中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 957-963 Previous Articles   Next Articles

• Special Issue of Quantum Chemistry •

Recent Theoretical Progress on Photochemical reactions at the Solid/Solution Interface

Li Yefei, Liu Zhipan   

  1. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, MOE Key Laboratory of Computational Physical Science, Fudan University, Shanghai 200433, China
  • Received: Revised: Online: Published:
PDF ( 1219 ) Cited
Export

EndNote

Ris

BibTeX

TiO2 nanoparticles have been widely utilized in photocatalysis, but the atomic level understanding on their working mechanism falls much short of expectations. In this short review, we briefly introduce the recent theoretical progress in photocatalysis carried out in our research group. Extensive density functional theory (DFT) calculations combined with the periodic continuum solvation model have been utilized to compute the electronic structure of extended surfaces, nanoparticles in aqueous solution and provide the reaction energetics for the key elementary reaction. It is demonstrated that the equilibrium shape of nanoparticle is sensitive to its size from 1 to 30 nm, and the sharp crystals possess much higher activity than the flat crystals in oxygen evolution of water splitting, which in combination lead to the morphology dependence of photocatalytic activity. Contents
1 Introduction
2 Methods
3 Electronic structure of TiO2 in aqueous surrounding
4 OER mechanism on extended surfaces
5 Electronic structure of anatase nanoparticle in aqueous surrounding
6 The thermodynamics relationship between particle size and shape
7 Photoactivity of nanoparticles
8 Outlook

CLC Number: 

[1] Fujishima A. Honda K. Nature, 1972, 238: 37-38
[2] Nakamura R. Nakato Y. J. Am. Chem. Soc., 2004, 126: 1290-1298
[3] Burda C, Lou Y, Chen X, Samia A C S, Stout J, Gole J L. Nano Lett., 2003, 3: 1049-1051
[4] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269-271
[5] Mrowetz M, Balcerski W, Colussi A J, Hoffmann M R. J. Phys. Chem. B, 2004, 108: 17269-17273
[6] Sathish M, Viswanathan B, Viswanath R P, Gopinath C S. Chem. Mater., 2005, 17: 6349-6353
[7] Cong Y, Zhang J, Chen F, Anpo M. J. Phys. Chem. C, 2007, 111: 6976-6982
[8] Takahara Y, Hanada Y, Ohno T, Ushiroda S, Ikeda S, Matsumura M. Journal of Applied Electrochemistry, 2005, 35: 793-797
[9] Gratzel M. Nature, 2001, 414: 338-344
[10] Konig H P, Heinrich U, Kock H, Peters L. Arch. Environ. Contam. Toxicol., 1992, 22: 30-35
[11] Davis A P, Huang C P. Water Res., 1991, 25: 1273-1278
[12] Nozik A J. Nature, 1975, 257: 383-386
[13] Zou Z, Ye J, Sayama K, Arakawa H. Nature, 2001, 414: 625-627
[14] Kikkawa H, O'Regan B, Anderson M A. J. Electroanal. Chem., 1991, 309: 91-101
[15] Kato H, Kudo A. J. Phys. Chem. B, 2002, 106: 5029-5034
[16] Ohno T, Mitsui T, Matsumura M. Chem. Lett., 2003, 32: 364-365
[17] Irie H, Watanabe Y, Hashimoto K. Chem. Lett., 2003, 32: 772-773
[18] Wilson R H. J. Electrochem. Soc., 1980, 127: 228-234
[19] Salvador P, Gutierrez C. Chem. Phys. Lett., 1982, 86: 131-134
[20] Salvador P, Gutierrez C. Surf. Sci., 1983, 124: 398-406
[21] Salvador P, Gutierrez C. J. Phys. Chem., 1984, 88: 3696-3698
[22] Salvador P, Guti閞rez C. J. Electroanal. Chem., 1984, 160: 117-130
[23] Ohno T, Sarukawa K, Matsumura M. J. Phys. Chem. B, 2001, 105: 2417-2420
[24] Ohno T, Sarukawa K, Matsumura M. New J. Chem., 2002, 26: 1167-1170
[25] Murakami N, Kurihara Y, Tsubota T. Ohno T. J. Phys. Chem. C, 2009, 113: 3062-3069
[26] Cho C H, Han M H, Kim D H, Kim D K. Mater. Chem. Phys., 2005, 92: 104-111
[27] Amano F, Yasumoto T, Prieto-Mahaney O O, Uchida S, Shibayama T, Ohtani B. Chem. Commun., 2009, 2311-2313
[28] Cernuto G, Masciocchi N, Cervellino A, Colonna G M, Guagliardi A. J. Am. Chem. Soc., 2011, 133: 3114-3119
[29] Wu N, Wang J, Tafen D N, Wang H, Zheng J G, Lewis J P, Liu X, Leonard S S, Manivannan A. J. Am. Chem. Soc., 2010, 132: 6679-6685
[30] Liu G, Sun C, Yang H G, Smith S C, Wang L, Lu G Q, Cheng H M. Chem. Commun., 2010: 755-757
[31] Li Y F, Liu Z P, Liu L, Gao W. J. Am. Chem. Soc., 2010, 132: 13008-13015
[32] Li Y F, Liu Z P. J. Am. Chem. Soc., 2011, 133: 15743-15752
[33] Fattebert J L, Gygi F. J. Comput. Chem., 2002, 23: 662-666
[34] Fattebert J L, Gygi F. Int. J. Quantum Chem., 2003, 93: 139-147
[35] Fattebert J L, Gygi F. Phys. Rev. B, 2006, 73: art. no. 115124
[36] Wang H F, Liu Z P. J. Phys. Chem. C, 2009, 113: 17502-17508
[37] Valdes A, Kroes G J. J. Chem.Phys., 2009, 130: art. no. 114701
[38] Anderson A B, Albu T V. Electrochemistry Communications, 1999, 1: 203-206
[39] Rossmeisl J, Qu Z W, Zhu H, Kroes G J, Nørskov J K. Journal of Electroanalytical Chemistry, 2007, 607: 83-89
[40] Gong X Q, Selloni A, Batzill M, Diebold U. Nat Mater, 2006, 5: 665-670
[41] Gai Y, Li J, Li S S, Xia J B, Wei S H. Phys. Rev. Lett., 2009, 102: art. no. 036402
[42] Anpo M, Shima T, Kodama S. Kubokawa Y. The Journal of Physical Chemistry, 1987, 91: 4305-4310
[43] Wang C C, Zhang Z, Ying J Y. Nanostructured Materials, 1997, 9: 583-586
[44] Serpone N, Lawless D, Khairutdinov R. J. Phys. Chem., 1995, 99: 16646-16654
[45] Kormann C, Bahnemann D W, Hoffmann M R. J. Phys. Chem., 1988, 92: 5196-5201
[46] Wulff G. Z. Kristallogr. Mineral, 1901, 34: 449-530
[47] Penn R L, Banfield J F. Geochim. Cosmochim. Acta, 1999, 63: 1549-1557
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[5] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[6] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[7] Zhao Xiaoxi, Wang Cong, Tian Yong, Wang Xiufang. Preparation of Mesoporous Carbon Materials via Emulsion Method [J]. Progress in Chemistry, 2022, 34(10): 2316-2328.
[8] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[9] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.
[10] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[11] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[12] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[13] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[14] Xuemei Wei, Zhanwei Ma, Xinyuan Mu, Jinzhi Lu, Bin Hu. Catalyst in Acetylene Carbonylation: From Homogeneous to Heterogeneous [J]. Progress in Chemistry, 2021, 33(2): 243-253.
[15] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.