): 134501.

doi: 10.1103/PhysRevLett.119.134501
[36]
Verho T, Bower C, Andrew P, Franssila S, Ikkala O, Ras R H A. Adv. Mater., 2011, 23(5): 673.

doi: 10.1002/adma.201003129
[37]
Liu C, Zhan H Y, Yu J G, Liu R, Zhang Q X, Liu Y H, Li X W. Surf. Coat. Technol., 2019, 361: 342.

doi: 10.1016/j.surfcoat.2019.01.041
[38]
Jung Y C, Bhushan B. ACS Nano, 2009, 3: 4155.

doi: 10.1021/nn901509r
[39]
Liu T Y, Kim C J. Science, 2014, 346(6213): 1096.

doi: 10.1126/science.1254787
[40]
Su B, Tian Y, Jiang L. J. Am. Chem. Soc., 2016, 138(6): 1727.

doi: 10.1021/jacs.5b12728
[41]
Yang C, Cui S H, Weng Y C, Wu Z C, Liu L L, Ma Z Y, Tian X B, Fu R K Y, Chu P K, Wu Z Z. Chem. Eng. J., 2021, 409: 128142.

doi: 10.1016/j.cej.2020.128142
[42]
Ren T T, Tang G W, Yuan B, Yan Z S, Ma L R, Huang X. Surf. Coat. Technol., 2019, 380: 125086.

doi: 10.1016/j.surfcoat.2019.125086
[43]
Xiao Z, Wang Q, Yao D, Yu X, Zhang Y. Langmuir, 2019, 35: 6650.

doi: 10.1021/acs.langmuir.9b00690
[44]
Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin I P. Science, 2015, 347: 1132.

doi: 10.1126/science.aaa0946
[45]
Li D W, Wang H Y, Liu Y, Wei D S, Zhao Z X. Chem. Eng. J., 2019, 367: 169.

doi: 10.1016/j.cej.2019.02.093
[46]
Pan S Y, Chen M, Wu L M. ACS Appl. Mater. Interfaces, 2020, 12(4): 5157.

doi: 10.1021/acsami.9b22693
[47]
Liu M M, Hou Y Y, Li J, Tie L, Peng Y B, Guo Z G. J. Mater. Chem. A, 2017, 5(36): 19297.

doi: 10.1039/C7TA06001G
[48]
Wang S Q, Wang Y M, Zou Y C, Chen G L, Ouyang J H, Jia D C, Zhou Y. ACS Appl. Mater. Interfaces, 2020, 12(31): 35502.

doi: 10.1021/acsami.0c10539
[49]
Wu B R, Lyu J J, Peng C Y, Jiang D Z, Yang J, Yang J S, Xing S L, Sheng L P. Chem. Eng. J., 2020, 387: 124066.

doi: 10.1016/j.cej.2020.124066
[50]
Wang D H, Sun Q Q, Hokkanen M J, Zhang C L, Lin F Y, Liu Q, Zhu S P, Zhou T F, Chang Q, He B, Zhou Q, Chen L Q, Wang Z K, Ras R H A, Deng X. Nature, 2020, 582(7810): 55.

doi: 10.1038/s41586-020-2331-8
[51]
Zhang W L, Wang D H, Sun Z N, Song J N, Deng X. Chem. Soc. Rev., 2021, 50(6): 4031.

doi: 10.1039/D0CS00751J
[52]
Wang L M, Urata C, Sato T, England M W, Hozumi A. Langmuir, 2017, 33(38): 9972.

doi: 10.1021/acs.langmuir.7b02343
[53]
Wang T, Bao Y, Gao Z P, Wu Y, Wu L M. Prog. Org. Coat., 2019, 132: 275.
[54]
Wang Y K, Liu Y P, Li J, Chen L W, Huang S L, Tian X L. Chem. Eng. J., 2020, 390: 124311.

doi: 10.1016/j.cej.2020.124311
[55]
Zhang Y F, Zhang L Q, Xiao Z, Wang S L, Yu X Q. Chem. Eng. J., 2019, 369: 1.

doi: 10.1016/j.cej.2019.03.021
[56]
Guo X J, Xue C H, Sathasivam S, Page K, He G J, Guo J, Promdet P, Heale F L, Carmalt C J, Parkin I P. J. Mater. Chem. A, 2019, 7(29): 17604.

doi: 10.1039/C9TA03264A
[57]
Cao C Y, Yi B, Zhang J Q, Hou C S, Wang Z Y, Lu G, Huang X, Yao X. Chem. Eng. J., 2020, 392: 124834.

doi: 10.1016/j.cej.2020.124834
[58]
Zhang D J, Cheng Z J, Kang H J, Yu J X, Liu Y Y, Jiang L. Angew. Chem. Int. Ed., 2018, 57(14): 3701.

doi: 10.1002/anie.201800416
[59]
Lv T, Cheng Z J, Zhang E S, Kang H J, Liu Y Y, Jiang L. Small, 2017, 13(4):201770023.
[60]
Liu M L, Luo Y F, Jia D M. Chem. Eng. J., 2019, 368: 18.

doi: 10.1016/j.cej.2019.02.162
[61]
Zhang X, Zhi D F, Sun L, Zhao Y B, Tiwari M K, Carmalt C J, Parkin I P, Lu Y. J. Mater. Chem. A, 2018, 6(2): 357.

doi: 10.1039/C7TA08895G
[62]
Liu M L, Luo Y F, Jia D M. Chem. Eng. J., 2020, 398: 125362.

doi: 10.1016/j.cej.2020.125362
[63]
Qing Y Q, Shi S L, Lv C, Zheng Q S. Adv. Funct. Mater., 2020, 30(39): 1910665.

doi: 10.1002/adfm.v30.39
[64]
Peng C Y, Chen Z Y, Tiwari M K. Nat. Mater., 2018, 17(4): 355.

doi: 10.1038/s41563-018-0044-2
[65]
Lou X D, Huang Y, Yang X, Zhu H, Heng L P, Xia F. Adv. Funct. Mater., 2020, 30(10): 2070061.

doi: 10.1002/adfm.v30.10
[66]
Lee C, Kim C J. Phys. Rev. Lett., 2011, 106: 014502.

doi: 10.1103/PhysRevLett.106.014502
[67]
Adera S, Raj R, Enright R, Wang E N. Nat. Commun., 2013, 4(1): 1.
[68]
Boreyko J B, Chen C H. Phys. Rev. Lett., 2009, 103(17): 174502.

doi: 10.1103/PhysRevLett.103.174502
[69]
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477(7365): 443.

doi: 10.1038/nature10447
[70]
Yao X, Hu Y H, Grinthal A, Wong T S, Mahadevan L, Aizenberg J. Nat. Mater., 2013, 12(6): 529.

doi: 10.1038/nmat3598 pmid: 23563739
[71]
Timonen J V I, Latikka M, Leibler L, Ras R H A, Ikkala O. Science, 2013, 341(6143): 253.

doi: 10.1126/science.1233775 pmid: 23869012
[72]
Yao X, Wu S W, Chen L, Ju J, Gu Z D, Liu M J, Wang J J, Jiang L. Angew. Chem. Int. Ed., 2015, 54(31): 8975.

doi: 10.1002/anie.201503031
[73]
Jiang D, Xia X C, Hou J, Zhang X X, Dong Z H. Ind. Eng. Chem. Res., 2019, 58(1): 165.

doi: 10.1021/acs.iecr.8b04060
[74]
Jiang D, Zhou H, Wan S, Cai G Y, Dong Z H. Surf. Coat. Technol., 2018, 339: 155.

doi: 10.1016/j.surfcoat.2018.02.001
[75]
Gao J, Zhang Y F, Wei W, Yin Y, Liu M H, Guo H, Zheng C B, Deng P Y. ACS Appl. Mater. Interfaces, 2019, 11(50): 47545.

doi: 10.1021/acsami.9b16181
[76]
Deng R, Shen T, Chen H L, Lu J X, Yang H C, Li W H. J. Mater. Chem. A, 2020, 8(16): 7536.

doi: 10.1039/D0TA02000A
[77]
Wang P, Zhang D, Lu Z, Sun S M. ACS Appl. Mater. Interfaces, 2016, 8(2): 1120.

doi: 10.1021/acsami.5b08452
[78]
Tian X L, Verho T, Ras R H A. Science, 2016, 352:142.

doi: 10.1126/science.aaf2073
[79]
Barati Darband G, Aliofkhazraei M, Khorsand S, Sokhanvar S, Kaboli A. Arab. J. Chem., 2020, 13(1): 1763.

doi: 10.1016/j.arabjc.2018.01.013
[80]
Zhu T X, Cheng Y, Huang J Y, Xiong J Q, Ge M Z, Mao J J, Liu Z K, Dong X L, Chen Z, Lai Y K. Chem. Eng. J., 2020, 399: 125746.

doi: 10.1016/j.cej.2020.125746
[81]
Xue C H, Li X, Jia S T, Guo X J, Li M. RSC Adv., 2016, 6(88): 84887.

doi: 10.1039/C6RA11508J
[82]
Li J T, Zhou L, Yang N, Gao C L, Zheng Y M. RSC Adv., 2017, 7(70): 44234.

doi: 10.1039/C7RA09016A
[83]
Milionis A, Loth E, Bayer I S. Adv. Colloid Interface Sci., 2016, 229: 57.

doi: 10.1016/j.cis.2015.12.007
[84]
Chen H Y, Wang F F, Fan H Z, Hong R Y, Li W H. Chem. Eng. J., 2021, 408: 127343.

doi: 10.1016/j.cej.2020.127343
[85]
Li X Y, Zhao S P, Hu W H, Zhang X, Pei L, Wang Z. Appl. Surf. Sci., 2019, 481: 374.

doi: 10.1016/j.apsusc.2019.03.114
[86]
Li M, Li Y, Xue F, Jing X L. Appl. Surf. Sci., 2019, 480: 738.

doi: 10.1016/j.apsusc.2019.03.001
[87]
Xu L Y, Zhu D D, Lu X M, Lu Q H. J. Mater. Chem. A, 2015, 3(7): 3801.

doi: 10.1039/C4TA06944G
[88]
Zhao X X, Park D S, Choi J, Park S, Soper S A, Murphy M C. J. Colloid Interface Sci., 2020, 574: 347.

doi: 10.1016/j.jcis.2020.04.065
[89]
Xu K, Ren S Z, Song J L, Liu J Y, Liu Z A, Sun J, Ling S Y. Chem. Eng. J., 2021, 403: 126348.

doi: 10.1016/j.cej.2020.126348
[90]
Lyu J J, Wu B R, Wu N, Peng C Y, Yang J, Meng Y Y, Xing S L. Chem. Eng. J., 2021, 404: 126456.

doi: 10.1016/j.cej.2020.126456
[91]
Liu X, He H Q, Zhang T C, Ouyang L K, Zhang Y X, Yuan S J. Chem. Eng. J., 2021, 404: 127106.

doi: 10.1016/j.cej.2020.127106
[92]
Liang Z H, Zhou Z Z, Dong B H, Wang S M. Coatings, 2020, 10(4): 349.

doi: 10.3390/coatings10040349
[93]
Huang S S, Liu G J, Zhang K K, Hu H, Wang J, Miao L, Tabrizizadeh T. Chem. Eng. J., 2019, 360: 445.

doi: 10.1016/j.cej.2018.11.220
[94]
Xue C H, Bai X, Jia S T. Sci. Rep., 2016, 6(1): 1.

doi: 10.1038/s41598-016-0001-8
[95]
Razavi S M R, Neisiany R E, Marjani A. Theor. Appl. Fract. Mech., 2018, 94: 181.

doi: 10.1016/j.tafmec.2018.02.001
[96]
Barthwal S, Lim S H. Int. J. Pr. Eng. Man. Gt., 2019, 7: 481.
[97]
Saddiqi N U H, Seeger S. Adv. Mater. Interfaces, 2019, 6(7): 1900041.

doi: 10.1002/admi.v6.7
[98]
Yin X X, Mu P, Wang Q T, Li J. ACS Appl. Mater. Interfaces, 2020, 12(31): 35453.

doi: 10.1021/acsami.0c09497
[99]
Huang J B, Yang M, Zhang H, Zhu J. ACS Appl. Mater. Interfaces, 2021, 13(1): 1323.

doi: 10.1021/acsami.0c16582
[100]
Lin D, Zhang X G, Yuan S C, Li Y, Xu F, Wang X, Li C, Wang H Y. ACS Appl. Mater. Interfaces, 2020, 12(42): 48216.

doi: 10.1021/acsami.0c14471
[101]
Zhang W X, Gao J, Deng Y J, Peng L F, Yi P Y, Lai X M, Lin Z Q. Adv. Funct. Mater., 2021, 31(24): 2101068.

doi: 10.1002/adfm.v31.24
[102]
Han J P, Cai M Y, Lin Y, Liu W J, Luo X, Zhang H J, Wang K Y, Zhong M L. RSC Adv., 2018, 8(12): 6733.

doi: 10.1039/C7RA13496G
[103]
Liu Z J, Zhang C Y, Zhang X G, Wang C J, Liu F T, Yuan R X, Wang H Y. Chem. Eng. J., 2021, 411: 128632.

doi: 10.1016/j.cej.2021.128632
[104]
Li C, Lai H, Cheng Z J, Yan J J, Xiao L H, Jiang L, An M Z. Chem. Eng. J., 2020, 385: 123924.

doi: 10.1016/j.cej.2019.123924
[105]
Zhi D F, Lu Y, Sathasivam S, Parkin I P, Zhang X. J. Mater. Chem. A, 2017, 5(21): 10622.

doi: 10.1039/C7TA02488F
[1] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[2] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[3] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[4] Yonggang Guo, Yachao Zhu, Xin Zhang, Bingpeng Luo. Effects of Superhydrophobic Surface on Tribological Properties: Mechanism, Status and Prospects [J]. Progress in Chemistry, 2020, 32(2/3): 320-330.
[5] Yuekun Ye, Bin Chi, Shijie Jiang, Shijun Liao. Enhancing the Durability of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2019, 31(12): 1637-1652.
[6] Jianwen Shao, Fuchao Yang, Zhiguang Guo. The Application of Biomimetic Superoleophobic Materials under Harsh Operating Conditions [J]. Progress in Chemistry, 2018, 30(12): 2003-2011.
[7] Lingang Hou, Lili Ma, Yichen Zhou, Yu Zhao, Yi Zhang, Jinmei He*. Application of Low Surface Energy Compounds to the Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1887-1898.
[8] Changlu Zhou, Zhong Xin*. Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine [J]. Progress in Chemistry, 2018, 30(1): 112-123.
[9] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[10] Qu Mengnan*, Hou Lingang, He Jinmei*, Ma Xuerui, Yuan Mingjuan, Liu Xiangrong. Research and Development of Functional Superhydrophobic Materials [J]. Progress in Chemistry, 2016, 28(12): 1774-1787.
[11] Tian Miaomiao, Li Xuemei, Yin Yong, He Tao, Liu Jindun. Preparation of Superhydrophobic Membranes and Their Application in Membrane Distillation [J]. Progress in Chemistry, 2015, 27(8): 1033-1041.
[12] Wang Cheng, Wang Shubo, Zhang Jianbo, Li Jianqiu, Wang Jianlong, Yang Minggao. The Durability Research on the Proton Exchange Membrane Fuel Cell for Automobile Application [J]. Progress in Chemistry, 2015, 27(4): 424-435.
[13] Zhan Yuanyuan, Liu Yuyun, Lv Jiuan, Zhao Yong, Yu Yanlei. Photoresponsive Surfaces with Controllable Wettability [J]. Progress in Chemistry, 2015, 27(2/3): 157-167.
[14] Zhang Kaiqiang, Li Bo, Zhao Yunhui, Li Hui, Yuan Xiaoyan. Functional POSS-Containing Polymers and Their Applications [J]. Progress in Chemistry, 2014, 26(0203): 394-402.
[15] Yan Yingdi, Luo Nengzhen, Xiang Xiangao, Xu Yiming, Zhang Qinghua, Zhan Xiaoli. Fabricating Mechanism and Preparation of Anti-Icing & Icephobic Coating [J]. Progress in Chemistry, 2014, 26(01): 214-222.