中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (11): 1613-1624 DOI: 10.7536/PC230304 Previous Articles   Next Articles

• Review •

Advanced Design of Block Copolymers for Nanolithography

Chen Leilei1, Tao Yongxin1, Hu Xin2(), Feng Hongbo3(), Zhu Ning1(), Guo Kai1   

  1. 1 College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University,Nanjing 211800, China
    2 College of Materials Science and Engineering, Nanjing Tech University,Nanjing 211800, China
    3 Pritzker School of Molecular Engineering, University of Chicago, Chicago IL 60637, USA
  • Received: Revised: Online: Published:
  • Contact: Hu Xin, Feng Hongbo, Zhu Ning
Richhtml ( 17 ) PDF ( 386 ) Cited
Export

EndNote

Ris

BibTeX

Directed self-assembly (DSA) of block copolymer (BCP) has been identified as the potential strategy for the next-generation semiconductor manufacturing. The typical representative of the first generation (G1) of block copolymer for nanolithography is polystyrene-block-polymethylmethacrylate (PS-b-PMMA). DSA of PS-b-PMMA enables limited half pitch (0.5L0) of 11 nm due to the low Flory-Huggins interaction parameter (χ). The second generation (G2) of BCP is developed with the feature of high χ. Solvent anneal or top-coat is employed for the G2 BCP to form the perpendicular lamellae orientation. Towards industry friendly thermal anneal, high χ BCP with equal surface energy (γ) is reported as the third generation (G3) BCP. Recently, based on Materials Genome Initiative (MGI) concept, optimized design of block copolymers with covarying properties (G4) for nanolithography is presented to meet specific application criteria. G4 BCP achieves not only high χ and equal γ, but also high throughput synthesis, 4~10 nm half pitch patterns, and controlled segregation strength. This review focuses on the advanced design of G3 and G4 BCP for nanolithography. Moreover, the challenges and opportunities are discussed for the further development of DSA of BCP.

Contents

1 Introduction

2 High χ block copolymers with equal γ (G3)

2.1 A-b-B block copolymer

2.2 A-b-(B-r-C) block copolymer

2.3 (A-r-B)-b-C block copolymer

2.4 A-b-B-b-C block copolymer

3 Block copolymers with covarying properties (G4)

4 Conclusion and outlook

Fig.1 (a) Schematic of the fabrication process of the chemically patterned substrates and the directed assembly of PS-b-PMMA with density multiplication[60]. Copyright © 2013, American Chemical Society. (b) Schematic illustration of microstructures of diblock A-b-B on increasing the volume fraction of the B block[62]. Copyright © 2014, the Royal Society of Chemistry. (c) Mean-field phase diagram for conformational symmetric diblock melts[47]. Copyright © 1996, American Chemical Society
Fig.2 (a) Plots of χ against the inverse of temperature for PS-b-PLGA and PS-b-PDLLA; (b) top-down SEM images of DSA of PS-b-PLGA; (c) schematic illustration of the procedure used to create asymmetric chemical patterns and DSA of lamellae-forming PS-b-PLGA with 2×density multiplication under thermal annealing[93]. Copyright © 2018 American Chemical Society
Fig.3 (a) The structure of PDMSB-b-PMMA; (b) 3D-AFM phase views of thermally annealed (10 min) PDMSB-b-PMMA thin films[94]. Copyright © 2014, Wiley-VCH GmbH, Weinheim
Fig.4 (a) Synthesis of PS-b-PMHxOHS和PS-b-PMHxS; (b) SAXS profiles of the BCPs collected after thermal annealing at 190℃ for 3 h; (c) SEM image of PS100-b-PMHxOHS25[95].Copyright © 2016, Springer Nature
Fig.5 Synthesis of PS-b-PPC, schematic illustration of the procedure used to create prepatterned substrates and the DSA of lamellae forming PS-b-PPC system with 5 times density multiplication under thermal annealing, and the top-down SEM images showing DSA[97].Copyright © 2017 American Chemical Society
Fig.6 (a) Chemical structure of PS-b-PC;.(b) a schematic diagram of the formation mechanism of hydrogen bonds; (c) top-down SEM images of PS-b-PC with no neutral layer[98]. Copyright © 2019, the Royal Society of Chemistry
Fig.7 (a) Structure of PS-b-PMA and PMA-b-PS-b-PMA, and SEM of DSA; (b) temperature dependence of the dynamic storage modulus; (c) linear dependence of χ as a function of inverse TODT.[100]. Copyright © 2019 American Chemical Society
Fig.8 (a) Concept for designing a chemically tailored high-χ BCP with balanced surface affinities and increased strengths of segregation; (b) temperature dependences of the effective Flory-Huggins interaction parameter; (c) TEM images of PS-b-PGMA[101]. Copyright © 2019, the Royal Society of Chemistry
Fig.9 (a) Epoxidation of PS-PI to PS-b-(PI-r-PIxn); (b) effective interaction parameter (χ) affected by the degree of epoxidation; (c) effect of degree of epoxidation on the surface energy of PI-r-PIxn[103]. Copyright © 2012 American Chemical Society
Fig.10 (a) Synthetic scheme of thiol-ene click chemistry to prepare PS-b-P(B-r-Bthiol) from PS-b-PB; (b) effects of degree of thiol functionalization (φ) on γ, L0, and χ; (c) schematic of the LiNe DSA process flow; (d) SEM of DSA of PS-b-P(B-r-BMEA) with and without 0.1 wt% BHT[105]. Copyright © 2022, Wiley-VCH GmbH, Weinheim
Fig.11 (a) Ester-amide exchange reaction of PS-b-PMMA with various amines; (b) comparison before and after ester-amide exchange reaction (disorder vs ordered, low χ vs high χ); (c) SEM of DSA of modified PS-b-PMMA[106]. Copyright © 2018, American Chemical Society
Fig.12 (a) Structure of (PS-r-PVN)-b-PMMA block copolymer; (b) comparison of the χ parameter of two VN-containing polymers to PS-PMMA; (c) top-down SEM image of lightly etched[107]. Copyright © 2016 American Chemical Society
Fig.13 (a) Synthesis steps of P(S-r-PFS)-b-PMMA; (b) DSA without top-coat and neutral brush layer; (c) SEM of DSA based on EUV lithography patterns[108]. Copyright © 2021, the Royal Society of Chemistry
Fig.14 Structure of PS-b-PMAA-b-PMMA toward perpendicularly oriented nanodomains with sub-10 nm features[109]. Copyright © 2017, American Chemical Society
Fig.15 (a) Design principle for creating a series of BCPs with tunable χN and Δγ = 0 using an A-b-(B-r-C) polymer architecture. By varying the B and C groups, the architecture can form a BCP that has Δγ = 0 at the desired χ value; (b) schematic of the generation of a series of A-b-(B-r-C) polymers from the parent A-b-B'; (c) synthesis of A-b-(B-r-C) via thiol-epoxy click reactions[110]. Copyright © 2022, Springer Nature
Fig.16 (a) Schematic of two distinct strategies for enhancing etch contrast of the self-assembled BCP film, using either SIS or silicon-containing thiols; (b) self-brushing DSA process flow leading to DSA with density multiplication[110]. Copyright © 2022, Springer Nature
[1]
Jiang J, Hu W N, Xie D D, Yang J L, He J, Gao Y L, Wan Q. Nanoscale, 2019, 11(3): 1360.
[2]
Cong L Q, Srivastava Y K, Zhang H F, Zhang X Q, Han J G, Singh R. Light Sci. Appl., 2018, 7: 28.
[3]
Zhang S C, Kang L X, Wang X, Tong L M, Yang L W, Wang Z Q, Qi K, Deng S B, Li Q W, Bai X D, Ding F, Zhang J. Nature, 2017, 543(7644): 234.
[4]
van Erp R, Soleimanzadeh R, Nela L, Kampitsis G, Matioli E. Nature, 2020, 585(7824): 211.
[5]
Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R. Nat. Nanotechnol., 2021, 16(11): 1201.
[6]
Quhe R G, Liu J C, Wu J X, Yang J, Wang Y Y, Li Q H, Li T R, Guo Y, Yang J B, Peng H L, Lei M, Lu J. Nanoscale, 2019, 11(2): 532.
[7]
Fischer A C, Forsberg F, Lapisa M, Bleiker S J, Stemme G, Roxhed N, Niklaus F. Microsyst. Nanoeng., 2015, 1: 15005.
[8]
Wang Z R, Li C, Song W H, Rao M Y, Belkin D, Li Y N, Yan P, Jiang H, Lin P, Hu M, Strachan J P, Ge N, Barnell M, Wu Q, Barto A G, Qiu Q R, Stanley Williams R, Xia Q F, Yang J J. Nat. Electron., 2019, 2(3): 115.
[9]
Kang W, Huang Y Q, Zhang X C, Zhou Y, Zhao W S. Proc. IEEE, 2016, 104(10): 2040.
[10]
Myny K. Nat. Electron., 2018, 1(1): 30.
[11]
Theis T N, Wong H S P. Comput. Sci. Eng., 2017, 19(2): 41.
[12]
Kasani S, Curtin K, Wu N Q. Nanophotonics, 2019, 8(12): 2065.
[13]
Chen Y F. Microelectron. Eng., 2015, 135: 57.
[14]
Biswas A, Bayer I S, Biris A S, Wang T, Dervishi E, Faupel F. Adv. Colloid Interface Sci., 2012, 170(1/2): 2.
[15]
Panzarasa G, Soliveri G. Appl. Sci., 2019, 9(7): 1266.
[16]
Fischer J, Wegener M, Laser Photon. Rev., 2013, 7: 22.
[17]
Jung Y S, Ross C A. Nano Lett., 2007, 7(7): 2046.
[18]
Chen Y Q, Shu Z W, Zhang S, Zeng P, Liang H K, Zheng M J, Duan H G. Int. J. Extrem. Manuf., 2021, 3(3): 032002.
[19]
Hawker C J, Russell T P. MRS Bull., 2005, 30(12): 952.
[20]
Li X O, Gu X S, Liu Y D, Ji S X. Chin. J. Appl. Chem, 2021, 38(9): 1105.
( 李小欧, 顾雪松, 刘亚栋, 季生象. 应用化学, 2021, 38(9): 1105.)
[21]
Lu X Y, Ma B Z, Luo H, Qi H, Li Q, Wu G P. Chin. J. Appl. Chem., 2021, 38(9): 1189.
( 陆新宇, 马彬泽, 罗皓, 齐欢, 李强, 伍广朋. 应用化学, 2021, 38(9): 1189.)
[22]
Tian X, Lai H W, Liu Y D, Ji S X. Chin. J. Appl. Chem., 2021, 38(9): 1199.
( 田昕, 赖翰文, 刘亚栋, 季生象. 应用化学, 2021, 38(9): 1199.)
[23]
Ji S X. Chin. J. Appl. Chem., 2021, 38(9): 1027. (季生象. 应用化学, 2021, 38( 9): 1027.)
[24]
Gu X S, Li X O, Liu Y D, Ji S X. Chin. J. Appl. Chem., 2021, 38(9): 1091.
( 顾雪松, 李小欧, 刘亚栋, 季生象. 应用化学, 2021, 38(9): 1091.)
[25]
Hu X H, Xiong S S. Chinese Journal of Applied Chemistry, 2021, 38(9): 1029.
( 胡晓华, 熊诗圣. 应用化学, 2021, 38(9): 1029.)
[26]
Wang Q Q, Wu L P, Wang J, Wang L Y. Progress in Chemistry, 2017, 29(4): 435.
( 王倩倩, 吴立萍, 王菁, 王力元, 化学进展, 2017, 29(4): 435. )
[27]
Stoykovich M P, Nealey P F. Mater. Today, 2006, 9(9): 20.
[28]
Kwon J, Takeda Y, Shiwaku R, Tokito S, Cho K, Jung S. Nat. Commun., 2019, 10: 54.
[29]
Feng C, Huang X Y. Acc. Chem. Res., 2018, 51(9): 2314.
[30]
Shen P C, Su C, Lin Y X, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z Y, Mao N N, Wang J T, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J, Kong J. Nature, 2021, 593(7858): 211.
[31]
Chen T A, Chuu C P, Tseng C C, Wen C K, Wong H S P, Pan S Y, Li R T, Chao T A, Chueh W C, Zhang Y F, Fu Q, Yakobson B I, Chang W H, Li L J. Nature, 2020, 579(7798): 219.
[32]
Hailes R L N, Oliver A M, Gwyther J, Whittell G R, Manners I. Chem. Soc. Rev., 2016, 45(19): 5358.
[33]
Stefik M, Guldin S, Vignolini S, Wiesner U, Steiner U. Chem. Soc. Rev., 2015, 44(15): 5076.
[34]
Sinturel C, Bates F S, Hillmyer M A. ACS Macro Lett., 2015, 4(9): 1044.
[35]
Nowak D, Morrison W, Wickramasinghe H K, Jahng J, Potma E, Wan L, Ruiz R, Albrecht T R, Schmidt K, Frommer J, Sanders D P, Park S. Sci. Adv., 2016, 2(3): e1501571.
[36]
Jeong S J, Xia G D, Kim B H, Shin D O, Kwon S H, Kang S W, Kim S O. Adv. Mater., 2008, 20(10): 1898.
[37]
Bates F S, Hillmyer M A, Lodge T P, Bates C M, Delaney K T, Fredrickson G H. Science, 2012, 336(6080): 434.
[38]
Ramanathan M, Shrestha L K, Mori T, Ji Q M, Hill J P, Ariga K. Phys. Chem. Chem. Phys., 2013, 15(26): 10580.
[39]
Zhang W A, Mueller A H E. Prog. Polym. Sci., 2013, 38: 1121.
[40]
He W N, Xu J T. Prog. Polym. Sci., 2012, 37: 1350.
[41]
Yi C L, Yang Y Q, Liu B, He J, Nie Z H. Chem. Soc. Rev., 2020, 49(2): 465.
[42]
Sun J T, Hong C Y, Pan C Y. Polym. Chem., 2013, 4(4): 873.
[43]
Mai Y Y, Eisenberg A. Chem. Soc. Rev., 2012, 41(18): 5969.
[44]
Willis J D, Beardsley T M, Matsen M W. Macromolecules, 2020, 53(22): 9973.
[45]
Wong C K, Qiang X L, Mueller A H E, Groeschel A H. Prog. Polym. Sci., 2020, 102.
[46]
Verduzco R, Li X Y, Pesek S L, Stein G E. Chem. Soc. Rev., 2015, 44(21): 2405.
[47]
Matsen M W, Bates F S. Macromolecules, 1996, 29(4): 1091.
[48]
Matsen M W, Schick M. Phys. Rev. Lett., 1994, 72(16): 2660.
[49]
Bates C M, Maher M J, Janes D W, Ellison C J, Willson C G. Macromolecules, 2014, 47(1): 2.
[50]
Jiang K, Wang C, Huang Y Q, Zhang P W. Commun. Comput. Phys., 2013, 14(2): 443.
[51]
Li J F, Zhang H D, Qiu F. Eur. Phys. J. E, 2014, 37(3): 18.
[52]
Cao H, Dai L, Liu Y, Li X, Yang Z, Deng H. Macromolecules, 2020, 53(20), 8757.
[53]
Gröschel A H, Müller A H E. Nanoscale, 2015, 7(28): 11841.
[54]
Bates C M, Bates F S. Macromolecules, 2017, 50(1): 3.
[55]
Sinturel C, Vayer M, Morris M, Hillmyer M A. Macromolecules, 2013, 46(14): 5399.
[56]
Matsen M W. Macromolecules, 2012, 45(4): 2161.
[57]
Steube M, Johann T, Barent R D, Müller A H E, Frey H. Prog. Polym. Sci., 2022, 124: 101488.
[58]
Matsen M W. J. Chem. Phys., 2020, 152(11): 110901.
[59]
Bocharova V, Sokolov A P. Macromolecules, 2020, 53(11): 4141.
[60]
Liu C C, Ramírez-Hernández A, Han E, Craig G S W, Tada Y, Yoshida H, Kang H M, Ji S X, Gopalan P, de Pablo J J, Nealey P F. Macromolecules, 2013, 46(4): 1415.
[61]
Bang J, Kim S H, Drockenmuller E, Misner M J, Russell T P, Hawker C J. J. Am. Chem. Soc., 2006, 128(23): 7622.
[62]
Hu H Q, Gopinadhan M, Osuji C O. Soft Matter, 2014, 10(22): 3867.
[63]
Albert J N L, Epps T H III. Mater. Today, 2010, 13(6): 24.
[64]
Manai G, Houimel H, Rigoulet M, Gillet A, Fazzini P F, Ibarra A, Balor S, Roblin P, Esvan J, Coppel Y, Chaudret B, Bonduelle C, Tricard S. Nat. Commun., 2020, 11: 2051.
[65]
Lai H W, Zhang X H, Huang G C, Liu Y D, Li W H, Ji S X. Polymer, 2022, 257: 125277.
[66]
Cushen J D, Otsuka I, Bates C M, Halila S, Fort S, Rochas C, Easley J A, Rausch E L, Thio A, Borsali R, Willson C G, Ellison C J. ACS Nano, 2012, 6(4): 3424.
[67]
Yu B H, Danielsen S P O, Patterson A L, Davidson E C, Segalman R A. Macromolecules, 2019, 52(6): 2560.
[68]
Cummins C, Pino G, Mantione D, Fleury G. Mol. Syst. Des. Eng., 2020, 5(10): 1642.
[69]
Hao H B, Chen S J, Ren J X, Chen X X, Nealey P. Nanotechnology, 2023, 34(20): 205303.
[70]
Li D X, Zhou C, Xiong S S, Qu X P, Craig G S W, Nealey P F. Soft Matter, 2019, 15(48): 9991.
[71]
Li X M, Li J, Wang C X, Liu Y Y, Deng H. J. Mater. Chem. C, 2019, 7(9): 2535.
[72]
Jung H, Shin W H, Park T W, Choi Y J, Yoon Y J, Park S H, Lim J H, Kwon J D, Lee J W, Kwon S H, Seong G H, Kim K H, Park W I. Nanoscale, 2019, 11(17): 8433.
[73]
Tran H, Bergman H M, de la Rosa V R, Maji S, Parenti K R, Hoogenboom R, Campos L M. J. Polym. Sci. A Polym. Chem., 2019, 57(12): 1349.
[74]
Wylie K, Dong L, Chandra A, Nabae Y, Hayakawa T. Macromolecules, 2020, 53(4): 1293.
[75]
Ketkar P M, Epps T H III. Acc. Chem. Res., 2021, 54(23): 4342.
[76]
Ahmed E, Womble C T, Cho J, Dancel-Manning K, Rice W J, Jang S S, Weck M. Polym. Chem., 2021, 12(13): 1967.
[77]
Li J J, Zhou C, Chen X X, Rincon Delgadillo P A, Nealey P F. J. Micro/Nanolith. MEMS MOEMS, 2019, 18(3): 035501.
[78]
Jung D S, Bang J, Park T W, Lee S H, Jung Y K, Byun M, Cho Y R, Kim K H, Seong G H, Park W I. Nanoscale, 2019, 11(40): 18559.
[79]
Li X M, Deng H. ACS Appl. Polym. Mater., 2020, 2(8): 3601.
[80]
Zhu G D, Yang C Y, Yin Y R, Yi Z, Chen X H, Liu L F, Gao C J. J. Membr. Sci., 2019, 589: 117255.
[81]
Arora A, Lin T S, Rebello N J, Av-Ron S H M, Mochigase H, Olsen B D. ACS Macro Lett., 2021, 10(11): 1339.
[82]
Choi Y J, Byun M H, Park T W, Choi S, Bang J, Jung H, Cho J H, Kwon S H, Kim K H, Park W I. ACS Appl. Nano Mater., 2019, 2(3): 1294.
[83]
Ginige G, Song Y, Olsen B C, Luber E J, Yavuz C T, Buriak J M. ACS Appl. Mater. Interfaces, 2021, 13(24): 28639.
[84]
Park J, Staiger A, Mecking S, Winey K I. ACS Nano, 2021, 15(10): 16738.
[85]
Mumtaz M, Takagi Y, Mamiya H, Tajima K, Bouilhac C, Isono T, Satoh T, Borsali R. Eur. Polym. J., 2020, 134: 109831.
[86]
Tao Y X, Chen L L, Liu Y H, Hu X, Zhu N, Guo K. Acta Polym. Sin., 2022, 53: 1445.
( 陶永鑫, 陈蕾蕾, 刘一寰, 胡欣, 朱宁, 郭凯. 高分子学报, 2022, 53: 1445 )
[87]
Yang Z Y, Deng H. J. Photopol. Sci. Technol., 2021, 34(4): 339.
[88]
Li B Y, Li Y C, Lu Z Y. Polymer, 2019, 171: 1.
[89]
Zalusky A S, Olayo-Valles R, Wolf J H, Hillmyer M A. J. Am. Chem. Soc., 2002, 124(43): 12761.
[90]
Olayo-Valles R, Guo S W, Lund M S, Leighton C, Hillmyer M A. Macromolecules, 2005, 38(24): 10101.
[91]
Keen I, Yu A G, Cheng H H, Jack K S, Nicholson T M, Whittaker A K, Blakey I. Langmuir, 2012, 28(45): 15876.
[92]
Li X, Liu Y D, Wan L, Li Z L, Suh H, Ren J X, Ocola L E, Hu W B, Ji S X, Nealey P F. ACS Macro Lett., 2016, 5(3): 396.
[93]
Zhang X S, He Q B, Chen Q, Nealey P F, Ji S X. ACS Macro Lett., 2018, 7(6): 751.
[94]
Aissou K, Mumtaz M, Fleury G, Portale G, Navarro C, Cloutet E, Brochon C, Ross C A, Hadziioannou G. Adv. Mater., 2015, 27(2): 261.
[95]
Seshimo T, Maeda R, Odashima R, Takenaka Y, Kawana D, Ohmori K, Hayakawa T. Sci. Rep., 2016, 6: 19481.
[96]
Nakatani R, Takano H, Chandra A, Yoshimura Y, Wang L, Suzuki Y, Tanaka Y, Maeda R, Kihara N, Minegishi S, Miyagi K, Kasahara Y, Sato H, Seino Y, Azuma T, Yokoyama H, Ober C K, Hayakawa T. ACS Appl. Mater. Interfaces, 2017, 9(37): 31266.
[97]
Yang G W, Wu G P, Chen X X, Xiong S S, Arges C G, Ji S X, Nealey P F, Lu X B, Darensbourg D J, Xu Z K. Nano Lett., 2017, 17(2): 1233.
[98]
Zhang B L, Liu W C, Meng L K, Zhang Z P, Zhang L B, Wu X, Dai J Y, Mao G P, Wei Y Y. RSC Adv., 2019, 9(7): 3828.
[99]
Jacobberger R M, Thapar V, Wu G P, Chang T H, Saraswat V, Way A J, Jinkins K R, Ma Z Q, Nealey P F, Hur S M, Xiong S S, Arnold M S. Nat. Commun., 2020, 11: 4151.
[100]
Pang Y Y, Jin X S, Huang G C, Wan L, Ji S X. Macromolecules, 2019, 52(8): 2987.
[101]
Yoshimura Y, Chandra A, Nabae Y, Hayakawa T. Soft Matter, 2019, 15(17): 3497.
[102]
Dong L, Chandra A, Wylie K, Nakatani R, Nabae Y, Hayakawa T. J. Photopol. Sci. Technol., 2020, 33(5): 529.
[103]
Kim S, Nealey P F, Bates F S. ACS Macro Lett., 2012, 1(1): 11.
[104]
Kim S, Nealey P F, Bates F S. Nano Lett., 2014, 14(1): 148.
[105]
Feng H B, Dolejsi M, Zhu N, Griffin P J, Craig G S W, Chen W, Rowan S J, Nealey P F. Adv. Funct. Mater., 2022, 32(46): 2206836.
[106]
Yoshida K, Tian L, Miyagi K, Yamazaki A, Mamiya H, Yamamoto T, Tajima K, Isono T, Satoh T. Macromolecules, 2018, 51(20): 8064.
[107]
Zhou S X, Janes D W, Bin Kim C, Willson C G, Ellison C J. Macromolecules, 2016, 49(21): 8332.
[108]
Song S W, Hur Y H, Park Y, Cho E N, Han H J, Jang H, Oh J, Yeom G, Lee J S, Yoon K S, Park C M, Kim I, Kim Y, Jung Y S. J. Mater. Chem. C, 2021, 9(39): 14021.
[109]
Woo S, Jo S, Ryu D Y, Choi S H, Choe Y, Khan A, Huh J, Bang J. ACS Macro Lett., 2017, 6(12): 1386.
[110]
Feng H B, Dolejsi M, Zhu N, Yim S, Loo W, Ma P Y, Zhou C, Craig G S W, Chen W, Wan L, Ruiz R, de Pablo J J, Rowan S J, Nealey P F. Nat. Mater., 2022, 21(12): 1426.
[1] Tao Liu, Junping Miao, Longlong Wang, Yunxia Hu. Structure Design and Tailoring Strategy of Polymeric Materials for Fabrication of Nanofiltration Membranes via Phase Inversion [J]. Progress in Chemistry, 2023, 35(8): 1199-1213.
[2] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Yan Zhang, Xuejie Liu, Nan Yan, Yuexin Hu, Haiying Li, Yutian Zhu. Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space [J]. Progress in Chemistry, 2018, 30(2/3): 166-178.
[6] Lingang Hou, Lili Ma, Yichen Zhou, Yu Zhao, Yi Zhang, Jinmei He*. Application of Low Surface Energy Compounds to the Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1887-1898.
[7] Qing Xiang, Yingwu Luo*. RAFT Emulsion Polymerization [J]. Progress in Chemistry, 2018, 30(1): 101-111.
[8] Qianqian Wang, Liping Wu, Jing Wang, Liyuan Wang*. Directed Self-Assembly of Block Copolymers [J]. Progress in Chemistry, 2017, 29(4): 435-442.
[9] Wang Xinbo, Zhang Shuhong, He Xiaodong. Network Mesostructures in Self-Assembly of Diblock Copolymers and the Application [J]. Progress in Chemistry, 2016, 28(6): 860-871.
[10] Feng Yuchen, Jie Suyun, Li Bogeng. Telechelic Polymers and Block Copolymers Prepared via Olefin-Metathesis Polymerization [J]. Progress in Chemistry, 2015, 27(8): 1074-1086.
[11] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[12] Wei Wei, Liu Jingcheng, Li Hu, Mu Qidao, Liu Xiaoya. Development and Application of Microelectronic Photoresist [J]. Progress in Chemistry, 2014, 26(11): 1867-1888.
[13] Yang Jiexin, Liu Lei, Xu Junting. Crystalline Micelles of Block Copolymers [J]. Progress in Chemistry, 2014, 26(11): 1811-1820.
[14] Wang Lulu, Huang Haiying, He Tianbai. Block Copolymer Nanotubular Aggregates Prepared via Direct Self-Assembly in Solution [J]. Progress in Chemistry, 2014, 26(05): 810-819.
[15] Fu Chao, Zhu Yutian, Shi Dean. Separation and Characterization of Block Copolymers by Liquid Chromatography at the Critical Condition [J]. Progress in Chemistry, 2014, 26(01): 140-151.