English
新闻公告
More
化学进展 2022, Vol. 34 Issue (9): 1911-1934 DOI: 10.7536/PC211101 前一篇   后一篇

• 综述 •

多功能核壳结构纳米反应器的构筑及其催化性能

陈浩, 徐旭, 焦超男, 杨浩, 王静*(), 彭银仙*()   

  1. 江苏科技大学环境与化学工程学院 镇江 212100
  • 收稿日期:2021-11-03 修回日期:2022-03-15 出版日期:2022-09-20 发布日期:2022-04-01
  • 基金资助:
    国家工业和信息化部船舶涂装排放治理及危废物处理技术与装备研发项目(MC-202003-Z01-07); 江苏省研究生科研与实践创新计划项目(KYCX20_3151)

Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances

Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang(), Yinxian Peng()   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology,Zhenjiang 212100, China
  • Received:2021-11-03 Revised:2022-03-15 Online:2022-09-20 Published:2022-04-01
  • Contact: *e-mail: wangjingalice@just.edu.cn (Jing Wang);pyxhx@just.edu.cn (Yinxian Peng)
  • About author:
    These authors contributed equally to this work.
  • Supported by:
    Discharge Control of Ship Painting and Hazardous Waste Treatment Technology and Equipment Program of the Ministry of Industry and Information Technology of China(MC-202003-Z01-07); Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20_3151)

随着纳米科学技术的不断发展,通过调节纳米材料的组成、结构、形貌以及尺寸等,已经能够实现对纳米材料性能调控的目的。为了进一步赋予纳米材料以新的功能,拓展其在材料、化学、生物和医学等领域的应用,开发能够同时实现多种功能的新型纳米材料是非常有意义的。多功能纳米材料的获得方法之一是通过对简单纳米粒子表面包覆具有功能性的材料来实现,形成的复合结构称为核壳结构。核壳结构的核和壳可以由相同或不同的材料组成。通过改变内核和外壳材料的组成、结构以及表面性质等,从而可以赋予核壳结构纳米材料以特殊的光、电、磁、催化、吸附以及生物活性等。在核壳结构的基础上对核与壳进行可控化与功能化的改造,可形成空心结构以及蛋黄壳结构(或称拨浪鼓结构),其中的空腔可作为高效纳米反应器应用于催化的各个分支领域。本综述首先讨论了不同核壳结构纳米反应器的设计,然后重点介绍了这些纳米反应器在催化降解染料污染物、催化加氢反应、催化氧化反应以及催化级联反应这几类反应中的应用。最后,对多功能核壳纳米反应器未来的研究和发展提出了一些展望。

With the development of nanotechnology, it has been possible to easily adjust the compositions, morphologies, and sizes of nanomaterials to control their properties. In order to endow nanomaterials with new functions and expand their applications in the fields of materials, chemistry, biology and medicine, it is very meaningful to develop new types of nanomaterials that can achieve multiple functions at the same time. One of the methods for obtaining multifunctional nanomaterials is achieved by coating the surface of simple nanoparticles with functional materials, and the resulting composite structure is called a core-shell structure. The core and shell of the core-shell structure can be composed of the same or different materials. By changing the compositions, structures and surface properties of the core and shell materials, the nanomaterials can be endowed with special optical, electrical, magnetic, catalytic, adsorption and biological activities. The hollow and yolk-shell structure can be formed by the controllable transformation of the core and the shell, in which the inner cavity can be used as a high-performance nanoreactor in various fields of catalysis. In this review, the design and application of core-shell structured nanoreactors with different structures in the field of catalysis are discussed, with emphases on the applications in catalytic degradation of dye pollutants, catalytic hydrogenation, catalytic oxidation, and catalytic cascade reactions. Finally, some prospects are put forward for the future research and development of multifunctional core-shell structured nanoreactors.

Contents

1 Introduction

2 Classification of core-shell structured nanoreactors

2.1 Traditional core-shell structure

2.2 Hollow core-shell structure

3 Application of core-shell nanoreactors in catalytic reactions

3.1 Catalytic degradation of dye pollutants

3.2 Catalytic hydrogenation

3.3 Catalytic oxidation

3.4 Catalytic cascade reaction

4 Conclusion and outlook

()
图1 各种核壳纳米结构。(a)传统核壳结构,(b)去除部分壳形成的蛋黄壳结构,(c)去除部分核形成的蛋黄壳结构
Fig. 1 Various core-shell nanostructures. (a) Traditional core-shell nanostructure, (b) yolk-shell nanostructure formed by partial removal of shell, (c) yolk-shell nanostructure formed by partial removal of core
图2 各种类型的球形核壳纳米结构。 (a)含有单个或多个粒子的核,(b)具有不同形状的核,(c)具有不同类型的壳体
Fig.2 Various types of spherical core-shell structures. (a) Cores with single or multiple particles, (b) cores with different shapes, (c) shells of various types
图3 其他形状的核壳纳米结构, 包括(a)纳米管,(b)纳米立方体,(c)纳米十二面体,(d)纳米环
Fig. 3 Other shapes of core-shell nanostructures, including (a) nanotubes, (b) nanocubes, (c) dodecahedrons, (d) nanorings
表1 核壳结构纳米反应器
Table 1 Core-shell structured nanoreactors
图4 常见中空核壳结构。 (a, b) 多个核单个壳, (c) 蛋黄壳, (d) 多核蛋黄壳, (e)多层壳, (f)单个核多个壳, (g, h)多个核/壳
Fig. 4 Some common hollow core-shell structures. (a, b) multiple cores single shell, (c) yolk-shell, (d) multi-core yolk-shell, (e) multi shells, (f) single core multi shells, (g, h) multi-cores/shells
表2 用于费托合成反应的核壳结构纳米反应器
Table 2 Core-shell structured nanoreactors for Fischer-Tropsch synthesis reaction
图5 (a) 制备空心和蛋黄壳HSN的策略; (b) 硝基苯在不同催化剂下的加氢反应[110]
Fig. 5 (a) Strategy for preparing hollow and yolk-shell HSNs. (b) Hydrogenation of nitrobenzene with different catalysts[110]. Copyright 2020, American Chemical Society
图6 (a) 纳米反应器Gd2O3@Pt@ZIF的多步自组装图示[114]. (b) Gd2O3@ZIF-8和Gd2O3@Pt@ZIF-8 催化还原4-NP的紫外-可见光谱. (c) 纳米反应器Gd2O3@Pt@ZIF-8催化还原4-NP的循环性能
Fig. 6 (a) Multistep self-assembly illustration of preparation of the Gd2O3@Pt@ZIF nanoreactor[114]. (b) UV-vis spectra of the reduction of 4-NP with Gd2O3@ZIF-8 and with Gd2O3@Pt@ZIF-8. (c) The recycling of Gd2O3@Pt@ZIF-8 nanoreactor for the reduction of 4-NP. Copyright 2020, American Chemical Society
图7 (a) 具有有序微相分离结构的PS-b-P2VP粒子的TEM图像[120]; (b) 在无NIR照射以及在NIR照射下分别使用Au@PDA颗粒作为纳米反应器还原4-硝基苯酚的紫外-可见光谱; (c) PNIPAM/Au@meso-SiO2合成过程示意图[124]; (d) PNIPAM/Au@SiO2分别在30℃和50℃下催化还原4-硝基苯酚的转化率与时间的关系曲线
Fig. 7 (a) TEM images of a PS-b-P2VP particle with ordered microphase separation structure[120]. (b) UV-Vis spectra of the reduction of 4-nitrophenol using Au@PDA particles as nanoreactors without NIR irradiation at 39.3℃ and under NIR irradiation. (c) Schematic illustration for the synthesis process of PNIPAM/Au@meso-SiO2[124]. (d) Time-dependence conversion curves of reduction of 4-nitrophenol catalyzed by PNIPAM/Au@SiO2 at 30℃ and 50℃. Copyright 2012, American Chemical Society
表3 各种核壳结构纳米反应器在催化硝基芳烃化合物加氢反应中的应用
Table 3 The performances of nanoreactors with different core-shell structures in the hydrogenation of nitroaromatic compounds
图8 (a) 多功能两亲纳米反应器的制备示意图[141]; (b) 4-甲氧基苄醇在不同催化剂下的有氧氧化动力学曲线; (c) PIL@SiO2-Pd纳米反应器的合成路线示意图[143]; (d) 通过三个连续步骤构筑Y@HWS-TiO2的总体流程图[146]; (e) 在紫外和可见光条件下C-TiO2、Y@S-TiO2、Y@WS-TiO2和Y@HWS-TiO2结构对选择性氧化苯甲醇的光催化活性比较
Fig. 8 (a) Schematic illustration for the preparation of multifunctional amphiphilic nanoreactor[141]; (b) Kinetic plots of aerobic oxidation of 4-methoxybenzyl alcohol over different catalysts. Copyright 2018, American Chemical Society; (c) Schematic illustration of the synthetic route to the PIL@SiO2-Pd nanoreactor[143]. Copyright 2015, American Chemical Society; (d) Overall flowchart for the fabrication of the Y@HWS-TiO2 via three sequential steps[146]; (e) Comparison of photocatalytic activity of C-TiO2, Y@S-TiO2, Y@WS-TiO2 and Y@HWS-TiO2 structures in selective oxidation of benzyl alcohol under UV and visible conditions
图9 (a) 由AuPt@RF@SiO2气溶胶粒子得到分散在有序介孔二氧化硅微球中的AuPt纳米合金蛋黄壳结构空心粒子[150]; (b)苯乙烯的转化率和氧化苯乙烯的选择性与反应时间的关系
Fig. 9 (a) Formation of AuPt nanoalloy yolk@shell hollow particles in ordered mesoporous silica microspheres from AuPt@RF@SiO2 aerosol particles[150]. (b) Conversion of styrene and selectivity to styrene oxide at different reaction times. Copyright 2016, American Chemical Society
图10 Co3O4 (a)、CeO2@Co3O4 (b)和CeO2 (c) 的 TEM图像; (d) 以Co3O4、CeO2@Co3O4、CeO2为催化剂时甲苯的转化率[156]; (e) Pd/h-NiCoOx和NiCoOx纳米片的构筑示意图[158]; (f) 不同Pd负载量下的h-NiCoOx样品的催化活性; (g) PtxRuy/ZrO2纳米复合物的合成示意图[159]; (h) 在不同催化剂作用下甲苯转化率与反应温度的关系
Fig. 10 TEM images of Co3O4 (a), CeO2@Co3O4 (b), CeO2 (c). (d) Toluene conversion over Co3O4, CeO2@Co3O4, CeO2[156]. Copyright 2020, American Chemical Society. (e) A schematic illustration of the fabrication of Pd/h-NiCoOx and NiCoOx nanosheets[158]. (f) The catalytic activities of h-NiCoOx samples with different Pd loadings. Copyright 2020, American Chemical Society. (g) Schematic illustration for synthesizing PtxRuy/ZrO2 nanocomposites[159]. (h) Toluene conversion as a function of reaction temperature over different catalysts. Copyright 2020, American Chemical Society
图11 (a) 用于全身给药癌症协同治疗的聚合物纳米反应器的制备示意图[168]; (b) 随时间G@R-NRs和G@N-NRs产生H2O2的情况; (c) 经过24 h孵育后, 分别在葡萄糖存在与否下, Fe/G@R-NRs和Fe/G@NNRs释放Fe2/3+的情况
Fig. 11 (a) Schematic illustration for preparation of polymersome nanoreactors for cooperative cancer therapy via systemic administration[168]. (b) Time-dependent H2O2 production of G@R-NRs and G@N-NRs. (c) Fe2/3+ release from Fe/G@R-NRs and Fe/G@NNRs in the absence or presence of glucose after 24 h incubation. Copyright 2019, American Chemical Society
[1]
Tao A R, Habas S, Yang P D. Small, 2008, 4:310.

doi: 10.1002/smll.200701295     URL    
[2]
Wang J, Xu X, Chen H, Zhang S, Peng Y. Molecules, 2019, 24:4508.

doi: 10.3390/molecules24244508     URL    
[3]
Schärtl W. Nanoscale, 2010, 2:829.

doi: 10.1039/c0nr00028k     URL    
[4]
El-Toni A M, Habila M A, Labis J P, ALOthman Z A, Alhoshan M, Elzatahry A A, Zhang F. Nanoscale, 2016, 8:2510.

doi: 10.1039/C5NR07004J     URL    
[5]
Wang J, Xu X, Qiu X, Zhang S, Peng Y. Analyst, 2019, 144:7489.

doi: 10.1039/C9AN01541H     URL    
[6]
Zuo B, Li W F, Wu X Q, Wang S G, Deng Q Y, Huang M X. Chem. Asian J., 2020, 15:1248.

doi: 10.1002/asia.202000045     URL    
[7]
Cao A M, Lu R W, Veser G. Phys. Chem. Chem. Phys., 2010, 12:13499.

doi: 10.1039/c0cp00729c     URL    
[8]
Liu J, Qiao S Z, Hu Q H, Lu G Q. Small, 2011, 7:425.

doi: 10.1002/smll.201001402     URL    
[9]
Lou X W, Archer L A, Yang Z C. Adv. Mater., 2008, 20:3987.

doi: 10.1002/adma.200800854     URL    
[10]
Zhang Q, Wang W S, Goebl J, Yin Y D. Nano Today, 2009, 4:494.

doi: 10.1016/j.nantod.2009.10.008     URL    
[11]
Zhao Y, Jiang L. Adv. Mater., 2009, 21:3621.

doi: 10.1002/adma.200803645     URL    
[12]
Vriezema D M, Aragonès M C, Elemans J A A W, Cornelissen J J L M, Rowan A E, Nolte R J M. Chem. Rev., 2005, 105:1445.

pmid: 15826017
[13]
Chaudhuri R G, Paria S. Chem. Rev., 2012, 112:2373.

doi: 10.1021/cr100449n     pmid: 22204603
[14]
Chiozzi V, Rossi F. Nanoscale Adv., 2020, 2: 5090.

doi: 10.1039/D0NA00411A     URL    
[15]
Bao Y, Shi C H, Wang T, Li X L, Ma J Z. Micropor. Mesopor. Mat., 2016, 227:121.

doi: 10.1016/j.micromeso.2016.02.040     URL    
[16]
Wang J, Pan M W, Yuan J F, Lin Q Q, Zhang X P, Liu G, Zhu L. Nanoscale, 2020, 12:10863.

doi: 10.1039/D0NR01709D     URL    
[17]
Jun Y W, Choi J S, Cheon J. Chem. Commun., 2007, 12:1203.
[18]
Wang J, Zhang S, Xu X, Fei K, Peng Y. Nanomaterials, 2018, 8:1027.

doi: 10.3390/nano8121027     URL    
[19]
Shao Y, Zhou L, Bao C, Wu Q, Wu W, Liu M. New J. Chem., 2016, 40:9684.

doi: 10.1039/C6NJ01388K     URL    
[20]
Srdic V V, Mojic B, Nikolic M, Ognjanovic S. Process. Appl. Ceram., 2013, 7:45.

doi: 10.2298/PAC1302045S     URL    
[21]
Caruso F. Adv. Mater., 2001, 13:11.

doi: 10.1002/1521-4095(200101)13:1【-逻*辑*与-】#x00026;lt;11::AID-ADMA11【-逻*辑*与-】#x00026;gt;3.0.CO;2-N     URL    
[22]
Guerrero-Martinez A, Perez-Juste J, Liz-Marzan L M. Adv. Mater., 2010, 22:1182.

doi: 10.1002/adma.200901263     URL    
[23]
Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Adv. Mater., 2010, 22:2729.

doi: 10.1002/adma.201000260     URL    
[24]
Hu J, Chen M, Fang X, Wu L. Chem. Soc. Rev., 2011, 40:5472.

doi: 10.1039/c1cs15103g     URL    
[25]
Fei J, Cui Y, Yan X, Qi W, Yang Y, Wang K, He Q, Li J. Adv. Mater., 2008, 20:452.

doi: 10.1002/adma.200701231     URL    
[26]
Liu X, Li Y, Zhu W, Fu P. CrystEngComm, 2013, 15:4937.

doi: 10.1039/c3ce40221e     URL    
[27]
Yang X F, Yang J H, Zhong Y L, Gariepy V, Trudeau M L, Zaghib K, Ying J Y. ChemSusChem, 2014, 7:1618.

doi: 10.1002/cssc.201400152     URL    
[28]
Zhang Z A, Li Q, Jiang S F, Zhang K, Lai Y Q, Li J. Chem. Eur. J., 2015, 21:1343.

doi: 10.1002/chem.201404686     URL    
[29]
Lee J, Kim S M, Lee I S. Nano Today, 2014, 9: 631.

doi: 10.1016/j.nantod.2014.09.003     URL    
[30]
Tan L, Chen D, Liu H, Tang F. Adv. Mater., 2010, 22:4885.

doi: 10.1002/adma.201002277     URL    
[31]
Yeo K M, Choi S, Anisur R M, Kim J, Lee I S. Angew. Chem. Int. Ed., 2011, 50:745.

doi: 10.1002/anie.201005775     URL    
[32]
Prieto G, Tüysüz H, Duyckaerts N, Knossalla J, Wang G H, Schüth F. Chem. Rev., 2016, 116:14056.

doi: 10.1021/acs.chemrev.6b00374     URL    
[33]
Lee H L, Wei H R, Kim K, Choe H S, Park H, Yu T, Lee C H, Kim J H, Kim J H,. Small, 2020, 16:2002311.

doi: 10.1002/smll.202002311     URL    
[34]
Liu J, Yang H Q, Kleitz F, Chen Z G, Yang T Y, Strounina E, Lu G Q, Qiao S Z. Adv. Funct. Mater., 2012, 22:591.

doi: 10.1002/adfm.201101900     URL    
[35]
Shaik F. ChemNanoMat, 2020, 6:1449.

doi: 10.1002/cnma.202000354     URL    
[36]
Ye R P, Wang X Y, Price C H, Liu X Y, Yang Q H, Jaroniec M, Liu J. Small, 2021, 17:1906250.

doi: 10.1002/smll.201906250     URL    
[37]
Chen J S, Li C M, Zhou W W, Yan Q Y, Archer L A, Lou X W. Nanoscale, 2009, 1:280.

doi: 10.1039/b9nr00102f     URL    
[38]
Chen J S, Luan D, Li C M, Boey F Y C, Qiao S Z, Lou X W. Chem. Commun., 2010, 46:8252.

doi: 10.1039/c0cc02973d     URL    
[39]
Chen J S, Zhu T, Yang X H, Yang H G, Lou X W. J. Am. Chem. Soc., 2010, 132:13162.

doi: 10.1021/ja1060438     URL    
[40]
Choi Y H, Kim D H, Han H S, Shin S, Hong S H, Hong K S. Langmuir, 2014, 30:700.

doi: 10.1021/la404098s     URL    
[41]
Gao S, Yang S, Shu J, Zhang S, Li Z, Jiang K. J. Phys. Chem. C, 2008, 112:19324.

doi: 10.1021/jp808545r     URL    
[42]
Guan H, Wang X, Li H, Zhi C, Zhai T, Bando Y, Golberg D. Chem. Commun., 2012, 48:4878.

doi: 10.1039/c2cc30843f     URL    
[43]
Liang Z, Zhao D, Xiong W L. Adv. Mater., 2012, 24:745.

doi: 10.1002/adma.201104407     URL    
[44]
Liu J, Qiao S Z, Chen J S, Lou X W, Xing X R, Lu G Q. Chem. Commun., 2011, 47:12578.

doi: 10.1039/c1cc13658e     URL    
[45]
Lou X W, Chen J S, Chen P, Archer L A. Chem. Mater., 2009, 21:2868.

doi: 10.1021/cm900613d     URL    
[46]
Luo J, Xia X, Luo Y, Guan C, Liu J, Qi X, Ng C F, Yu T, Zhang H, Fan H J. Adv. Energy Mater., 2013, 3:737.

doi: 10.1002/aenm.201200953     URL    
[47]
Pan A, Wu H B, Yu L, Lou X W. Angew. Chem., 2013, 125:2282.

doi: 10.1002/ange.201209535     URL    
[48]
Pan A, Zhu T, Wu H B, Lou X W. Chem. Eur. J., 2013, 19:494.

doi: 10.1002/chem.201203596     URL    
[49]
Wang Z, Lou X W. Adv. Mater., 2012, 24:4124.

doi: 10.1002/adma.201104546     URL    
[50]
Wu H B, Pan A, Hng H H, Lou X W. Adv. Funct. Mater., 2013, 23:5669.

doi: 10.1002/adfm.201300976     URL    
[51]
Wu Y, Wen Z, Feng H, Li J. Small, 2012, 8:858.

doi: 10.1002/smll.201101838     URL    
[52]
Xia Y, Xiao Z, Dou X, Huang H, Lu X, Yan R, Gan Y, Zhu W, Tu J, Zhang W, Tao X. ACS Nano, 2013, 7:7083.

doi: 10.1021/nn4023894     URL    
[53]
Xiong W, Chang M, Archer L A. Adv. Mater., 2010, 21:2536.

doi: 10.1002/adma.200803439     URL    
[54]
Yin X M, Li C C, Zhang M, Hao Q Y, Liu S, Chen L B, Wang T H. J. Phys. Chem. C, 2010, 114:8084.

doi: 10.1021/jp100224x     URL    
[55]
Zhong J, Cao C, Liu Y, Li Y, Khan W S. Chem. Commun., 2010, 46:3869.

doi: 10.1039/c0cc00204f     URL    
[56]
Zhou L, Zhao D, Lou X W. Angew. Chem. Int. Ed., 2012, 51:239.

doi: 10.1002/anie.201106998     URL    
[57]
Fang X L, Zhao X J, Fang W J, Chen C, Zheng N F. Nanoscale, 2013, 5: 2205.

doi: 10.1039/c3nr34006f     URL    
[58]
Li X B, Yang Y, Yang Q H. J. Mater. Chem. A, 2013, 1:1525.

doi: 10.1039/C2TA00077F     URL    
[59]
Li Y S, Shi J L. Adv. Mater., 2014, 26:3176.

doi: 10.1002/adma.201305319     URL    
[60]
Anisur R M, Shin J, Choi H H, Yeo K M, Kang E J, Lee I S. J. Mater. Chem., 2010, 20:10615.

doi: 10.1039/c0jm02647f     URL    
[61]
Chen Z, Cui Z M, Li P, Cao C Y, Hong Y L, Wu Z Y, Song W G. J. Phys. Chem. C, 2012, 116:14986.

doi: 10.1021/jp303992g     URL    
[62]
Ikeda S, Ikoma Y, Kobayashi H, Harada T, Torimoto T, Ohtani B, Matsumura M. Chem. Commun., 2007, 36: 3753.
[63]
Kim S M, Jeon M, Kim K W, Park J, Lee I S. J. Am. Chem. Soc., 2013, 135:15714.

doi: 10.1021/ja4083792     URL    
[64]
Lee J, Park J C, Bang J U, Song H. Chem. Mater., 2008, 20:5839.

doi: 10.1021/cm801149w     URL    
[65]
Li S, Boucheron T, Tuel A, Farrusseng D, Meunier F. Chem. Commun., 2014, 50:1824.

doi: 10.1039/c3cc48648f     URL    
[66]
Ng Y H, Ikeda S, Harada T, Sakata T, Mori H, Takaoka A, Matsumura M. Langmuir, 2008, 24:6307.

doi: 10.1021/la800045u     URL    
[67]
Fang X, Liu Z, Hsieh M F, Chen M, Liu P, Chen C, Zheng N. ACS Nano, 2012, 6:4434.

doi: 10.1021/nn3011703     URL    
[68]
Shi J, Chen L, Ren N, Zhang Y, Tang Y. Chem. Commun., 2012, 48:8583.

doi: 10.1039/c2cc33701k     URL    
[69]
Yang Y, Liu X, Li X, Zhao J, Bai S, Liu J, Yang Q. Angew. Chem. Int. Ed., 2012, 51:9164.

doi: 10.1002/anie.201204829     pmid: 22865743
[70]
Ge M, Hu Z, He Q. Prog. Chem., 2021, 33:1648.
( 葛明, 胡征, 贺全宝. 化学进展, 2021, 33:1648.).

doi: 10.7536/PC200851    
[71]
Rauf M A, Ashraf S S. Chem. Eng. J., 2009, 151:10.

doi: 10.1016/j.cej.2009.02.026     URL    
[72]
Fan L L, Zhang Y, Li X J, Luo C N, Lu F G, Qiu H M. Colloid. Surface. B, 2012, 91:250.

doi: 10.1016/j.colsurfb.2011.11.014     URL    
[73]
Pal S, Ghorai S, Das C, Samrat S, Ghosh A, Panda A B. Ind. Eng. Chem. Res., 2012, 51:15546.

doi: 10.1021/ie301134a     URL    
[74]
Levec J, Pintar A. Catal. Today, 2007, 124:172.

doi: 10.1016/j.cattod.2007.03.035     URL    
[75]
Bautista P, Mohedano A F, Casas J A, Zazo J A, Rodriguez J J. J. Chem. Technol. Biotechnol., 2008, 83:1323.
[76]
Pliego G, Zazo J A, Blasco S, Casas J A, Rodriguez J J. Ind. Eng. Chem. Res., 2012, 51:2888.

doi: 10.1021/ie202587b     URL    
[77]
Cybulski A. Ind. Eng. Chem. Res., 2007, 46:4007.

doi: 10.1021/ie060906z     URL    
[78]
Li K, Wei J, Yu H, Xu P, Wang J, Yin H, Stuart M A C, Wang J, Zhou S. Angew. Chem. Int. Ed., 2018, 57:16458.

doi: 10.1002/anie.201810777     URL    
[79]
Xu P, Li K, Yu H, Stuart M A C, Wang J, Zhou S. Ind. Eng. Chem. Res., 2019, 58:3726.

doi: 10.1021/acs.iecr.9b00735     URL    
[80]
Yao Y J, Yin H Y, Zhang Y Y, Wei F Y, Hu H W, Tang Y H, Wang S B. Chem. Eng. J., 2021, 426:131801.

doi: 10.1016/j.cej.2021.131801     URL    
[81]
Mao Y, Jiang W, Wang S, Liu M, Xuan S, Gong X, Leung K C. J. Alloy. Compd., 2016, 680:406.

doi: 10.1016/j.jallcom.2016.04.139     URL    
[82]
Li W, Jia X, Li P, Zhang B, Zhang H, Geng W, Zhang Q. ACS Sustain. Chem. Eng., 2015, 3:1101.

doi: 10.1021/acssuschemeng.5b00033     URL    
[83]
Jiang D H, Jing H H, Liu Z R, Jia C K, Liu Q C. J. Phys. Chem. C, 2021, 125:15316.

doi: 10.1021/acs.jpcc.1c04065     URL    
[84]
Liu X, Zhang T T, Li Y D, Zhang J, Du Y C, Yang Y L, Jiang Y Q, Lin K F. Chem. Eng. J., 2021, 423:130138.

doi: 10.1016/j.cej.2021.130138     URL    
[85]
Liu L M, Yang W Y, Sun W Z, Li Q, Shang J K. ACS Appl. Mater. Interfaces, 2015, 7:1465.

doi: 10.1021/am505861c     URL    
[86]
Yao D W, Wang Y, Li Y, Zhao Y J, Lv J, Ma X B. ACS Catal., 2018, 8:1218.

doi: 10.1021/acscatal.7b03026     URL    
[87]
Yang Y, Liu Q, Cai C, Tan J, Wang T, Ma L. Prog. Chem., 2016, 28: 363.

doi: 10.7536/PC150820    
( 杨越, 刘琪英, 蔡炽柳, 谈金, 王铁军, 马隆龙. 化学进展, 2016, 28:363.).

doi: 10.7536/PC150820    
[88]
Lee J H, Bonte W, Corthals S, Krumeich F, Ruitenbeek M, van Bokhoven J A. Ind. Eng. Chem. Res., 2019, 58:5140.

doi: 10.1021/acs.iecr.8b05755     URL    
[89]
Lan G J, Yao Y, Zhang X M, Guo M, Tang H D, Li Y, Yang Q H. Catal. Sci. Technol., 2016, 6:2181.

doi: 10.1039/C5CY01027F     URL    
[90]
Chen Y P, Batalha N, Marinova M, ImpÉror-Clerc M, Ma C R, Ersen O, Baaziz W, Stewart J A, Curulla-FerrÉ D, Khodakov A Y, Ordomsky V V. J. Catal., 2018, 365:429.

doi: 10.1016/j.jcat.2018.06.023     URL    
[91]
Subramanian V, Cheng K, Lancelot C, Heyte S, Paul S, Moldovan S, Ersen O, Marinova M, Ordomsky V V, Khodakov A Y. ACS Catal., 2016, 6:1785.

doi: 10.1021/acscatal.5b01596     URL    
[92]
Xu Y F, Wang J, Ma G Y, Lin J H, Ding M Y. ACS Sustain. Chem. Eng., 2019, 7:18125.

doi: 10.1021/acssuschemeng.9b05217     URL    
[93]
Phaahlamohlaka T N, Dlamini M W, Kumi D O, Forbes R, Jewell L L, Coville N J. Appl. Catal. A, 2020, 599:117617.

doi: 10.1016/j.apcata.2020.117617     URL    
[94]
Yamane N, Wang Y, Li J, He Y L, Zhang P P, Nguyen L, Tan L, Ai P P, Peng X B, Wang Y, Yang G H, Tsubaki N. Catal. Sci. Technol., 2017, 7:1996.

doi: 10.1039/C7CY00224F     URL    
[95]
Sun B, Yu G, Lin J, Xu K, Pei Y, Yan S, Qiao M, Fan K, Zhang X, Zong B. Catal. Sci. Technol., 2012, 2:1625.

doi: 10.1039/c2cy20155k     URL    
[96]
Li B, Sun B, Qian X, Li W, Wu Z, Sun Z, Qiao M, Duke M, Zhao D. J. Am. Chem. Soc., 2013, 135:1181.

doi: 10.1021/ja309194z     URL    
[97]
Espinosa G, Domínguez J M, Morales-Pacheco P, Tobon A, Aguilar M, Benítez J. Catal. Today, 2011, 166:47.

doi: 10.1016/j.cattod.2011.01.025     URL    
[98]
Yu S Y, Ma Y, Zhi Y X, Jing H, Su H Q. Integr. Ferroelectr., 2013, 147:59.

doi: 10.1080/10584587.2013.790737     URL    
[99]
Kang J, Cheng K, Zhang L, Zhang Q, Ding J, Hua W, Lou Y, Zhai Q, Wang Y. Angew. Chem. Int. Ed., 2011, 50:5200.

doi: 10.1002/anie.201101095     URL    
[100]
Cheng Q, Tian Y, Lyu S, Zhao N, Ma K, Ding T, Jiang Z, Wang L, Zhang J, Zheng L, Gao F, Dong L, Tsubaki N, Li X. Nat. Commun., 2018, 9:3250.

doi: 10.1038/s41467-018-05755-8     URL    
[101]
Sun J, Li X, Taguchi A, Abe T, Niu W, Lu P, Yoneyama Y, Tsubaki N. ACS Catal., 2014, 4:1.

doi: 10.1021/cs4008842     URL    
[102]
Kim J C, Lee S, Cho K, Na K, Lee C, Ryoo R. ACS Catal., 2014, 4:3919.

doi: 10.1021/cs500784v     URL    
[103]
Li J, He Y L, Tan L, Zhang P P, Peng X B, Oruganti A, Yang G H, Abe H, Wang Y, Tsubaki N. Nat. Catal., 2018, 1:787.

doi: 10.1038/s41929-018-0144-z     URL    
[104]
Hao Y J, Jiao X, Zou H B, Yang H Q, Liu J. J. Mater. Chem. A, 2017, 5:16162.

doi: 10.1039/C6TA11124F     URL    
[105]
Dong C, Yu Q, Ye R P, Su P P, Liu J, Wang G H. Angew. Chem. Int. Ed., 2020, 59:18374.

doi: 10.1002/anie.202007297     URL    
[106]
Ren X M, Guo M, Li H, Li C B, Yu L, Liu J, Yang Q H. Angew. Chem. Int. Ed., 2019, 58:14483.

doi: 10.1002/anie.201908602     URL    
[107]
Yang S L, Cao C Y, Peng L, Huang P P, Sun Y B, Wei F, Song W G. Chem. Commun., 2016, 52:1575.

doi: 10.1039/C5CC09104G     URL    
[108]
Yan P, Tian P, Li K, Stuart M A C, Wang J, Yu X, Zhou S. Chem. Eng. J., 2020, 397:125484.

doi: 10.1016/j.cej.2020.125484     URL    
[109]
Song S Y, Li K, Pan J, Wang F, Li J Q, Feng J, Yao S, Ge X, Wang X, Zhang H J. Adv. Mater., 2017, 29:1605331.
[110]
Lan X C, Ali B, Wang Y, Wang T F. ACS Appl. Mater. Interfaces, 2020, 12:3624.

doi: 10.1021/acsami.9b19364     URL    
[111]
Tamura M, Yuasa N, Nakagawa Y, Tomishige K. Chem. Commun., 2017, 53:3377.

doi: 10.1039/C7CC00653E     URL    
[112]
Wang S H, Dai J Y, Shi Z Q, Xiong Z S, Zhang Z T, Qiu S L, Wang R W. ChemPlusChem, 2020, 85:247.

doi: 10.1002/cplu.201900657     URL    
[113]
Peng J, Lan G, Guo M, Wei X, Li C, Yang Q. Chem. Eur. J., 2015, 21:10490.

doi: 10.1002/chem.201500762     URL    
[114]
Ning L M, Liao S Y, Dong C Q, Zhang M T, Gu W, Liu X. ACS Appl. Mater. Interfaces, 2020, 12:7198.

doi: 10.1021/acsami.9b19867     URL    
[115]
Zhu Y Y, Wang W D, Sun X, Fan M Y, Hu X W, Dong Z P. ACS Appl. Mater. Interfaces, 2020, 12:7285.

doi: 10.1021/acsami.9b21802     URL    
[116]
Kumar B S, Amali A J, Pitchumani K. ACS Sustain. Chem. Eng., 2017, 5:667.

doi: 10.1021/acssuschemeng.6b02025     URL    
[117]
Zhao X H, Liu X, Yi C X, Li J R, Su Y H, Guo M. ACS Appl. Nano Mater., 2020, 3:6574.

doi: 10.1021/acsanm.0c01038     URL    
[118]
Shaik F, Zhang W Q, Niu W X. J. Phys. Chem. C, 2017, 121:9572.

doi: 10.1021/acs.jpcc.7b01365     URL    
[119]
Kang M, Kim Y. Colloids Surf. A, 2020, 600:124957.

doi: 10.1016/j.colsurfa.2020.124957     URL    
[120]
Mei S L, Kochovski Z, Roa R, Gu S S, Xu X H, Yu H T, Dzubiella J, Ballauff M, Lu Y. Nano-Micro Lett., 2019, 11:1.
[121]
Hirokawa Y, Tanaka T, Sato Matsuo E. J. Chem. Phys., 1992, 96:8641.
[122]
Li L Y, He W D, Li W T, Zhang K R, Pan T T, Ding Z L, Zhang B Y. J. Polym. Sci. A, 2010, 48:5018.

doi: 10.1002/pola.24298     URL    
[123]
Wang Y, Yan R, Zhang J, Zhang W. J. Mol. Catal. A, 2010, 317:81.

doi: 10.1016/j.molcata.2009.10.026     URL    
[124]
Chen Z, Cui Z M, Cao C Y, He W D, Jiang L, Song W G. Langmuir, 2012, 28:13452.

doi: 10.1021/la3022535     pmid: 22909224
[125]
Dong L, Liu S, Gao H, Ding N, Tremel W, Xiong C, Zhu Q, Knoll W. Small, 2009, 5:1153.
[126]
Luciani C V, Choi K Y. Macromol. Theory Simul., 2014, 23:110.

doi: 10.1002/mats.201300128     URL    
[127]
Wang X, Liu D P, Song S Y, Zhang H J. J. Am. Chem. Soc., 2013, 135:15864.

doi: 10.1021/ja4069134     URL    
[128]
Wang Y Q, Ye C, Wu L H, Hu Y Z. J. Pharmaceut. Biomed., 2010, 53:235.

doi: 10.1016/j.jpba.2010.02.028     URL    
[129]
Wang X, Guan B Y, He Y P, An D, Zhang Y, Cao Y, Li X, Liu Y L, Huo Q S. Nanoscale, 2015, 7:3719.

doi: 10.1039/c4nr06341d     pmid: 25640736
[130]
Yang F, Long S F, Zhou S J, Li X M, Liu X F, Gao S Y, Kong Y. RSC Adv., 2016, 6:30852.

doi: 10.1039/C6RA05494C     URL    
[131]
Liu X W, Jiao Z, Song T T, Wu M H, Zhang H J. J. Colloid Interf. Sci., 2017, 490:497.

doi: 10.1016/j.jcis.2016.11.083     URL    
[132]
Wu L, Zhang H J, Wu M H, Zhong Y F, Liu X W, Jiao Z. Micropor. Mesopor. Mat., 2016, 228:318.

doi: 10.1016/j.micromeso.2016.03.040     URL    
[133]
Dong K, Liu Z, Ren J S. CrystEngComm, 2013, 15:6329.

doi: 10.1039/c3ce40350e     URL    
[134]
Zou H B, Wang R W, Li X X, Wang X, Zeng S J, Ding S, Li L, Zhang Z T, Qiu S L. J. Mater. Chem. A, 2014, 2:12403.

doi: 10.1039/C4TA01943A     URL    
[135]
Vo N T, Patra A K, Kim D. ChemistrySelect, 2018, 3:1772.

doi: 10.1002/slct.201702918     URL    
[136]
Kottappara R, Palantavida S, Vijayan B K. J. Chem. Sci., 2020, 132:115.

doi: 10.1007/s12039-020-01814-0     URL    
[137]
Wang S H, Fan Y N, Teng J, Fan Y Z, Jiang J J, Wang H P, Grützmacher H, Wang D W, Su C Y. Small, 2016, 12:5702.

doi: 10.1002/smll.201601873     URL    
[138]
Gao S G, Zhang L, Yu H T, Wang H Q, He Z W, Huang K. Carbon, 2021, 175:307.

doi: 10.1016/j.carbon.2021.01.023     URL    
[139]
Yang W J, Zhao J H, Tian H, Wang L Z, Wang X Y, Ye S, Liu J, Huang J. Small, 2020, 16:2002236.

doi: 10.1002/smll.202002236     URL    
[140]
Jing W D, Wang Y, Shi Z Q, Peng B L, Luo J H, Wang R W, Qiu S L, Zhang Z T. ACS Appl. Mater. Interfaces, 2020, 12:40684.

doi: 10.1021/acsami.0c11984     URL    
[141]
Dai J Y, Zou H B, Shi Z Q, Yang H Q, Wang R W, Zhang Z T, Qiu S L. ACS Appl. Mater. Interfaces, 2018, 10:33474.

doi: 10.1021/acsami.8b11888     URL    
[142]
Dai J Y, Zou H B, Wang R W, Wang Y, Shi Z Q, Qiu S L. Green Chem., 2017, 19:1336.

doi: 10.1039/C6GC02926D     URL    
[143]
Yang Y, Ambrogi M, Kirmse H, Men Y J, Antonietti M, Yuan J Y. Chem. Mater., 2015, 27:127.

doi: 10.1021/cm5035535     URL    
[144]
Chen H R, Shen K, Mao Q, Chen J Y, Li Y W. ACS Catal., 2018, 8:1417.

doi: 10.1021/acscatal.7b03270     URL    
[145]
Tian H, Zhao J, Wang X, Wang L, Liu H, Wang G, Huang J, Liu J, Lu G Q. Natl. Sci. Rev., 2020, 7:1647.

doi: 10.1093/nsr/nwaa080     pmid: 34691500
[146]
Ziarati A, Badiei A, Luque R, Ouyang W. J. Mater. Chem. A, 2018, 6:8962.

doi: 10.1039/C8TA02012D     URL    
[147]
Ziarati A, Badiei A, Luque R. Appl. Catal. B, 2019, 240:72.

doi: 10.1016/j.apcatb.2018.08.058     URL    
[148]
Afzali N, Tangestaninejad S, Moghadam M, Mirkhani V, Mechler A, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F. Appl. Organomet. Chem., 2018, 32:e3958.

doi: 10.1002/aoc.3958     URL    
[149]
Shen Y R, Jiang P P, Wang Y C, Bian G, Wai P T, Dong Y M. J. Solid State Chem., 2018, 264:156.

doi: 10.1016/j.jssc.2018.05.005     URL    
[150]
Li X C, Zheng W J, Chen B, Wang L, He G H. ACS Sustain. Chem. Eng., 2016, 4:2780.

doi: 10.1021/acssuschemeng.6b00260     URL    
[151]
Shen Y, Jiang P, Wai P T, Zhang P, Dong Y. J. Saudi Chem. Soc., 2019, 23:1157.

doi: 10.1016/j.jscs.2019.07.004     URL    
[152]
Li Z H, Huang R K, Zhu L, Zhou X, Cao C Y, Song W G. ChemNanoMat, 2020, 6:751.

doi: 10.1002/cnma.201900770     URL    
[153]
Shah K W, Li W X. Nanomaterials, 2019, 9:910.

doi: 10.3390/nano9060910     URL    
[154]
Kamal M S, Razzak S A, Hossain M M. Atmos. Environ., 2016, 140:117.

doi: 10.1016/j.atmosenv.2016.05.031     URL    
[155]
Peng H G, Dong T, Zhang L, Wang C L, Liu W M, Bao J F, Wang X, Zhang N, Wang Z, Wu P, Zhang P F, Dai S. Appl. Catal. B, 2019, 256:117807.

doi: 10.1016/j.apcatb.2019.117807     URL    
[156]
Fang W, Chen J H, Zhou X Y, Chen J J, Ye Z P, Li J H. Ind. Eng. Chem. Res., 2020, 59:10328.

doi: 10.1021/acs.iecr.9b07028     URL    
[157]
Wu E, Feng X, Zheng Y, Lin D, Luo Y, You Y, Huang B, Qian Q, Chen Q. ACS Sustain. Chem. Eng., 2020, 8:5787.

doi: 10.1021/acssuschemeng.0c01497     URL    
[158]
Qu J F, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. ACS Sustain. Chem. Eng., 2020, 8:10581.

doi: 10.1021/acssuschemeng.0c03755     URL    
[159]
Wang M M, Chen D, Li N J, Xu Q F, Li H, He J H, Lu J M. ACS Appl. Mater. Interfaces, 2020, 12:13781.

doi: 10.1021/acsami.9b20929     URL    
[160]
Wang X, He Y, Ma Y, Liu J, Liu Y, Qiao Z A, Huo Q. Dalton Trans., 2018, 47:9072.

doi: 10.1039/c8dt02254b     pmid: 29932204
[161]
You C, Yu C, Yang X, Li Y, Huo H, Wang Z, Jiang Y, Xu X, Lin K. New J. Chem., 2018, 42:4095.

doi: 10.1039/C7NJ04670G     URL    
[162]
Rodriguez-Abetxuko A, Muñumer P, Okuda M, Calvo J, Knez M, Beloqui A. Adv. Funct. Mater., 2020, 30:2002990.

doi: 10.1002/adfm.202002990     URL    
[163]
Chen W H, Vázquez-González M, Zoabi A, Abu-Reziq R, Willner I. Nat. Catal., 2018, 1:689.

doi: 10.1038/s41929-018-0117-2     URL    
[164]
Xu Y Q, Fei J B, Li G L, Yuan T T, Xu X, Li J B. Angew. Chem. Int. Ed., 2019, 58:5572.

doi: 10.1002/anie.201813771     URL    
[165]
Qiao F, Wang Z, Xu K, Ai S. Analyst, 2015, 140:6684.

doi: 10.1039/C5AN01268F     URL    
[166]
Kang Z W, Kankala R K, Chen B Q, Fu C P, Wang S B, Chen A Z. ACS Appl. Mater. Interfaces, 2019, 11:28781.

doi: 10.1021/acsami.9b05688     URL    
[167]
Mukerabigwi J F, Yin W, Zha Z S, Ke W D, Wang Y H, Chen W J, Japir A W M M, Wang Y, Ge Z S. J. Control. Release, 2019, 303:209.

doi: 10.1016/j.jconrel.2019.04.032     URL    
[168]
Ke W, Li J, Mohammed F, Wang Y, Tou K, Liu X, Wen P, Kinoh H, Anraku Y, Chen H, Kataoka K, Ge Z. ACS Nano, 2019, 13:2357.
[169]
Xu X, Zeng Z, Chen J, Huang B, Guan Z, Huang Y, Huang Z, Zhao C. Chem. Eng. J., 2020, 390:124628.

doi: 10.1016/j.cej.2020.124628     URL    
[1] 马云华, 邵晗, 蔺腾龙, 邓钦月. 基于多齿钯化合物的磁性纳米颗粒催化材料的设计合成及应用[J]. 化学进展, 2023, 35(9): 1369-1388.
[2] 申小雨, 杜中田, 郭百睿, 郭忠旭, 梁长海. 1,6-己二醇选择氧化内酯化制备ε-己内酯[J]. 化学进展, 2023, 35(8): 1191-1198.
[3] 刘文亮, 王宇琦, 李晓晗, 张轩瑜, 王继乾. 手性等离子体核壳纳米结构的设计及应用[J]. 化学进展, 2023, 35(8): 1168-1176.
[4] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[5] 王海, 王成涛, 周航, 王亮, 肖丰收. 小分子催化转化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 861-885.
[6] 秦学涛, 周子乔, 马丁. 金属/金属氧化物催化剂的SMSI效应[J]. 化学进展, 2023, 35(6): 928-939.
[7] 王远, 于聿律, 谭心. 二氧化碳氢化制多碳化合物金属纳米簇催化[J]. 化学进展, 2023, 35(6): 918-927.
[8] 李庆贺, 乔波涛, 张涛. 单原子催化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 821-838.
[9] 肖丰收, 吴勤明, 王成涛. 分子筛催化反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 886-903.
[10] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[11] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[12] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[13] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[14] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[15] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.