English
新闻公告
More
化学进展 2023, Vol. 35 Issue (5): 771-779 DOI: 10.7536/PC220925 前一篇   后一篇

• 综述 •

NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究

李帅1, 朱娜1,*(), 程扬健1, 陈缔2   

  1. 1 福州大学先进制造学院 晋江 362251
    2 佛山(华南)新材料研究院 佛山 528247
  • 收稿日期:2022-09-22 修回日期:2023-01-14 出版日期:2023-05-24 发布日期:2023-02-15
  • 基金资助:
    福建省自然科学基金青创项目(2021J05138); 佛山(华南)新材料研究院开放青年基金项目(2021AYF25001)

Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3

Shuai Li1, Na Zhu1(), Yangjian Cheng1, Di Chen2   

  1. 1 School of Advanced Manufacturing, Fuzhou University,Jinjiang 362251, China
    2 Foshan (Southern China) Institute for New Materials,Foshan 528247, China
  • Received:2022-09-22 Revised:2023-01-14 Online:2023-05-24 Published:2023-02-15
  • Contact: * e-mail: nzhu@fzu.edu.cn
  • Supported by:
    Natural Science Foundation of Fujian Province(2021J05138); Open Fund Project of Foshan (Southern China) Institute for New Materials(2021AYF25001)

铜基小孔分子筛催化剂因其具有优异的氨气选择性催化还原氮氧化物(NH3-SCR)活性、水热稳定性、氮气选择性和较宽的温度窗口等特点,成为当前国六标准柴油车的首选催化剂。但是,柴油车尾气中的硫氧化物对铜基小孔分子筛催化剂的催化活性影响很大,甚至导致催化剂发生不可逆失活。本文以铜基小孔分子筛催化剂的硫中毒机理为主线,简要介绍了铜基小孔分子筛催化剂的结构及活性位点研究现状,进一步对催化剂耐硫性能的改进及硫中毒催化剂再生机理的研究进展进行综述。基于铜基小孔分子筛催化剂硫中毒机理研究开展耐硫性能改进及再生工艺研究,以及多种中毒因子的协同影响及失活机制研究是未来铜基小孔分子筛实际应用于柴油车尾气氮氧化物超低排放的重要研究方向。

Copper-based small-pore zeolites catalysts are the promising candidate catalysts for NOx abatement in current diesel vehicles with Chinese VI standards, due to the excellent NH3-SCR catalytic performance, hydrothermal stability, nitrogen selectivity and wide temperature window. However, the catalytic activity of copper-based small-pore zeolites is still significantly affected by sulfur oxides emitted from diesel vehicles, and even the irreversible deactivation occurs. The SO2-poisoning of Cu-based small-zeolites is mainly due to the accumulation of surface ammonium sulfate and sulfation of Cu active site sites. In this review, the research status of the structure and active sites of copper-based small-pore zeolites catalysts is summarized, and the sulfur poisoning mechanism of copper-based small-pore zeolites catalysts is discussed. Moreover, the research advance in the improvement of sulfur resistance of catalysts and the regeneration of sulfur-poisoned catalysts is also illustrated. The systematic understanding of mechanism of sulfur poisoning and regeneration is important for the design of novel, efficient catalyst. It is pointed out that the study on sulfur poisoning mechanism and regeneration mechanism of copper-based small-pore zeolites catalysts, as well as the synergistic effect of various poisoning factors and corresponding deactivation mechanism, are the main research directions for copper-based zeolites to be practically applied to ultra-low emission of nitrogen oxides in diesel vehicle exhaust in the future.

Contents

1 Introduction

2 Structure and active sites of copper-based small-pore zeolites catalysts

2.1 Structure of copper-based small-pore zeolites catalysts

2.2 Study on active sites of copper-based small-pore zeolites catalysts

3 Study on sulfur poisoning mechanism of copper-based small-pore zeolites catalysts

3.1 The effect of SO2

3.2 The effect of H2O and SO2 coexistence

3.3 The effect of SO3

4 Research advance on improvement of resistance to sulfur oxides

4.1 Element doping

4.2 Morphology control

5 Regeneration research

5.1 Study of regeneration methods

5.2 Research on regeneration mechanism

6 Conclusion and outlook

()
图1 Cu-SSZ-13的低温标准NH3-SCR催化循环[24]
Fig. 1 Low-temperature standard NH3-SCR catalytic cycle over Cu-SSZ-13[24]
图2 Cu-SSZ-13硫中毒机制示意图[35]
Fig. 2 Schematic diagram of Cu-SSZ-13 sulfur poisoning[35]
[1]
Usui T, Liu Z D, Ibe S, Zhu J, Anand C, Igarashi H, Onaya N, Sasaki Y, Shiramata Y, Kusamoto T, Wakihara T. ACS Catal., 2018, 8(10): 9165.

doi: 10.1021/acscatal.8b01949     URL    
[2]
2021年中国移动源环境管理年报. 中华人民共和国生态环境部, 2021.
[3]
Granger P, Parvulescu V I. Chem. Rev., 2011, 111(5): 3155.

doi: 10.1021/cr100168g     URL    
[4]
Forzatti P. Appl. Catal. A-Gen., 2001, 222 (1/2): 221.

doi: 10.1016/S0926-860X(01)00832-8     URL    
[5]
Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. J. Catal., 2010, 275(2): 187.

doi: 10.1016/j.jcat.2010.07.031     URL    
[6]
Beale A M, Gao F, Lezcano-Gonzalez I, Peden C H F, Szanyi J. Chem. Soc. Rev., 2015, 44(20): 7371.

doi: 10.1039/c5cs00108k     pmid: 25913215
[7]
Borfecchia E, Beato P, Svelle S, Olsbye U, Lamberti C, Bordiga S. Chem. Soc. Rev., 2018, 47(22): 8097.

doi: 10.1039/c8cs00373d     pmid: 30083666
[8]
Paolucci C, Di Iorio J R, Schneider W F, Gounder R. Acc. Chem. Res., 2020, 53(9): 1881.

doi: 10.1021/acs.accounts.0c00328     URL    
[9]
Wang J H, Zhao H W, Haller G, Li Y D. Appl. Catal. B Environ., 2017, 202: 346.

doi: 10.1016/j.apcatb.2016.09.024     URL    
[10]
Deka U, Lezcano-Gonzalez I, Weckhuysen B M, Beale A M. ACS Catal., 2013, 3(3): 413.

doi: 10.1021/cs300794s     URL    
[11]
Korhonen S T, Fickel D W, Lobo R F, Weckhuysen B M, Beale A M. Chem. Commun., 2011, 47(2): 800.

doi: 10.1039/C0CC04218H     URL    
[12]
Kispersky V F, Kropf A J, Ribeiro F H, Miller J T. Phys. Chem. Chem. Phys., 2012, 14(7): 2229.

doi: 10.1039/c1cp22992c     pmid: 22158950
[13]
Deka U, Juhin A, Eilertsen E A, Emerich H, Green M A, Korhonen S T, Weckhuysen B M, Beale A M. J. Phys. Chem. C, 2012, 116(7): 4809.

doi: 10.1021/jp212450d     URL    
[14]
Kwak J H, Zhu H Y, Lee J H, Peden C H F, Szanyi J. Chem. Commun., 2012, 48(39): 4758.

doi: 10.1039/c2cc31184d     URL    
[15]
Gao F, Walter E D, Karp E M, Luo J Y, Tonkyn R G, Kwak J H, Szanyi J, Peden C H F. J. Catal., 2013, 300: 20.

doi: 10.1016/j.jcat.2012.12.020     URL    
[16]
Verma A A, Bates S A, Anggara T, Paolucci C, Parekh A A, Kamasamudram K, Yezerets A, Miller J T, Delgass W N, Schneider W F, Ribeiro F H. J. Catal., 2014, 312: 179.

doi: 10.1016/j.jcat.2014.01.017     URL    
[17]
Wang J, Yu T, Wang X Q, Qi G, Xue J J, Shen M Q, Li W. Appl. Catal. B Environ., 2012, 127: 137.

doi: 10.1016/j.apcatb.2012.08.016     URL    
[18]
Gao F, Walter E D, Washton N M, Szanyi J, Peden C H F. ACS Catal., 2013, 3(9): 2083.

doi: 10.1021/cs4004672     URL    
[19]
Paolucci C, Parekh A A, Khurana I, Di Iorio J R, Li H, Albarracin Caballero J D, Shih A J, Anggara T, Delgass W N, Miller J T, Ribeiro F H, Gounder R, Schneider W F. J. Am. Chem. Soc., 2016, 138(18): 6028.

doi: 10.1021/jacs.6b02651     URL    
[20]
Lomachenko K A, Borfecchia E, Negri C, Berlier G, Lamberti C, Beato P, Falsig H, Bordiga S. J. Am. Chem. Soc., 2016, 138(37): 12025.

doi: 10.1021/jacs.6b06809     pmid: 27532483
[21]
Mao Y, Wang Z Y, Wang H F, Hu P. ACS Catal., 2016, 6(11): 7882.

doi: 10.1021/acscatal.6b01449     URL    
[22]
Paolucci C, Verma A A, Bates S A, Kispersky V F, Miller J T, Gounder R, Delgass W N, Ribeiro F H, Schneider W F. Angew. Chem. Int. Ed., 2014, 53(44): 11828.

doi: 10.1002/anie.201407030     URL    
[23]
Paolucci C, Khurana I, Parekh A A, Li S C, Shih A J, Li H, Di Iorio J R, Albarracin-Caballero J D, Yezerets A, Miller J T, Delgass W N, Ribeiro F H, Schneider W F, Gounder R. Science, 2017, 357(6354): 898.

doi: 10.1126/science.aan5630    
[24]
Gao F, Mei D H, Wang Y L, Szanyi J, Peden C H F. J. Am. Chem. Soc., 2017, 139(13): 4935.

doi: 10.1021/jacs.7b01128     URL    
[25]
Su W K, Li Z G, Zhang Y N, Meng C C, Li J H. Catal. Sci. Technol., 2017, 7(7): 1523.

doi: 10.1039/C7CY00302A     URL    
[26]
Xu L W, Wang C Z, Chang H Z, Wu Q R, Zhang T, Li J H. Environ. Sci. Technol., 2018, 52(12): 7064.

doi: 10.1021/acs.est.8b01990     URL    
[27]
Sheng Z Y, Hu Y F, Xue J M, Wang X M, Liao W P. J. Rare Earths, 2012, 30(7): 676.

doi: 10.1016/S1002-0721(12)60111-2     URL    
[28]
Jin R B, Liu Y, Wu Z B, Wang H Q, Gu T T. Catal. Today, 2010, 153(3/4): 84.

doi: 10.1016/j.cattod.2010.01.039     URL    
[29]
Pan S W, Luo H C, Li L, Wei Z L, Huang B C. J. Mol. Catal. A Chem., 2013, 377: 154.

doi: 10.1016/j.molcata.2013.05.009     URL    
[30]
Hammershøi P S, Jangjou Y, Epling W S, Jensen A D, Janssens T V W. Appl. Catal. B Environ., 2018, 226: 38.

doi: 10.1016/j.apcatb.2017.12.018     URL    
[31]
Zhang L, Wang D, Liu Y, Kamasamudram K, Li J H, Epling W. Appl. Catal. B Environ., 2014, 156/157: 371.

doi: 10.1016/j.apcatb.2014.03.030     URL    
[32]
Brookshear D W, Nam J G, Nguyen K, Toops T J, Binder A. Catal. Today, 2015, 258: 359.

doi: 10.1016/j.cattod.2015.04.029     URL    
[33]
Jangjou Y, Ali M, Chang Q Y, Wang D, Li J H, Kumar A, Epling W S. Catal. Sci. Technol., 2016, 6(8): 2679.

doi: 10.1039/C5CY02212F     URL    
[34]
Jangjou Y, Wang D, Kumar A, Li J H, Epling W S. ACS Catal., 2016, 6(10): 6612.

doi: 10.1021/acscatal.6b01656     URL    
[35]
Jangjou Y, Do Q, Gu Y T, Lim L G, Sun H, Wang D, Kumar A, Li J H, Grabow L C, Epling W S. ACS Catal., 2018, 8(2): 1325.

doi: 10.1021/acscatal.7b03095     URL    
[36]
Wang A Y, Olsson L. Chem. Eng. J., 2020, 395: 125048.

doi: 10.1016/j.cej.2020.125048     URL    
[37]
Jiang H, Guan B, Peng X, Wei Y, Zhan R, Lin H, Huang Z. Chem. Sci., 2020, 226: 115855.
[38]
Shen M Q, Wen H Y, Hao T, Yu T, Fan D Q, Wang J, Li W, Wang J Q. Catal. Sci. Technol., 2015, 5 (3): 1741.

doi: 10.1039/C4CY01129E     URL    
[39]
Wijayanti K, Andonova S. Appl. Catal. B-Environ., 2015, 166/167: 568.

doi: 10.1016/j.apcatb.2014.11.043     URL    
[40]
Wijayanti K, Leistner K, Chand S, Kumar A, Kamasamudram K, Currier N W, Yezerets A, Olsson L. Catal. Sci. Technol., 2016, 6(8): 2565.

doi: 10.1039/C5CY01288K     URL    
[41]
Ma L, Li Z H, Zhao H W, Zhang T, Yan N Q, Li J H. ACS EST Eng., 2022, 2(9): 1684.

doi: 10.1021/acsestengg.2c00068     URL    
[42]
Han S, Ye Q, Cheng S Y, Kang T F, Dai H X. Catal. Sci. Technol., 2017, 7(3): 703.

doi: 10.1039/C6CY02555B     URL    
[43]
Song J, Wang Y L, Walter E D, Washton N M, Mei D H, Kovarik L, Engelhard M H, Prodinger S, Wang Y, Peden C H F, Gao F. ACS Catal., 2017, 7(12): 8214.

doi: 10.1021/acscatal.7b03020     URL    
[44]
Zhang Y N, Peng Y, Li J H, Groden K, McEwen J S, Walter E D, Chen Y, Wang Y, Gao F. ACS Catal., 2020, 10(16): 9410.

doi: 10.1021/acscatal.0c01590     URL    
[45]
Han S, Cheng J, Zheng C K, Ye Q, Cheng S Y, Kang T F, Dai H X. Appl. Surf. Sci., 2017, 419: 382.

doi: 10.1016/j.apsusc.2017.04.198     URL    
[46]
Schmidt J E, Oord R, Guo W, Poplawsky J D, Weckhuysen B M. Nat. Commun., 2017, 8: 1666.

doi: 10.1038/s41467-017-01765-0     pmid: 29162802
[47]
Ma Y, Wu X D, Cheng S Q, Cao L, Liu L P, Xu Y F, Liu J B, Ran R, Si Z C, Weng D. Appl. Catal. A Gen., 2020, 602: 117650.

doi: 10.1016/j.apcata.2020.117650     URL    
[48]
Shan Y L, Shi X Y, Yan Z D, Liu J J, Yu Y B, He H. Catal. Today, 2019, 320: 84.

doi: 10.1016/j.cattod.2017.11.006     URL    
[49]
Zhang Y N, Zhu H C, Zhang T, Li J, Chen J J, Peng Y, Li J H. Environ. Sci. Technol., 2022, 56(3): 1917.

doi: 10.1021/acs.est.1c06068     URL    
[50]
Cheng Y S, Lambert C, Kim D H, Kwak J H, Cho S J, Peden C H F. Catal. Today, 2010, 151(3/4): 266.

doi: 10.1016/j.cattod.2010.01.013     URL    
[51]
Auvray X, Arvanitidou M, Högström Å, Jansson J, Fouladvand S, Olsson L. Emiss. Control Sci. Technol., 2021, 7(4): 232.

doi: 10.1007/s40825-021-00203-4    
[52]
Kumar A, Smith M A, Kamasamudram K, Currier N W, An H M, Yezerets A. Catal. Today, 2014, 231: 75.

doi: 10.1016/j.cattod.2013.12.038     URL    
[53]
Hammershøi P S, Jangjou Y, Epling W S, Jensen A D, Janssens T V W. Appl. Catal. B Environ., 2018, 226: 38.

doi: 10.1016/j.apcatb.2017.12.018     URL    
[54]
Hammershøi P S, Vennestrøm P N R, Falsig H, Jensen A D, Janssens T V W. Appl. Catal. B Environ., 2018, 236: 377.

doi: 10.1016/j.apcatb.2018.05.038     URL    
[55]
Tang Y D, Wang D, Wang X, Zha Y H, An H M, Kamasamudram K, Yezerets A. Catal. Today, 2021, 360: 234.

doi: 10.1016/j.cattod.2020.04.033     URL    
[56]
Qiu Y, Fan C, Sun C C, Zhu H C, Yi W T, Chen J Z, Guo L Y, Niu X X, Chen J J, Peng Y, Zhang T, Li J H. Catalysts, 2020, 10(12): 1391.

doi: 10.3390/catal10121391     URL    
[57]
Yin C Y, Cheng P F, Li X, Yang R T. Catal. Sci. Technol., 2016, 6(20): 7561.

doi: 10.1039/C6CY01027J     URL    
[58]
Zhang D, Yang R T. Appl. Catal. A Gen., 2017, 543: 247.

doi: 10.1016/j.apcata.2017.06.021     URL    
[59]
Sun G, Yu R, Xu L L, Wang B C, Zhang W P. Catal. Sci. Technol., 2022, 12(12): 3898.

doi: 10.1039/D1CY02343H     URL    
[60]
Yu R, Zhao Z C, Huang S J, Zhang W P. Appl. Catal. B Environ., 2020, 269: 118825.

doi: 10.1016/j.apcatb.2020.118825     URL    
[61]
Li Y H, Song W Y, Liu J, Zhao Z, Gao M L, Wei Y C, Wang Q, Deng J L. Chem. Eng. J., 2017, 330: 926.

doi: 10.1016/j.cej.2017.08.025     URL    
[62]
Han S, Ye Q, Gao Q, Dai H X. Catalysts, 2020, 10(7): 783.

doi: 10.3390/catal10070783     URL    
[63]
Yu R, Kong H Y, Zhao Z C, Shi C, Meng X J, Xiao F S, De Baerdemaeker T, Parvulescu A N, Müller U, Zhang W P. ChemCatChem, 2022, 14(10): e202200228.
[64]
Chen Y X, Li C, Chen J X, Tang X F. Environ. Sci. Technol., 2018, 52(20): 11796.
[65]
Li C X, Shen M Q, Yu T, Wang J Q, Wang J, Zhai Y P. Phys. Chem. Chem. Phys., 2017, 19(23): 15194.

doi: 10.1039/C7CP02324C     URL    
[66]
Li C X, Shen M Q, Wang J Q, Wang J, Zhai Y P. Appl. Catal. A Gen., 2018, 560: 153.

doi: 10.1016/j.apcata.2018.05.005     URL    
[67]
Shi D, Feng J, Wang J, Zhao W, Li X. Kinetics Catal., 2020, 61(5): 750.

doi: 10.1134/S0023158420050109    
[68]
Peng C, Yan R, Mi Y Y, Li G, Zheng Y L, Luo Y W, Liang J, Liu W M, Li Z G, Wu D S, Wang X, Peng H G. J. Catal., 2021, 401: 309.

doi: 10.1016/j.jcat.2021.07.024     URL    
[69]
Liang J, Tao J X, Mi Y Y, Liu W M, Wang Z, Li Z G, Wu D S, Wu P, Peng H G. Chem. Eng. J., 2021, 409: 128238.

doi: 10.1016/j.cej.2020.128238     URL    
[70]
Zhang T, Qiu F, Li J H. Appl. Catal. B Environ., 2016, 195: 48.

doi: 10.1016/j.apcatb.2016.04.058     URL    
[71]
Wang X M, Du X S, Zhang L, Chen Y R, Yang G P, Ran J Y. Appl. Catal. A Gen., 2018, 559: 112.

doi: 10.1016/j.apcata.2018.04.025     URL    
[72]
Wang X M, Du X S, Zhang L, Yang G P, Chen Y R, Ran J Y. Energy Fuels, 2018, 32(6): 6990.

doi: 10.1021/acs.energyfuels.8b01455     URL    
[73]
Wang C, Wang J, Wang J Q, Yu T, Shen M Q, Wang W L, Li W. Appl. Catal. B Environ., 2017, 204: 239.

doi: 10.1016/j.apcatb.2016.11.033     URL    
[74]
Shen M Q, Li X H, Wang J Q, Wang C, Wang J. Ind. Eng. Chem. Res., 2018, 57(10): 3501.

doi: 10.1021/acs.iecr.7b05053     URL    
[75]
Mesilov V, Dahlin S, Bergman S L, Xi S B, Han J, Olsson L, Pettersson L J, Bernasek S L. Appl. Catal. B Environ., 2021, 299: 120626.

doi: 10.1016/j.apcatb.2021.120626     URL    
[76]
Hammershøi P S, Jensen A D, Janssens T V W. Appl. Catal. B Environ., 2018, 238: 104.

doi: 10.1016/j.apcatb.2018.06.039     URL    
[77]
Hammershøi P S, Godiksen A L, Mossin S, Vennestrøm P N R, Jensen A D, Janssens T V W. React. Chem. Eng., 2019, 4(6): 1081.

doi: 10.1039/C8RE00275D     URL    
[78]
Dahlin S, Lantto C, Englund J, Westerberg B, Regali F, Skoglundh M, Pettersson L J. Catal. Today, 2019, 320: 72.

doi: 10.1016/j.cattod.2018.01.035     URL    
[79]
Bergman S L, Dahlin S, Mesilov V V, Xiao Y, Englund J, Xi S B, Tang C H, Skoglundh M, Pettersson L J, Bernasek S L. Appl. Catal. B Environ., 2020, 269: 118722.

doi: 10.1016/j.apcatb.2020.118722     URL    
[80]
Shen M Q, Wang Z X, Li X H, Wang J M, Wang J Q, Wang C, Wang J. Korean J. Chem. Eng., 2019, 36(8): 1249.

doi: 10.1007/s11814-019-0307-x    
[1] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[2] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[5] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[6] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[7] 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用[J]. 化学进展, 2020, 32(12): 1917-1929.
[8] 林娇, 刘春伟, 曹宏斌, 李丽, 陈人杰, 孙峙. 基于高温化学转化的废旧锂离子电池资源化技术[J]. 化学进展, 2018, 30(9): 1445-1454.
[9] 刘丹丹, 陈永翀, 何菡, 何颖源, 刘昊, 张彬. 锂浆料电池基础科学问题研究[J]. 化学进展, 2018, 30(6): 765-774.
[10] 谢利娟, 石晓燕, 刘福东, 阮文权. 菱沸石在柴油车尾气NOx催化净化中的应用[J]. 化学进展, 2016, 28(12): 1860-1869.
[11] 李红变*. 碳纳米多孔宏观体在水体净化中的应用[J]. 化学进展, 2016, 28(10): 1462-1473.
[12] 李盼盼, 于锋, 朱明远, 汤常金, 代斌, 董林. 选择性氧化还原脱硝催化剂[J]. 化学进展, 2016, 28(10): 1578-1590.
[13] 付晶, 王萌, 刘维喜, 陈涛* . 生物法制备2,3-丁二醇的最新进展[J]. 化学进展, 2012, 24(11): 2268-2276.
[14] 邢东明, 马列, 高长有. 取向结构和梯度分布医用材料的制备及应用[J]. 化学进展, 2011, 23(12): 2550-2559.
[15] 王玮, 李博, 高长有. 生物材料表面性能调控骨髓间充质干细胞分化[J]. 化学进展, 2011, 23(10): 2160-2168.