中文
Announcement
More
Progress in Chemistry 2012, Vol. Issue (10): 1995-2003 Previous Articles   Next Articles

• Review •

CO2-Stimuli Responsive Polymers

Feng Anchao, Yan Qiang, Yuan Jinying*   

  1. Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
PDF ( 1303 ) Cited
Export

EndNote

Ris

BibTeX

CO2-stimuli responsive polymers are a class of newly developed smart stimuli responsive polymers, which usually refers to the polymers possessing reversible changes upon admission and emission of CO2. Since the regulation process only involves CO2 and inert gases, without the introduction of other impurities, there are many potential applications in this field. This article summarized recent research progress on the preparation of CO2-stimuli responsive polymers,followed by the discussion of their self-assembly,classifying in accordance with the CO2-switchable groups,such as primary amine, amide and some specific polymer chains. The development prospect of this research field and its potential applications are also discussed. Contents 1 Introduction
2 Overview of CO2-responsive polymer
2.1 Primary amine/CO2 system
2.2 Amide/CO2 system
2.3 Specific polymer chain /CO2 system
3 Conclusion and outlook

CLC Number: 

[1] Stuart M A C, Huck W T S, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9: 101-113
[2] Liu F, Urban M K. Prog. Polym. Sci., 2010, 35: 3-23
[3] Roy D, Cambre J N, Sumerlin B S. Prog. Polym. Sci., 2010, 35: 278-301
[4] Li M H, Keller P. Soft Matter, 2009, 5: 927-937
[5] Kim E, Kim D, Jung H, Lee J, Paul S, Selvapalam N, Yang Y, Lim N, Park C G, Kim K. Angew. Chem. Int. Ed., 2010, 49: 4405-4408
[6] Klaikherd A, Nagamani C, Thayumanavan S. J. Am. Chem. Soc., 2009, 131: 4830-4838
[7] Ganta S, Devalapally H, Shahiwala A, Amiji M. J. Control. Release, 2008, 126: 187-204
[8] Capadona J R, Shanmuganathan K, Tyler D J, Rowan S J, Weder C. Science, 2008, 319: 1370-1374
[9] Klaikherd A, Nagamani C, Thayumanavan S. J. Am. Chem. Soc., 2009, 131: 4830-4838
[10] Schacher F, Ulbricht M, Muller A H E. Adv. Funct. Mater., 2009, 19: 1040-1045
[11] Jessop P G, Heldebrant D J, Li X, Eckert C A, Liotta C L. Nature, 2005, 436 (7054): 1102-1102
[12] Phan L, Jessop P G. Green Chem., 2009, 11: 307-308
[13] Liu Y X, Jessop P G, Cunningham M, Eckert C A, Liotta C L. Science, 2006, 313: 958-960
[14] McGhee W D, Riley D, Christ K, Pan Y, Parnas B. J. Org. Chem., 1995, 60: 2820-2830
[15] Dell'Amico D B, Calderazzo F, Labella L, Marchetti F, Pampaloni G. Chem. Rev., 2003, 103: 3857-3898
[16] Waldman T E, McGhee W D. J. Chem. Soc. Chem. Commun., 1994, 957-958
[17] Salvatore R N, Shin S I, Nagle A S, Jung K W. J. Org. Chem., 2001, 66: 1035-1037
[18] Aresta M, Quaranta E. Tetrahedron, 1992, 48: 1515-1530
[19] Hampe E M, Rudkevich D M. Tetrahedron, 2003, 59: 9619-9625
[20] Hampe E M, Rudkevich D M. Chem. Commun., 2002, 1450-1451
[21] Xu H, Rudkevich D M. Chem. Eur. J., 2004, 10 (21): 5432-5442
[22] Lehn J M. Polym. Int., 2002, 51: 825-839
[23] Brunsveld L, Folmer B J B, Meijer E W, Sijbesma R P. Chem. Rev., 2001, 101: 4071-4097
[24] Schmuck C, Wienand W. Angew. Chem. Int. Ed., 2001, 40(23): 4363-4369
[25] Cate A T, Sijbesma R P. Macromol. Rapid Commun., 2002, 23: 1094-1112
[26] Schubert U S, Eschbaumer C. Angew. Chem. Int. Ed., 2002, 41(16): 2893-2926
[27] Rudkevich D M, Xu H. Chem. Commun., 2005, 2651-2659
[28] De Silva A P, Guanratne H Q N, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacha J T, Rice T E. Chem. Rev., 1997, 97: 1515-1566
[29] Carretti E, Dei L, Baglioni P, Weiss R G. J. Am. Chem. Soc., 2003, 125 (17): 4830-4838
[30] Carretti E, Dei L, Macherelli A, Weiss R G. Langmuir, 2004, 20: 8414-8418
[31] Nagai D, Suzuki A, Maki Y, Takeno H. Chem. Commun., 2011, 47 (31): 8856-8858
[32] Nagai D, Suzuki A, Kuribayashi T. Macromol. Rapid Commun., 2011, 32: 404-410
[33] Carretti E, Dei L, Weiss R G, Baglioni P. Journal of Cultural Heritage, 2008, 9: 386-393
[34] Manners I. Angew. Chem. Int. Ed., 1996, 35: 1602-1621
[35] Mark J E. Acc. Chem. Res., 2004, 37: 946-953
[36] Mark J E. Physical Properties of Polymers Handbook (2nd ed.), Berlin: Springer, 2007
[37] Mark J E, Allcock H R, West R. Inorganic Polymers (2nd ed.), New York: Oxford University Press, 2005. 154-199
[38] Erman B, Mark J E. Structures and Properties of Rubberlike Networks. New York: Oxford University Press, 1997
[39] Yu T, Wakuda K, Blair D L, Weiss R G. J. Phys. Chem. C, 2009, 113: 11546-11553
[40] Laidler K J, Meiser J H. Physical Chemistry (3rd ed.), Boston: Houghton Mufflin, 1999. 267
[41] DeLassus P T, Whiteman N F. Polymer Handbook. Wiley: New York, 1999.168
[42] Yamaguchi T, Boetje L M, Koval C A, Noble R D, Bowman C N. Ind. Eng. Chem. Res., 1995, 34: 4071-4077
[43] Yamaguchi T, Koval C A, Nobel R D, Bowman C. Chem. Eng. Sci., 1996, 51: 4781-4789
[44] Sada E, Kumazawa H, Han Z Q. Chem. Eng. J., 1985, 31: 109-115
[45] Kovvali A S, Sirkar K K. Ind. Eng. Chem. Res., 2001, 40: 2502-2511
[46] Bates E D, Mayton R D, Ntai I, Davis J H. J. Am. Chem. Soc., 2002, 124: 926-927
[47] Brouseau L C, Aurentz D J, Benesi A J, Mallouk T E. Anal. Chem., 1997, 69: 688-694
[48] Heldebrant D J, Jessop P G, Thomas C A, Eckert C A, Liotta C L. J. Org. Chem., 2005, 70: 5335-5338
[49] 王九霞(Wang J X), 苏鑫(Su X), Jessop P G, 冯玉军(Feng Y J). 化学进展(Progress in Chemistry), 2010, 11(22): 2099-2105
[50] Johnsson M, Wagenaar A J, Engberts B F N. J. Am. Chem. Soc., 2003, 125: 757-760
[51] Datwani S S, Truskett V N, Rosslee C A, Abbott N L, Stebe K J. Langmuir, 2003, 19: 8292-8301
[52] Schmittel M M, Lal M, Graf K, Jeschke G, Suske I, Salbeck J. Chem. Commun., 2005, 5650-5652
[53] Zhou K, Li J F, Lu Y J, Zhang G Z, Xie Z W, Wu C. Macromolecules, 2009, 42 (18): 7146-7154
[54] Yan Q, Zhou R, Fu C Q, Zhang H J, Yin Y W, Yuan J Y. Angew. Chem. Int. Ed., 2011, 50 (21): 4923-4927
[55] Guo Z R, Feng Y J, Wang Y, Wang J Y, Wu Y F, Zhang Y M. Chem. Commun., 2011, 47 (33): 9348-9350
[56] Zhang Q, Yu G Q, Wang W J, Yuan H M, Li B G, Zhu S P. Langmuir, 2012, 28: 5940-5946
[57] Endo T, Nagai D, Monma T, Yamaguchi H, Ochiai B. Macromolecules, 2004, 37: 2007-2009
[58] Ochiai B, Yokota K, Fujii A, Nagai D, Endo T. Macromolecules, 2008, 41: 1229-1236
[59] Su X, Jessop P G, Cunningham M F. Macromolecules, 2012, 45: 666-670
[60] Han D H, Tong X, Boissière O, Zhao Y. ACS Macro Lett., 2012, 1: 57-61
[1] Jiang Wan, Jingze Zhang, Hongling Chen, Hanmei Shen, Zhen Wang, Chun Zhang. Functionalization and Application of Polymer-Modified Proteins [J]. Progress in Chemistry, 2024, 36(3): 416-429.
[2] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[3] Chen Leilei, Tao Yongxin, Hu Xin, Feng Hongbo, Zhu Ning, Guo Kai. Advanced Design of Block Copolymers for Nanolithography [J]. Progress in Chemistry, 2023, 35(11): 1613-1624.
[4] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[5] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[6] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[9] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[10] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[11] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[12] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[13] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[14] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[15] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
Viewed
Full text


Abstract