中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2173-2187 DOI: 10.7536/PC201053   Next Articles

• Review •

Shaping Methods for Metal-Organic Framework Composites

Xiuting Dong, Wen Zhang(), Song Zhao, Xinlei Liu, Yuxin Wang   

  1. Tianjin Key Laboratory of Membrane Science & Desalination Technology, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Tianjin University,Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Contact: Xiuting Dong, Wen Zhang, Song Zhao
  • Supported by:
    the National Natural Science Foundation of China(11705126); the National Natural Science Foundation of China(22076137)
Richhtml ( 47 ) PDF ( 431 ) Cited

Metal-organic frameworks (MOFs) are porous crystal materials formed by the self-assembling between organic ligands and metal ions (clusters). With the advantages of high specific surface areas, low densities, adjustable pore structures and easy modification, they have been used in the research fields of separation, catalysis, sensing and drug delivery. MOFs are often isolated as tiny powders, and this form is not suitable for industrial applications due to operating problems, such as dirtiness, mass loss, and difficulties in recycling. To address this issue, several composite materials containing MOFs have been developed with various shaping methods. In this review, we discuss the preparation methods to shape MOFs into beads, thin films and membranes, as well as their potential industrial applications. This paper could provide a reference for developing novel methods for shaping of MOFs and techniques to fabricate large-scale MOF composites.

Contents

1 Introduction

2 MOF beads

2.1 Beads prepared by MOF powders

2.2 MOFs growth in beads

3 MOF films

3.1 Films prepared by MOF powders

3.2 MOFs growth on films

4 MOF mixed-matrix membranes

4.1 Membranes prepared by MOF powders

4.2 MOFs growth in membranes

5 Conclusion and outlook

Table 1 The specific surface area of different MOF composites by granulation method
Fig.1 Typical process workflow based on 3D printing[36], Copyright 2020, ACS
Fig.2 Schematic diagrams of the phase inversion method for polymer sphere preparation[20], Copyright 2019, ACS
Table 2 The specific surface area of molded MOF composites by phase inversion methods
Fig.3 Combinations of MOFs with polymers form either mixed or covalent composites[49], Copyright 2020, ACS
Fig.4 Scheme of MOF-polymer bead preparation from the gelation of Ca2+, PAA and alginate[50], Copyright 2020, ACS
Table 3 The specific surface area of molded MOF composites by polymer crosslinking method
Fig.5 Polymer-MOF composites through surface-selective ligand exchange[51], Copyright 2020, ACS
Fig.6 (a) Postulated anchoring of imidazolate-based MOFs on alumina[14], Copyright 2016, ACS; (b) The Structure of HKUST-1@γ-Al2O3 composite[13], Copyright 2010, RSC
Fig.7 Schematic diagram for a spiderweb-like ZIF-8 mono-lithic foam[53], Copyright 2020, Wiley
Fig.8 ZIF-8 films prepared by femtosecond pulsed-laser deposition[11], Copyright 2017, ACS
Fig.9 (a) Diagram of in-situ fabrication for UiO-66@Al2O3; SEM images of (b) cross section and (c) top view of the UiO-66@Al2O3[68], Copyright 2015, ACS
Fig.10 (a) Reactive seeding method for the preparation of continuous MOF films[75], Copyright 2011, RSC; (b) Step-by-step seeding procedure for preparing HKUST-1 films[76], Copyright 2011, ACS; (c) Fabrication procedure of ZIF-8/PI by covalent-assisted seeding methods[77], Copyright 2019, Wiley; (d) Preparation of oriented NH2-MIL-125(Ti) films by combining oriented seeding and controlled in-plane secondary growth[78], Copyright 2018, Wiley
Fig.11 (a) Scheme of in situ growth of ZIF-8 on a ZnAl-LDH buffer layer-modified γ-Al2O3[60], Copyright 2014, Wiley; (b) Scheme of the preparation of oriented Zn2(bIm)4 membranes by ZnO self-conversion growth in a GO confined space[64], Copyright 2018, RSC; (c) Schematic of ZIF membranes made by ligand-induced permselectivation[79]; (d) Synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands[85], Copyright 2013, RSC
Fig.12 (a) Preparation of ZIF-8@PVA from ZIF-8 suspensions with and without drying[99], Copyright 2016, Wiley; (b) Interfacial interaction in a traditional and a polymer brush modified MMM[100], Copyright 2018, ACS; (c) MOF-801@Ni-MOF-74 MMMs with a dual-interfacial engineering approach[101], Copyright 2020, ACS
Fig.13 (a) Postsynthetic modification of UiO-66-NH2 and subsequent polymerization[112], Copyright 2015, Wiley; (b) Copolymerization of polymerizable Ln-MOFs with butyl methacrylate monomers into polyMOF membrane[113], Copyright 2014, Wiley; (c) Formation of the ZIF-8-PDMS composite membrane by the simultaneous spray self-assembly technique[114], Copyright 2014, Wiley
Fig.14 (a) Fabrication method for MMM with in situ MOF growth[116], Copyright 2018, ACS; (b) Preparation procedure of ZIF-8 @MMMs[117], Copyright 2018, Elsevier
[1]
Liu X L, Wang X R, Kapteijn F. Chem. Rev., 2020, 120(16): 8303.

doi: 10.1021/acs.chemrev.9b00746
[2]
Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112(2): 673.

doi: 10.1021/cr300014x
[3]
Kalaj M, Bentz K C, Ayala S, Palomba J M, Barcus K S, Katayama Y, Cohen S M. Chem. Rev., 2020, 120(16): 8267.

doi: 10.1021/acs.chemrev.9b00575 pmid: 31895556
[4]
Akhtar F, Andersson L, Ogunwumi S, Hedin N, Bergström L. J. Eur. Ceram. Soc., 2014, 34(7): 1643.

doi: 10.1016/j.jeurceramsoc.2014.01.008
[5]
Valizadeh B, Nguyen T N, Stylianou K C. Polyhedron, 2018, 145: 1.

doi: 10.1016/j.poly.2018.01.004
[6]
Liu X M, Xie L H, Wu Y F. Inorg. Chem. Front., 2020, 7(15): 2840.

doi: 10.1039/C9QI01564G
[7]
Kim P J, You Y W, Park H, Chang J S, Bae Y S, Lee C H, Suh J K. Chem. Eng. J., 2015, 262: 683.

doi: 10.1016/j.cej.2014.09.123
[8]
Valekar A H, Cho K H, Lee U H, Lee J S, Yoon J W, Hwang Y K, Lee S G, Cho S J, Chang J S. RSC Adv., 2017, 7(88): 55767.

doi: 10.1039/C7RA11764G
[9]
Moreira M A, Santos J C, Ferreira A F P, Loureiro J M, Ragon F, Horcajada P, Shim K E, Hwang Y K, Lee U H, Chang J S, Serre C, Rodrigues A E. Langmuir, 2012, 28(13): 5715.

doi: 10.1021/la3004118
[10]
Liu D, Purewal J J, Yang J, Sudik A, Maurer S, Mueller U, Ni J, Siegel D J. Int. J. Hydrog. Energy, 2012, 37(7): 6109.

doi: 10.1016/j.ijhydene.2011.12.129
[11]
Fischer D, von Mankowski A, Ranft A, Vasa S K, Linser R, Mannhart J, Lotsch B V. Chem. Mater., 2017, 29(12): 5148.

doi: 10.1021/acs.chemmater.7b00611
[12]
Zhao Z P, Zuhra Z, Qin L B, Zhou Y S, Zhang L J, Tang F, Mu C C. Fuel Process. Technol., 2018, 176: 276.

doi: 10.1016/j.fuproc.2018.03.037
[13]
Qin L B, Zhou Y S, Li D Q, Zhang L J, Zhao Z P, Zuhra Z, Mu C C. Ind. Eng. Chem. Res., 2016, 55(27): 7249.

doi: 10.1021/acs.iecr.6b01001
[14]
Aguado S, Canivet J, Farrusseng D. Chem. Commun., 2010, 46(42): 7999.

doi: 10.1039/c0cc02045a
[15]
Kim J, Kim S H, Yang S T, Ahn W S. Microporous Mesoporous Mater., 2012, 161: 48.

doi: 10.1016/j.micromeso.2012.05.021
[16]
Finsy V, Ma L, Alaerts L, de Vos D E, Baron G V, Denayer J F M. Microporous Mesoporous Mater., 2009, 120(3): 221.

doi: 10.1016/j.micromeso.2008.11.007
[17]
Taddei M, McPherson M J, Gougsa A, Lam J, Sewell J, Andreoli E. Inorganics, 2019, 7(9): 110.

doi: 10.3390/inorganics7090110
[18]
Kuo Y C, Pal S, Li F Y, Lin C H. Chem. Asian J., 2019, 14(20): 3675.

doi: 10.1002/asia.v14.20
[19]
Del Rio M, Palomino Cabello C, Gonzalez V, Maya F, Parra J B, Cerdà V, Turnes Palomino G. Chem. Eur. J., 2016, 22(33): 11770.

doi: 10.1002/chem.201601329
[20]
Zhao Q, Zhu L, Lin G H, Chen G Y, Liu B, Zhang L, Duan T, Lei J H. ACS Appl. Mater. Interfaces, 2019, 11(45): 42635.

doi: 10.1021/acsami.9b15421
[21]
Abbasi Z, Shamsaei E, Fang X Y, Ladewig B, Wang H T. J. Colloid Interface Sci., 2017, 493: 150.

doi: 10.1016/j.jcis.2017.01.006
[22]
Spjelkavik A I, Aarti, Divekar S, Didriksen T, Blom R. Chem. Eur. J., 2014,
[23]
Zhao R, Ma T T, Zhao S, Rong H Z, Tian Y Y, Zhu G S. Chem. Eng. J., 2020, 382: 122893.

doi: 10.1016/j.cej.2019.122893
[24]
Liu L J, Yang W T, Gu D X, Zhao X J, Pan Q H. Front. Chem., 2019, 7: 607.

doi: 10.3389/fchem.2019.00607
[25]
Lee D W, Didriksen T, Olsbye U, Blom R, Grande C A. Sep. Purif. Technol., 2020, 235: 116182.

doi: 10.1016/j.seppur.2019.116182
[26]
Muley S, Nandgude T, Poddar S. Asian J. Pharm. Sci., 2016, 11(6): 684.
[27]
Charkhi A, Kazemeini M, Ahmadi S J, Kazemian H. Powder Technol., 2012, 231: 1.

doi: 10.1016/j.powtec.2012.06.041
[28]
Thompson M R. Drug Dev. Ind. Pharm., 2015, 41(8): 1223.

doi: 10.3109/03639045.2014.983931 pmid: 25402966
[29]
Khabzina Y, Dhainaut J, Ahlhelm M, Richter H J, Reinsch H, Stock N, Farrusseng D. Ind. Eng. Chem. Res., 2018, 57(24): 8200.

doi: 10.1021/acs.iecr.8b00808
[30]
Mallick A, Mouchaham G, Bhatt P M, Liang W B, Belmabkhout Y, Adil K, Jamal A, Eddaoudi M. Ind. Eng. Chem. Res., 2018, 57(49): 16897.

doi: 10.1021/acs.iecr.8b03937
[31]
Ren J W, Musyoka N M, Langmi H W, Swartbooi A, North B C, Mathe M. Int. J. Hydrog. Energy, 2015, 40(13): 4617.

doi: 10.1016/j.ijhydene.2015.02.011
[32]
Grande C A, Águeda V I, Spjelkavik A, Blom R. Chem. Eng. Sci., 2015, 124: 154.

doi: 10.1016/j.ces.2014.06.048
[33]
Cousin-Saint-Remi J, Finoulst A L, Jabbour C, Baron G V, Denayer J F M. Microporous Mesoporous Mater., 2020, 304: 109322.

doi: 10.1016/j.micromeso.2019.02.009
[34]
Molefe L Y, Musyoka N M, Ren J W, Langmi H W, Ndungu P G, Dawson R, Mathe M. J. Mater. Sci., 2019, 54(9): 7078.

doi: 10.1007/s10853-019-03367-1
[35]
Iacomi P, Lee U H, Valekar A H, Chang J S, Llewellyn P L. RSC Advances, 2019, 13: 7128.
[36]
Dhainaut J, Bonneau M, Ueoka R, Kanamori K, Furukawa S. ACS Appl. Mater. Interfaces, 2020, 12(9): 10983.

doi: 10.1021/acsami.9b22257
[37]
Halevi O, Tan J M R, Lee P S, Magdassi S. Adv. Sustainable Syst., 2018, 2(2): 1700150.

doi: 10.1002/adsu.v2.2
[38]
Kreider M C, Sefa M, Fedchak J A, Scherschligt J, Bible M, Natarajan B, Klimov N N, Miller A E, Ahmed Z, Hartings M R. Polym. Adv. Technol., 2018, 29(2): 867.

doi: 10.1002/pat.v29.2
[39]
Liu D S, Jiang P, Li X C, Liu J X, Zhou L C, Wang X L, Zhou F. Chem. Eng. J., 2020, 397: 125392.

doi: 10.1016/j.cej.2020.125392
[40]
Lefevere J, Claessens B, Mullens S, Baron G, Cousin-Saint-remi J, Denayer J F M. ACS Appl. Nano Mater., 2019, 2(8): 4991.

doi: 10.1021/acsanm.9b00934
[41]
Evans K A, Kennedy Z C, Arey B W, Christ J F, Schaef H T, Nune S K, Erikson R L. ACS Appl. Mater. Interfaces, 2018, 10(17): 15112.

doi: 10.1021/acsami.7b17565
[42]
Lawson S, Al-Naddaf Q, Krishnamurthy A, Amour M S, Griffin C, Rownaghi A A, Knox J C, Rezaei F. ACS Appl. Mater. Interfaces, 2018, 10(22): 19076.

doi: 10.1021/acsami.8b05192
[43]
Loeb S,. Sourirajan S. Materials Science 1963, 117.
[44]
Mulijani S, Mulanawati A. Procedia Chem., 2012, 4: 360.

doi: 10.1016/j.proche.2012.06.050
[45]
Valizadeh B, Nguyen T N, Smit B, Stylianou K C. Adv. Funct. Mater., 2018, 28(30): 1801596.

doi: 10.1002/adfm.v28.30
[46]
Cousin-Saint-Remi J, van der Perre S, Segato T, Delplancke M P, Goderis S, Terryn H, Baron G, Denayer J. ACS Appl. Mater. Interfaces, 2019, 11(14): 13694.

doi: 10.1021/acsami.9b00521
[47]
Li L X, Yao J F, Xiao P, Shang J, Feng Y, Webley P A, Wang H T. Colloid Polym. Sci., 2013, 291(11): 2711.

doi: 10.1007/s00396-013-3024-8
[48]
Wang L Y, Chen P, Dong X T, Zhang W, Zhao S, Xiao S T, Ouyang Y G. RSC Adv., 2020, 10(73): 44679.

doi: 10.1039/D0RA08741F
[49]
Pastore V J, Cook T R. Chem. Mater., 2020, 32(9): 3680.

doi: 10.1021/acs.chemmater.0c00851
[50]
Yang S L, Peng L, Syzgantseva O A, Trukhina O, Kochetygov I, Justin A, Sun D T, Abedini H, Syzgantseva M A, Oveisi E, Lu G C, Queen W L. J. Am. Chem. Soc., 2020, 142(31): 13415.

doi: 10.1021/jacs.0c02371
[51]
Pastore V J, Cook T R, Rzayev J. Chem. Mater., 2018, 30(23): 8639.

doi: 10.1021/acs.chemmater.8b03881
[52]
Zhuo N, Lan Y Q, Yang W B, Yang Z, Li X M, Zhou X, Liu Y, Shen J C, Zhang X T. Sep. Purif. Technol., 2017, 177: 272.

doi: 10.1016/j.seppur.2016.12.041
[53]
Tan C, Lee M C, Arshadi M, Azizi M, Abbaspourrad A. Angew. Chem. Int. Ed., 2020, 59(24): 9506.

doi: 10.1002/anie.v59.24
[54]
Stock N, Biswas S. Chem. Rev., 2012, 112(2): 933.

doi: 10.1021/cr200304e
[55]
Huang A S, Dou W, Caro J. J. Am. Chem. Soc., 2010, 132(44): 15562.

doi: 10.1021/ja108774v
[56]
McCarthy M C, Varela-Guerrero V, Barnett G V, Jeong H K. Langmuir, 2010, 26(18): 14636.

doi: 10.1021/la102409e pmid: 20731336
[57]
Yoo Y, Lai Z P, Jeong H K. Microporous Mesoporous Mater., 2009, 1231-3: 100.
[58]
Zou X Q, Zhu G S, Zhang F, Guo M Y, Qiu S L. CrystEngComm, 2010, 12(2): 352.

doi: 10.1039/B912470E
[59]
Liu Y Y, Hu E P, Khan E A, Lai Z P. J. Membr. Sci., 2010, 353(1/2): 36.

doi: 10.1016/j.memsci.2010.02.023
[60]
Liu Y, Pan J H, Wang N Y, Steinbach F, Liu X L, Caro J. Angew. Chem. Int. Ed., 2015, 54(10): 3028.

doi: 10.1002/anie.201411550
[61]
Bux H, Liang F Y, Li Y S, Cravillon J, Wiebcke M, Caro J. J. Am. Chem. Soc., 2009, 131(44): 16000.

doi: 10.1021/ja907359t
[62]
Guo H L, Zhu G S, Hewitt I J, Qiu S L. J. Am. Chem. Soc., 2009, 131(5): 1646.

doi: 10.1021/ja8074874
[63]
Kang Z X, Xue M, Fan L L, Huang L, Guo L J, Wei G Y, Chen B L, Qiu S L. Energy Environ. Sci., 2014, 7(12): 4053.

doi: 10.1039/C4EE02275K
[64]
Li Y J, Liu H O, Wang H T, Qiu J S, Zhang X F. Chem. Sci., 2018, 9(17): 4132.

doi: 10.1039/C7SC04815G
[65]
BÉtard A, Fischer R A. Chem. Rev., 2012, 112(2): 1055.

doi: 10.1021/cr200167v
[66]
Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, Ismail A F, Matsuura T. Prog. Polym. Sci., 2014, 39(5): 817.

doi: 10.1016/j.progpolymsci.2014.01.003
[67]
Pili S, Argent S P, Morris C G, Rought P, García-Sakai V, Silverwood I P, Easun T L, Li M, Warren M R, Murray C A, Tang C C, Yang S H, Schröder M. J. Am. Chem. Soc., 2016, 138(20): 6352.

doi: 10.1021/jacs.6b02194
[68]
Liu X L, Demir N K, Wu Z T, Li K. J. Am. Chem. Soc., 2015, 137(22): 6999.

doi: 10.1021/jacs.5b02276
[69]
Shekhah O, Wang H, Zacher D, Fischer R. A, Wöll C. Angew. Chem. Int. Ed., 2009, 48 (27): 5038.

doi: 10.1002/anie.v48:27
[70]
Munuera C, Shekhah O, Wang H, Wöll C, Ocal C. Phys Chem Chem Phys, 2008, 10 (48): 7257.

doi: 10.1039/b811010g pmid: 19060970
[71]
Liu J, Shekhah O, Stammer X, Arslan H K, Liu B, Schüpbach B, Terfort A, Wöll C. Materials, 2012, 5 (9): 1581.

doi: 10.3390/ma5091581
[72]
Biemmi E, Scherb C, Bein T J. Am. Chem. Soc., 2007, 129 (26): 8054.

doi: 10.1021/ja0701208
[73]
Liu J X, Wöll C. Chem. Soc. Rev., 2017, 46(19): 5730.

doi: 10.1039/C7CS00315C
[74]
Kind M, Wöll C. Prog. Surf. Sci., 2009, 847-8: 230.
[75]
Hu Y X, Dong X L, Nan J P, Jin W Q, Ren X M, Xu N P, Lee Y M. Chem. Commun., 2011, 47(2): 737.

doi: 10.1039/C0CC03927F
[76]
Nan J P, Dong X L, Wang W J, Jin W Q, Xu N P. Langmuir, 2011, 27(8): 4309.

doi: 10.1021/la200103w
[77]
Zhao X, Zhang H, Xu S, Wang Y. AIChE J., 2019, 65(8): e16620.
[78]
Sun Y W, Liu Y, Caro J, Guo X W, Song C S, Liu Y,. Angew. Chem. Int. Ed., 2018, 57(49): 16088.

doi: 10.1002/anie.v57.49
[79]
Ma X L, Kumar P, Mittal N, Khlyustova A, Daoutidis P, Mkhoyan K A, Tsapatsis M. Science, 2018, 361(6406): 1008.

doi: 10.1126/science.aat4123
[80]
Xiao F, Wang B, Hu X Y, Nair S, Chen Y B. J. Taiwan Inst. Chem. Eng., 2018, 83: 159.

doi: 10.1016/j.jtice.2017.11.033
[81]
Ameloot R, Vermoortele F, Vanhove W, Roeffaers M B J, Sels B F, de Vos D E. Nat. Chem., 2011, 3(5): 382.

doi: 10.1038/nchem.1026 pmid: 21505497
[82]
Lu H Y, Zhu S P. Eur. J. Inorg. Chem., 2013, 2013(8): 1294.

doi: 10.1002/ejic.v2013.8
[83]
Wang L H, Sahabudeen H, Zhang T,Dong R H. Npj 2D Mater. Appl., 2018, 2(1): 1.

doi: 10.1038/s41699-017-0046-y
[84]
Brown A J, Brunelli N A, Eum K, Rashidi F, Johnson J R, Koros W J, Jones C W, Nair S. Science, 2014, 345(6192): 72.

doi: 10.1126/science.1251181
[85]
Mao Y Y shi L, Huang H B, Cao W, Li J W, Sun L W, Jin X D, Peng X S. Chem. Commun., 2013, 49(50): 5666.

doi: 10.1039/c3cc42601g
[86]
Anjum M W, Vermoortele F, Khan A L, Bueken B, de Vos D E, Vankelecom I F J. ACS Appl. Mater. Interfaces, 2015, 7(45): 25193.

doi: 10.1021/acsami.5b08964
[87]
Zornoza B, Martinez-Joaristi A, Serra-Crespo P, Tellez C, Coronas J, Gascon J, Kapteijn F. Chem. Commun., 2011, 47(33): 9522.

doi: 10.1039/c1cc13431k
[88]
Yang T X, Xiao Y C, Chung T S. Energy Environ. Sci., 2011, 4(10): 4171.

doi: 10.1039/c1ee01324f
[89]
Nik O G, Chen X Y, Kaliaguine S. J. Membr. Sci., 2012, 413/414: 48.

doi: 10.1016/j.memsci.2012.04.003
[90]
Basu S, Maes M, Cano-Odena A, Alaerts L, de Vos D E, Vankelecom I F J. J. Membr. Sci., 2009, 344(1/2): 190.

doi: 10.1016/j.memsci.2009.07.051
[91]
Aroon M A, Ismail A F, Matsuura T, Montazer-Rahmati M M. Sep. Purif. Technol., 2010, 75(3): 229.

doi: 10.1016/j.seppur.2010.08.023
[92]
Zhai Q G, Bu X H, Mao C Y, Zhao X, Feng P Y. J. Am. Chem. Soc., 2016, 138(8): 2524.

doi: 10.1021/jacs.5b13491
[93]
Mahajan R, Koros W J. Polym. Eng. Sci., 2002, 42(7): 1420.

doi: 10.1002/(ISSN)1548-2634
[94]
Kitao T, Zhang Y Y, Kitagawa S, Wang B, Uemura T. Chem. Soc. Rev., 2017, 46(11): 3108.

doi: 10.1039/C7CS00041C
[95]
Yeo Z Y, Chai S P, Zhu P W, Mohamed A R. RSC Adv., 2014, 4(97): 54322.

doi: 10.1039/C4RA08884K
[96]
Zhang C Y, Mu Y X, Zhang W, Zhao S, Wang Y X. J. Membr. Sci., 2020, 596: 117724.

doi: 10.1016/j.memsci.2019.117724
[97]
Mahdi E M, Tan J C. J. Membr. Sci., 2016, 498: 276.

doi: 10.1016/j.memsci.2015.09.066
[98]
Kertik A, Khan A L, Vankelecom I F J. RSC Adv., 2016, 6(115): 114505.

doi: 10.1039/C6RA23013J
[99]
Deng Y H, Chen J T, Chang C H, Liao K S, Tung K L, Price W E, Yamauchi Y, Wu K C W. Angew. Chem. Int. Ed., 2016, 55(41): 12793.

doi: 10.1002/anie.v55.41
[100]
Wang H L, He S F, Qin X D, Li C E, Li T. J. Am. Chem. Soc., 2018, 140(49): 17203.

doi: 10.1021/jacs.8b10138
[101]
Wu C H, Zhang K X, Wang H L, Fan Y Q, Zhang S W, He S F, Wang F, Tao Y, Zhao X W, Zhang Y B, Ma Y H, Lee Y, Li T. J. Am. Chem. Soc., 2020, 142(43): 18503.

doi: 10.1021/jacs.0c07378
[102]
Lin R J, Ge L, Hou L, Strounina E, Rudolph V, Zhu Z H. ACS Appl. Mater. Interfaces, 2014, 6(8): 5609.

doi: 10.1021/am500081e
[103]
Lin R J, Ge L, Diao H, Rudolph V, Zhu Z H. ACS Appl. Mater. Interfaces, 2016, 8(46): 32041.

doi: 10.1021/acsami.6b11074
[104]
Knebel A, Bavykina A, Datta S J, Sundermann L, Garzon-Tovar L, Lebedev Y, Durini S, Ahmad R, Kozlov S M, Shterk G, Karunakaran M, Carja I D, Simic D, Weilert I, Klüppel M, Giese U, Cavallo L, Rueping M, Eddaoudi M, Caro J, Gascon J. Nat. Mater., 2020, 19(12): 1346.

doi: 10.1038/s41563-020-0764-y
[105]
Bae Y J, Cho E S, Qiu F, Sun D T, Williams T E, Urban J J, Queen W L. ACS Appl. Mater. Interfaces, 2016, 8(16): 10098.

doi: 10.1021/acsami.6b01299
[106]
Venna S R, Lartey M, Li T, Spore A, Kumar S, Nulwala H B, Luebke D R, Rosi N L, Albenze E. J. Mater. Chem. A, 2015, 3(9): 5014.

doi: 10.1039/C4TA05225K
[107]
Xie K, Fu Q, Xu C L, Lu H, Zhao Q H, Curtain R, Gu D Y, Webley P A, Qiao G G. Energy Environ. Sci., 2018, 11(3): 544.

doi: 10.1039/C7EE02820B
[108]
Zimpel A, Preiß T, Röder R, Engelke H, Ingrisch M, Peller M, Rädler J O, Wagner E, Bein T, Lächelt U, Wuttke S. Chem. Mater., 2016, 28(10): 3318.

doi: 10.1021/acs.chemmater.6b00180
[109]
Mileo P G M, Yuan S C, Ayala S, Duan P, Semino R, Cohen S M, Schmidt-Rohr K, Maurin G. J. Am. Chem. Soc., 2020, 142(24): 10863.

doi: 10.1021/jacs.0c04546
[110]
Zhang Z J, Nguyen H T H, Miller S A, Cohen S M. Angew. Chem. Int. Ed., 2015, 54(21): 6152.

doi: 10.1002/anie.201502733
[111]
Zhang Z J, Nguyen H T H, Miller S A, Ploskonka A M, DeCoste J B, Cohen S M. J. Am. Chem. Soc., 2016, 138(3): 920.

doi: 10.1021/jacs.5b11034
[112]
Zhang Y Y, Feng X, Li H W, Chen Y F, Zhao J S, Wang S, Wang L, Wang B. Angew. Chem. Int. Ed., 2015, 54(14): 4259.

doi: 10.1002/anie.201500207
[113]
Feng T T, Ye Y X, Liu X, Cui H, Li Z Q, Zhang Y, Liang B, Li H R, Chen B L. Angew. Chem. Int. Ed., 2020, 59(48): 21752.

doi: 10.1002/anie.v59.48
[114]
Fan H W, Shi Q, Yan H, Ji S L, Dong J X, Zhang G J. Angew. Chem. Int. Ed., 2014, 53(22): 5578.

doi: 10.1002/anie.v53.22
[115]
Erucar I, Yilmaz G, Keskin S. Chem. Asian J., 2013, 8(8): 1692.

doi: 10.1002/asia.v8.8
[116]
Marti A M, Venna S R, Roth E A, Culp J T, Hopkinson D P. ACS Appl. Mater. Interfaces, 2018, 10(29): 24784.

doi: 10.1021/acsami.8b06592
[117]
Mao H, Zhen H G, Ahmad A, Zhang A S, Zhao Z P. J. Membr. Sci., 2019, 573: 344.

doi: 10.1016/j.memsci.2018.12.017
[1] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[2] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[3] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.
[4] Xiuting Dong, Wen Zhang, Song Zhao, Xinlei Liu, Yuxin Wang. Shaping Methods for Metal-Organic Framework Composites [J]. Progress in Chemistry, 2021, 33(12): 2173-2187.
[5] Zhichao Liu, Hongliang Mu, Yan Li, Liu Feng, Dong Wang, Guangwu Wen. Application of Metal-Organic Frameworks-Derived Conversion-Type Anodes in Alkali Metal-Ion Batteries [J]. Progress in Chemistry, 2021, 33(11): 2002-2023.
[6] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[7] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[8] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[9] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.
[10] Xiao Feng, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Photocatalytic Carbon Dioxide Reduction [J]. Progress in Chemistry, 2020, 32(11): 1697-1709.
[11] Jinghao Liu, Xueqian Wu, Yufeng Wu, Jiamei Yu. Computational Study on Adsorption and Separation of C2 and C3 Hydrocarbons by Metal-Organic Frameworks [J]. Progress in Chemistry, 2020, 32(1): 133-144.
[12] Yuanming Tan, Hao Meng, Xia Zhang. Removal of Organic Dyes and Heavy Metal Ions by Functionalized MOFs and MOFs/Polymer Composite Membranes [J]. Progress in Chemistry, 2019, 31(7): 980-995.
[13] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[14] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.
[15] Xi Liang, Cheng Wang, Yijie Lei, Yadi Liu, Bo Zhao, Feng Liu. Potential Applications of Metal Organic Framework-Based Materials for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(11): 1770-1783.
Viewed
Full text


Abstract