中文
Announcement
More
Progress in Chemistry Previous Articles   Next Articles

• Review •

Graphene Nanoribbons

Zheng Xiaoqing, Feng Miao, Zhan Hongbing*   

  1. College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
  • Received: Revised: Online: Published:
PDF ( 1700 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, an interesting class of quasi one dimensional graphene-based material, known as graphene nanoribbons (GNRs), has attracted tremendous attention. Owing to the finite width and abundant edge geometries, GNRs present a lot of promising properties and applications, which are quite different from large-area graphene. In this paper we attempt to give an overview of their novel edge effect and the resulting electronic property, magnetic property, etc. We further present some typical preparation methods, defects types, doping, chemical modification and so on. We also provide an outlook of the applications of functional GNRs. Contents
1 Introduction
2 Edge effect of graphene nanoribbons
3 Properties of graphene nanoribbons
3.1 Electronic properties
3.2 Magnetic properties
3.3 Chemical reactivity
3.4 Other properties
4 Preparation of graphene nanoribbons
4.1 Etching method
4.2 Chemosynthesis
4.3 Graphene nanoribbons from carbon nanotubes
4.4 Other methods
5 Perspectives

CLC Number: 

[1] Geim A K. Science, 2009, 324(5934): 1530-1534
[2] Gerstner E. Nat. Phys., 2010, 6(11): 836-836
[3] 徐秀娟(Xu X J), 秦金贵(Qin J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21(12): 2559-2567
[4] Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L. Nat. Mater., 2010, 9(4): 315-319
[5] Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Nano Lett., 2009, 9(5): 1752-1758
[6] Zhuang X D, Chen Y, Liu G, Li P P, Zhu C X, Kang E T, Neoh K G, Zhang B, Zhu J H, Li Y X. Adv. Mater., 2010, 22(15): 1731-1735
[7] Feng M, Zhan H, Chen Y. Appl. Phys. Lett., 2010, 96(3): art. no. 033103
[8] Feng M, Sun R, Zhan H, Chen Y. Nanotechnology, 2010, 21(7): 075601
[9] Wang X, Ouyang Y, Jiao L, Wang H, Xie L, Wu J, Guo J, Dai H. Nat. Nanotechnol., 2011, 6(9): 563-567
[10] Dutta S, Pati S K. J. Mater. Chem., 2010, 20(38): 8207-8223
[11] Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319(5867): 1229-1232
[12] Schwierz F. Nat. Nanotechnol., 2010, 5(7): 487-496
[13] Haskins J, Knac A, Sevik C, Sevinli H, Cuniberti G, Cagn T. ACS Nano, 2011, 5(5): 3779-3787
[14] Basu D, Gilbert M J, Register L F, Banerjee S K, Macdonald A H. Appl. Phys. Lett., 2008, 92(4): art. no. 042114
[15] Wakabayashi K, Takane Y, Yamamoto M, Sigrist M. Carbon, 2009, 47(1): 124-137
[16] Querlioz D, Apertet Y, Valentin A, Huet K, Bournel A, Galdin-Retailleau S, Dollfus P. Appl. Phys. Lett., 2008, 92(4): art. no. 042108
[17] Jia X, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y, Reina A, Kong J, Terrones M, Dresselhaus M S. Science, 2009, 323(5922): 1701-1705
[18] Jaiswal M, Lim C H Y X, Bao Q, Toh C T, Loh K P, Ozyilmaz B. ACS Nano, 2011, 5(2): 888-896
[19] Gunlycke D, Li J, Mintmire J W, White C T. Nano Lett., 2010, 10: 3638-3642
[20] Shemella P, Zhang Y, Mailman M, Ajayan P M, Nayak S K. Appl. Phys. Lett., 2007, 91(4): art. no. 042101
[21] Wassmann T, Seitsonen A P, Saitta A M, Lazzeri M, Mauri F. J. Am. Chem. Soc., 2010, 132: 3440-3451
[22] Kinder J M, Dorando J J, Wang H, Chan G K. Nano Lett., 2009, 9(5): 1980-1983
[23] Wang J Y, Liu Z F, Liu Z R. AIP Advances, 2012, 2: art. no. 0121031
[24] Huang B, Yan Q, Li Z, Duan W. Front. Phys. China, 2009, 4(3): 269-279
[25] Barone V, Hod O, Scuseria G E. Nano Lett., 2006, 6(12): 2748-2754
[26] Wang G. Chem. Phys. Lett., 2012, 533: 74-77
[27] Shimizu T, Haruyama J, Marcano D C, Kosinkin D V, Tour J M, Hirose K, Suenaga K. Nat. Nanotechnol., 2011, 6(1): 45-50
[28] Yu S S, Zheng W T, Wen Q B, Jiang Q. Carbon, 2008, 46: 537-543
[29] Kan E, Li Z, Yang J, Hou J G. J. Am. Chem. Soc., 2008, 130(13): 4224-4225
[30] Biel B, Triozon F, Blase X, Roche S. Nano Lett., 2009, 9(7): 2725-2729
[31] Huang B, Yan Q, Zhou G, Wu J, Liu F, Gu B, Duan W. Appl. Phys. Lett., 2007, 91(25): art. no. 253122
[32] Wu M, Wu X, Zeng X C. J. Phys. Chem. C, 2010, 114: 3937-3944
[33] Son Y, Cohen M L, Louie S G. Nature, 2006, 444(7117): 347-349
[34] Rao S S, Narayana J S, Stesmans A, Moshchalkov V V, Van T J, Kosynkin D V, Higginbotham A, Tour J M. Nano Lett., 2012, 12(3): 1210-1217
[35] Bai J, Cheng R, Xiu F, Liao L, Wang M, Shailos A, Wang K L, Huang Y, Duan X. Nat. Nanotechnol., 2010, 5(9): 655-659
[36] Kim W Y, Kim K S. Nat. Nanotechnol., 2008, 3(7): 408-412
[37] Barone V, Hod O, Scuseria G E. Nano lett., 2006, 6(12): 2748-2754
[38] Sharma R, Nair N, Strano M S. J. Phys. Chem. C, 2009, 113(33): 14771-14777
[39] Zheng Y, Xu L, Fan Z, Wei N, Huang Z. J. Mater. Chem., 2012, 22(19): 9798-9805
[40] Yang L, Cohen M L, Louie S G. Nano Lett., 2007, 7(10): 3112-3115
[41] Tapaszto L, Dobrik G, Lambin P, Biro L P. Nat. Nanotechnol., 2008, 3(7): 397-401
[42] Sprinkle M, Ruan M, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A. Nat. Nanotechnol., 2010, 5(10): 727-731
[43] Masubuchi S, Ono M, Yoshida K, Hirakawa K, Machida T. Appl. Phys. Lett., 2009, 94(8): art. no. 082107
[44] Bai J, Huang Y. Mater. Sci. Eng. R, 2010, 70(3/6): 341-353
[45] Bai J, Duan X, Huang Y. Nano Lett., 2009, 9(5): 2083-2087
[46] Liu L, Zhang Y, Wang W, Gu C, Bai X, Wang E. Adv. Mater., 2011, 23: 1246-1251
[47] Shin Y, Son J Y, Jo M, Shin Y, Jang H M. J. Am. Chem. Soc., 2011, 133: 5623-5625
[48] Jia X, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S. Nanoscale, 2011, 3(1): 86-95
[49] Campos-Delgado J, Romo-Herrera J M, Jia X, Cullen D A, Muramatsu H, Kim Y A, Hayashi T, Ren Z, Smith D J, Okuno Y, Ohba T, Kanoh H, Kaneko K, Endo M, Terrones H, Dresselhaus M S, Terrones M. Nano Lett., 2008, 8(9): 2773-2778
[50] Pan Z, Liu N, Fu L, Liu Z. J. Am. Chem. Soc., 2011, 133(44): 17578-17581
[51] Wei D, Liu Y, Zhang H, Huang L, Wu B, Chen J, Yu G. J. Am. Chem. Soc., 2009, 131(31): 11147-11154
[52] Pan M, Giro E C, Jia X, Bhaviripudi S, Li Q, Kong J, Meunier V, Dresselhaus M S. Nano Lett., 2012, 12(4): 1928-1933
[53] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K, Fasel R. Nature, 2010, 466(7305): 470-473
[54] Bjork J, Stafstrom S, Hanke F. J. Am. Chem. Soc., 2011, 133: 14884-14887
[55] Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319(5867): 1229-1232
[56] Wu Z, Ren W, Gao L, Liu B, Zhao J, Cheng H. Nano Research, 2010, 3(1): 16-22
[57] Jiao L, Wang X, Diankov G, Wang H, Dai H. Nat. Nano, 2010, 5(5): 321-325
[58] Ci L, Xu Z, Wang L, Gao W, Ding F, Kelly K, Yakobson B, Ajayan P. Nano Research, 2008, 1: 116-122
[59] Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P. Nano Lett., 2009, 9(7): 2600-2604
[60] Datta S S, Strachan D R, Khamis S M, Johnson A T C. Nano Lett., 2008, 8(7): 1912-1915
[61] Parashar U K, Bhandari S, Srivastava R K, Jariwala D, Srivastava A. Nanoscale, 2011, 3(9): 3876-3882
[62] Hirsch A. Angew. Chem. Int. Ed., 2009, 48(36): 6594-6596
[63] Vaughan O. Nat. Nanotechnol., 2009, 4(5): 283-283
[64] Terrones M, Botello-Méndez A R, Campos-Delgado J, López-Urías F, Vega-Cantú Y I, Rodríguez-Macías F J, Elías A L, Muñoz-Sandoval E, Cano-Márquez A G, Charlier J, Terrones H. Nano Today, 2010, 5(4): 351-372
[65] Matthias B. Surf. Sci. R., 2012, 67: 83-115
[66] Kosynkin D V, Lu W, Sinitskii A, Pera G, Sun Z, Tour J M. ACS Nano, 2011, 5(2): 968-974
[67] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458(7240): 872-876
[68] Cataldo F, Compagnini G, Patané G, Ursini O, Angelini G, Ribic P R, Margaritondo G, Cricenti A, Palleschi G, Valentini F. Carbon, 2010, 48(9): 2596-2602
[69] Higginbotham A L, Kosynkin D V, Sinitskii A, Sun Z, Tour J M. ACS Nano, 2010, 4(4): 2059-2069
[70] Shinde D B, Debgupta J, Kushwaha A, Aslam M, Pillai V K. J. Am. Chem. Soc., 2011, 1333: 4168-4171
[71] Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H J. Nature, 2009, 458(7240): 877-880
[72] Fan Y, Li J, Liu X, Wang L, Chen X, Sun S, Kawasaki A, Jiang W. Carbon, 2011, 49(4): 1439-1445
[73] Morelos Gómez A, Vega-Díaz S M, González V J, Tristán-López F, Cruz-Silva R, Fujisawa K, Muramatsu H, Hayashi T, Mi X, Shi Y, Sakamoto H, Khoerunnisa F, Kaneko K, Sumpter B G, Kim Y A, Meunier V, Endo M, Muñoz-Sandoval E, Terrones M. ACS Nano, 2012, 6(3): 2261-2272
[74] Kim K, Sussman A, Zettl A. ACS Nano, 2010, 4(3): 1362-1366
[75] Ma L, Wang J, Ding F. Angew. Chem., 2012, 124(5): 1187-1190
[76] Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H. Small, 2011, 7(14): 1876-1902
[77] Stützel E U, Burghard M, Kern K, Traversi F, Nichele F, Sordan R. Small, 2010, 6(24): 2822-2825
[78] Johnson J L, Behnam A, Pearton S J, Ural A. Adv. Mater., 2010, 22(43): 4877-4880
[79] Chitara B, Panchakarla L S, Krupanidhi S B, Rao C N R. Adv. Mater., 2011, 23(45): 5419-5424
[80] Velten J A, Carretero-Gonzalez J, Castillo-Martinez E, Bykova J, Cook A, Baughman R, Zakhidov A. J. Phys. Chem. C, 2011, 115(50): 25125-25131
[81] Yu S, Zheng W. Nanoscale, 2010, 2(7): 1069-1082
[82] Chien S, Yang Y, Chen C O. Carbon, 2012, 50(2): 421-428
[83] Xiang H, Kan E, Wei S, Whangbo M, Yang J. Nano Lett., 2009, 9(12): 4025-4030
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[6] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[7] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[8] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[9] Xiaojun Liu, Lang Qin, Yanlei Yu. Light-Driven Handedness Inversion of Cholesteric Liquid Crystals [J]. Progress in Chemistry, 2023, 35(2): 247-262.
[10] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[11] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[12] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[13] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[14] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[15] Lin Chen, Jie-Feng Chen, Yi-Ren Liu, Yuyu Liu, Hai-Feng Ling, Ling-Hai Xie. Organic Strained Semiconductors and Their Optoelectronic Properties [J]. Progress in Chemistry, 2022, 34(8): 1772-1783.
Viewed
Full text


Abstract

Graphene Nanoribbons