中文
Announcement
More
Progress in Chemistry 2012, Vol. 24 Issue (06): 950-956 Previous Articles   Next Articles

Special Issue: 计算化学

• Special Issue of Quantum Chemistry •

Computational Photochemistry

Liu Yajun   

  1. Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
  • Received: Revised: Online: Published:
PDF ( 1535 ) Cited
Export

EndNote

Ris

BibTeX

This review starts with the most basic concepts in photochemistry, followed by the introduction of developing process of theoretical methods and the related typical applications, as well as our comments. We pursue a goal that the readers can integrally understand the discipline of computational photochemistry by this review. We also indicated the effect of hardware development and the current difficulties and problems in the computational photochemistry for peer discussion. Contents
1 Introduction
2 Basic concepts in photochemistry
2.1 Potential energy surface
2.2 Vertical and adiabatic excitation energy
2.3 Conical intersection
3 Development of computational methods and typical applications in photochemistry
3.1 Semi-empirical methods
3.2 Single-reference ab initio methods
3.3 Multi-reference ab initio methods
3.4 TDDFT methods
3.5 Some combined or improved methods
3.6 Brief comments on all kinds of methods
4 Effect of the development of hardware on the computational photochemsitry
5 Conclusions and outlook

CLC Number: 

[1] Braslavsky S. Pure Appl. Chem., 2007, 79: 293-465
[2] Braslavsky S E, Houk K N. Pure Appl. Chem., 1988, 60: 1055-1106
[3] Verhoeven J. Pure Appl. Chem., 1996, 68: 2223-2286
[4] Michl J. Top. Curr. Chem., 1974, 46: 1-59
[5] Schleyer P R, Allinger N, Clark T, Gasteiger J, Kollman P, Schaefer III H, Schreiner P. Encyclopedia of Computational Chemistry. Wiley, 1998
[6] Serrano-Andrés L, Roca-Sanjuán D, Olaso-González G. In Photochemistry Ed. Albini A, London: Royal Society, 2010, Vol. 38, 11-37
[7] Domcke W, Yarkony D, Köppel H, Ed. Conical Intersections: Electronic Structure, Dynamics & Spectroscopy, Singapore: World Scientific Pub Co., 2004
[8] Pariser R, Parr R G. J. Chem. Phys., 1953, 21: 466-471
[9] Pariser R, Parr R G. J. Chem. Phys., 1953, 21: 767-776
[10] Zimmerman H E. Science, 1966, 153: 837-844
[11] Cramer C J. Essentials of Computational Chemistry. Chichester:Wiley, 2004
[12] Zimmerman H E. J. Am. Chem. Soc., 1966, 88: 1566-1567
[13] Zimmerman H E, Durr H G, Givens R S, Lewis R G. J. Am. Chem. Soc., 1967, 89: 1863-1874
[14] Zimmerman H E. J. Am. Chem. Soc., 1966, 88: 1564-1565
[15] Szabo A, Ostlund N S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Pubns, 1996
[16] Roos B. Chem. Phys. Lett., 1972, 15: 153-159
[17] Huron B, Malrieu J P, Rancurel P. J. Chem. Phys., 1973, 58: 5745-5759
[18] Turro N J, McVey J, Ramamurthy V, Lechtken P. Angew. Chem. Int. Ed., 1979, 18: 572-586
[19] Gerhartz W, Poshusta R D, Michl J. J. Am. Chem. Soc., 1976, 98: 6427-6443
[20] Gerhartz W, Poshusta R D, Michl J. J. Am. Chem. Soc., 1977, 99: 4263-4271
[21] Michl J. Mol. Photochem., 1972, 4: 243-256
[22] Salem L. J. Am. Chem. Soc., 1974, 96: 3486-3501
[23] Salem L, Dauben W G, Turro N J. J. Chim. Phys. Phys.-Chim. Biol., 1973, 70: 694-696
[24] Salem L, Leforestier C, Segal G, Wetmore R. J. Am. Chem. Soc., 1975, 97: 479-487
[25] Salem L, Rowland C. Angew. Chem. Int. Ed., 1972, 11: 92-111
[26] Dauben W G, Salem L, Turro N J. Acc. Chem. Res., 1975, 8: 41-54
[27] Woodward R B, Hoffmann R. Angew. Chem. Int. Ed., 1969, 8: 781-853
[28] Longuet-Higgins H. C., Abrahams, E. W. J. Am. Chem. Soc., 1965, 87: 2045-2046
[29] Van der Lugt W T A M, Oosterho L J. J. Am. Chem. Soc., 1969, 91: 6042-6049
[30] Coester F. Nuclear Physics, 1958, 7: 421-424
[31] Coester F, Kummel H. Nuclear Physics, 1960, 17: 477-485
[32] í ek J. J. Chem. Phys., 1966, 45: 4256-4266
[33] Stanton J F, Bartlett R J. J. Chem. Phys., 1993, 98: 7029-7039
[34] Christiansen O, Koch H, Jorgensen P. Chem. Phys. Lett., 1995, 243: 409-418
[35] Nakatsuji H. Chem. Phys. Lett., 1979, 67: 334-342
[36] Foresman J B, Head-Gordon M, Pople J A, Frisch M J. J. Phys. Chem., 1992, 96: 135-149.
[37] Eade R H A, Robb M A. Chem. Phys. Lett., 1981, 83: 362-368
[38] Brongersma H H, Oosterhoff L J. Chem. Phys. Lett., 1969, 3: 437-440
[39] Werner H J, Meyer W. J. Chem. Phys., 1981, 74: 5802-5807
[40] Bernardi F, De S, Olivucci M, Robb M A. J. Am. Chem. Soc., 1990, 112: 1737-1744
[41] Roos B O, Taylor P R. Chem. Phys., 1980, 48: 157-173
[42] Buenker R J, Peyerimh, S D. Theor. Chim. Acta., 1974, 35: 33-58
[43] Fülscher M P, Andersson K, Roos B O. J. Phys. Chem., 1992, 96: 9204-9212
[44] Serrano-Andrés L, Merchán M, Nebotgil I, Lindh R, Roos B O. J. Chem. Phys., 1993, 98: 3151-3162
[45] Andersson K, Malmqvist P Å, Roos B O, Sadlej A J, Wolinski K. J. Phys. Chem., 1990, 94: 5483-5488
[46] Fang W H. J. Am. Chem. Soc., 1999, 121: 8376-8384
[47] Fang W H, Liu R Z. J. Am. Chem. Soc., 2000, 122: 10886-10894
[48] Fang W. H. Acc. Chem. Res., 2008, 41: 452-457
[49] Liu Y J, Fang W H. Adv. Quantum Chem., 2009, 56: 1-29
[50] Liu Y J, Tian Y C, Fang W H. J. Chem. Phys., 2010, 132: art. no. 014306
[51] Li W Z, Chen S F, Liu Y J. J. Chem. Phys., 2011, 134: art. no. 114303
[52] Cembran A, Bernardi F, Olivucci M, Garavelli M. J. Am. Chem. Soc., 2004, 126: 16018-16037
[53] Bauernschmitt R, Ahlrichs R. Chem. Phys. Lett., 1996, 256: 454-464
[54] Marques M A L, Gross E K U. Annu. Rev. Phys. Chem., 2004, 55: 427-455
[55] Halls M D, Schlegel H B. Chem. Mater., 2001, 13: 2632-2640
[56] Dreuw A, Head-Gordon M. J. Am. Chem. Soc., 2004, 126: 4007-4016
[57] Tozer D J, Amos R D, Handy N C, Roos B O, Serrano- Andrés L. Mol. Phys., 1999, 97: 859-868
[58] Yanai T, Tew D P, Handy N C. Chem. Phys. Lett., 2004, 393: 51-57
[59] Oddershede J. Adv. Chem. Phys., 1987: 201-239
[60] Dapprich S, Komáromi I, Byun K S, Morokuma K, Frisch M J. J. Mol. Struc.: THEOCHEM, 1999, 461: 1-21
[61] Ferré N, Olivucci M. J. Am. Chem. Soc., 2003, 125: 6868-6869
[62] Frutos L M, Andruniów T, Santoro F, Ferré N, Olivucci M. Proc. Natl. Acad. Sci. USA, 2007, 104: 7764-7769
[63] Martin M E, Negri F, Olivucci M. J. Am. Chem. Soc., 2004, 126: 5452-5464
[64] Sinicropi A, Andruniow T, Ferré N, Basosi R, Olivucci M. J. Am. Chem. Soc., 2005, 127: 11534-11535
[65] Navizet I, Liu Y J, Ferre N, Xiao H Y, Fang W H, Lindh R. J. Am. Chem. Soc., 2010, 132: 706-712
[66] Chen S F, Liu Y J, Navizet I, Ferre N, Fang W H, Lindh R. J. Chem. Theory Comput., 2011, 7: 798-803
[67] Grimme S, Waletzke M. J. Chem. Phys., 1999, 111: 5645-5655
[68] Silva-Junior M R, Schreiber M, Sauer S P A, Thiel W. J. Chem. Phys., 2008, 129: art. no. 104103
[69] Kleinschmidt M, Tatchen J, Marian C M. J. Comput. Chem., 2002, 23: 824-833
[70] Mahapatra U S, Datta B, Mukherjee D. J. Chem. Phys., 1999, 110: 6171-6188
[71] Evangelista F A, Allen W D, Schaefer H F Ⅲ. J. Chem. Phys., 2007, 127: art. no. 024102
[72] Evangelista F A, Allen W D, Schaefer H F Ⅲ. J. Chem. Phys., 2006, 125: art. no. 154113
[73] Evangelista F A, Simmonett A C, Allen W D, Schaefer H F Ⅲ, Gauss J. J. Chem. Phys., 2008, 128: art. no. 124104
[74] Evangelista F A, Prochnow E, Gauss J, Schaefer H F, Ⅲ. J. Chem. Phys., 2010, 132: art. no. 074107
[75] Das S, Mukherjee D, Kallay M. J. Chem. Phys., 2010, 132: art. no. 074103
[76] Bhaskaran-Nair K, Demel O, Pittner J. J. Chem. Phys., 2010, 132: art. no. 154105
[77] Mahapatra U S, Chattopadhyay S. J. Chem. Phys., 2011, 134: art. no. 044113
[78] Li X, Paldus J. J. Chem. Phys., 2011, 134: art. no. 074301
[79] Li X, Paldus J. J. Chem. Phys., 2010, 133: art. no. 024102 (13 pages)
[80] Li X, Paldus J. J. Chem. Phys., 2010, 132: art. no. 114103
[81] Malmqvist P Å, Pierloot K, Shahi A R M, Cramer C J, Gagliardi L. J. Chem. Phys., 2008, 128: art. no. 204109
[82] Shahi A R M, Cramer C J, Gagliardi L. Phys. Chem. Chem. Phys., 2009, 11: 10964-10972
[83] González L, Escudero D, Serrano-Andrés L. ChemPhysChem, 2012, 13: 28-51
[84] Borin A C, Serrano-Andrés L, Ludwig V, Canuto S. Phys. Chem. Chem. Phys., 2003, 5: 5001-5009
[85] Grimme S, Waletzke M. J. Chem. Phys., 1999, 111: 5645-5655
[86] Olivucci M. In Computational Photochemistry (Ed. Olivucci M), Ed., Amsterdam: Elsevier, 2005
[87] Mikhailov I A, Tafur S, Masunov A E. Phys. Rev. A, 2008, 77: art. no. 012510
[88] Salzmann S, Marian C M. Photochem. Photobiol. Sci., 2009, 8: 1655-1666
[89] Salzmann S, Marian C M. Chem. Phys. Lett., 2008, 463: 400-404
[90] Parac M, Doerr M, Marian C M, Thiel W. J. Comput. Chem., 2010, 31: 90-106
[91] Helgaker T, Jörgensen P, Olsen J. Molecular Electronic-Structure Theory. New York: Wiley, 2000
[92] Yasuda K. J. Comput. Chem., 2008, 29: 334-342
[93] Zhmurov A, Dima R I, Kholodov Y, Barsegov V. Proteins-Structure Function and Bioinformatics, 2010, 78: 2984-2999
[94] Bauer B A, Davis J E, Taufer M, Patel S. J. Comput. Chem., 2010, 32: 375-385
[95] Shi Y, Green W H, Wong H W, Oluwole O O. Combust. Flame, 2011, 158: 836-847
[96] Aubert D, Teyssier R. Astrophys. J., 2010, 724: 244-266
[97] DePrince A E, Hammond J R. J. Chem. Theory Comput., 2011, 7: 1287-1295
[98] Isborn C M, Luehr N, Ufimtsev I S, Martinez T J. J. Chem. Theory Comput., 2011, 7: 1814-1823
[99] Michl J. In Computational Photochemistry (Ed. Olivucci M), Amsterdam: Elsevier, 2005
[100] Aquilante F, Malmqvist P Å, Pedersen T B, Ghosh A, Roos B O. J. Chem. Theory Comput., 2008, 4: 694-702
[1] Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao. Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints [J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
[2] Mei Yicheng, Yang Baowei. Application of Amide Bioisosteres in the Optimization of Lead Compounds [J]. Progress in Chemistry, 2016, 28(9): 1406-1416.
[3] Zhang Jinchao*, Hu Yi*, Yu Siwang, Gao Yuxi, Zhang Haisong. The Study of Biological Inorganic Chemistry Problemsin Translational Medicine [J]. Progress in Chemistry, 2013, 25(04): 469-478.
[4] Su Peifeng, Wu Wei. Ab Initio Computational Method for Classical Valence Bond Theory [J]. Progress in Chemistry, 2012, 24(06): 1001-1007.
[5] Ma Yuchen, Liu Chengbu. Many-Body Green's Function Theory for the Study of Excited States [J]. Progress in Chemistry, 2012, 24(06): 981-1000.
[6] Gu Zhongmao, Chai Zhifang. Some Thinking of Nuclear Fuel Reprocessing/Recycling in China [J]. Progress in Chemistry, 2011, 23(7): 1263-1271.
[7] Chen Yaoquan. “The Endless Knowledge and the Endeavor of Generations”—— Wang Yu's Major Scientific Achievements and His Academic Idea [J]. Progress in Chemistry, 2011, 23(11): 2177-2182.
[8] Cai Weiquan Cheng Bei Zhang guangxu Liu Xiaoping. Developing the Green Chemistry Principles [J]. Progress in Chemistry, 2009, 21(10): 2001-2008.
[9] . Current Research and Development in Soil Remediation Technologies [J]. Progress in Chemistry, 2009, 21(0203): 558-565.
[10] Ding Wanjian,Fang Weihai**. Ab initio Studies on the Photochemical Reactions [J]. Progress in Chemistry, 2007, 19(10): 1449-1459.
[11] Bin Yang*,Charles E. Wyman. Advancing Cellulosic Ethanol Technology in China [J]. Progress in Chemistry, 2007, 19(0708): 1072-1075.
[12] Chen Yijun* Wu Xuri. Biocatalysis in Drug Discovery and Development [J]. Progress in Chemistry, 2007, 19(012): 1947-1954.
[13] Dai Ying,Li Lemin. Applications of Density Functional Theory to Dealing with Excited States and Multiplets of Molecules [J]. Progress in Chemistry, 2001, 13(03): 167-.
[14] Gao Qingyu,Cai Zunsheng,Zhao Xuezhuang**. Nonlinear Kinetics in Chemical Reactions [J]. Progress in Chemistry, 1997, 9(01): 59-.
[15] Fan Meigong,Yu Lianhe. Photocheistry of Photoreaction Intermediates and Upper Excited States——Application of Two-Step Two-Laser Technique [J]. Progress in Chemistry, 1996, 8(02): 129-.
Viewed
Full text


Abstract

Computational Photochemistry