English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 918-927 DOI: 10.7536/PC221235 前一篇   后一篇

• 综述 •

二氧化碳氢化制多碳化合物金属纳米簇催化

王远1,2,*(), 于聿律1,2, 谭心1,2   

  1. 1 北京大学化学与分子工程学院 北京 100871
    2 北京分子科学国家研究中心 北京 100871
  • 收稿日期:2023-01-02 修回日期:2023-05-22 出版日期:2023-06-24 发布日期:2023-06-10
  • 基金资助:
    国家自然科学基金项目(91961103); 国家自然科学基金项目(21821004); 北京分子科学国家研究中心(BNLMS-CXXM-202001); 国家重点研发计划(2021YFA1501000)

Metal Nanocluter Catalysts for Hydrogenation of Carbon Dioxide to Multicarbon Compounds

Yuan Wang1,2(), Yulv Yu1,2, Xin Tan1,2   

  1. 1 College of Chemistry and Molecular Engineering, Peking University,Beijing 100871, China
    2 Beijing National Laboratory for Molecular Sciences,Beijing 100871, China
  • Received:2023-01-02 Revised:2023-05-22 Online:2023-06-24 Published:2023-06-10
  • Contact: *e-mail:wangy@pku.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(91961103); The National Natural Science Foundation of China(21821004); The Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-202001); The National Key Research and Development Program(2021YFA1501000)

二氧化碳催化氢化合成多碳化合物的研究对于减少碳排放和实现碳资源的可再生利用具有重要意义。本文总结概述了近年来二氧化碳氢化合成多碳化合物催化体系研究进展,着重介绍了低温下催化CO2氢化合成多碳烃或多碳醇的金属纳米簇基催化剂的研究进展,讨论了CO2氢化反应中C1和C2+产物选择性调控的化学基础,介绍了具有低温催化CO2氢化合成多碳化合物功能和高C2+化合物选择性的PtRu双金属纳米簇催化剂的合成和构-效关系研究进展。在此基础上,进一步阐述了所提出的金属纳米簇催化剂局域电荷分布效应理论。

Selectively catalytic hydrogenation of CO2 to multi-carbon compounds is of great significance for reducing carbon dioxide emissions and regenerating carbon-containing resources. In this review, we summarize the development of catalytic systems for CO2 hydrogenation to multi-carbon compounds in recent years. The development of metal nanocluster catalysts for CO2 hydrogenation to multi-carbon hydrocarbons or alcohols at low temperatures are introduced, and the chemical basis for regulating C1 and C2+ product selectivity in CO2 hydrogenation is discussed. The progresses in preparing and understanding the structure-function relationship of Pt-Ru bimetallic nanocluster catalysts with the high selectivity for C2+ compounds in the CO2 hydrogenation at low temperatures are discussed. Finally, we elaborate the theory of local charge distribution effect of metal nanocluster catalysts.

Contents

1 Introduction

2 Performance and conversion pathways of CO2 hydrogenation over metal nanocluster catalysts at low temperatures

3 Chemical basis for controlling the product selectivity

4 Preparation and properties of a highly selective PtRu bimetallic nanoclusters catalyst

5 Structural characteristics of active sites of metal nanoclusters

6 Conclusion and perspective

()
图1 (A~C) Ru-Pt/FeCO3的透射电镜照片、高分辨透射电镜照片和高角度环形暗场扫描透射电镜照片,(D) C图中选区高分辨照片,(E~G) 选区内Pt、Fe和Ru的元素分布图,(H) 图E和图G的合并图片[28]
Fig.1 (A~C) TEM image, high-resolution TEM image, and HAADF-STEM image of Ru-Pt/FeCO3, (D) High-resolution TEM image of the selected area in (C), (E~G) EDX elemental mapping of Pt, Fe, and Ru in the same area, (H) Merged image of (E) and (G)[28]. Reproduced from Ref. 28 with permission from the Royal Society of Chemistry
图2 (A)在不同温度下Ru-Pt/FeCO3催化CO2氢化产物分布图, (B)该催化体系中CO2氢化生成甲烷和多碳化合物的表观活化能[28]
Fig.2 (A) Product distributions for CO2 hydrogenation over Ru-Pt/FeCO3 at different temperatures. (B) Apparent activation energy measurements for the formation of methane and higher hydrocarbons (C2+) in CO2 hydrogenation over Ru-Pt/FeCO3, respectively[28]. Reproduced from Ref. 28 with permission from the Royal Society of Chemistry
图3 碳酸亚铁中的碳酸根加氢和表面亚铁物种的碳酸化反应耦合生成多碳化合物机理示意图[28]
Fig.3 A scheme of the mechanism for the generation of multi-carbon compounds by the hydrogenation of carbonate in FeCO3 coupled with carbonation of surface ferrous species[28]. Modified from Ref. 28 with permission from the Royal Society of Chemistry
图4 (A, B)在18O标记水中Ru-Pt/Fe3O4催化CO2氢化反应生成的丙醇和丁醇的质谱图,(C)低温下金属烷基水解生成多碳醇的反应途径示意图[30]
Fig.4 (A, B) The mass spectra of propanol and butanol formed in CO2 hydrogenation over Ru-Pt/Fe3O4 in18O labeled water, (C) reaction mechanism for multi-carbon alcohols formation based on metal-alkyl hydrolysis over Ru-Pt/Fe3O4[30]
图5 低温CO2氢化产物选择性调控机制示意图
Fig.5 A scheme for regulating product selectivity in CO2 hydrogenation at low temperatures
图6 (A) Ru-co-Pt/C的高角度环形暗场扫描透射电镜照片,(B~D) 选区中Pt、Ru以及Pt和Ru叠加的元素分布图像,(E) 选区中金属纳米粒子的原子级分辨图像,(F) Ru-co-Pt模型,其中红色球代表一列原子柱中主要含有Pt原子,绿色球代表一列原子柱中主要含有Ru原子,(G) E图中选区中粒子的放大图像,(H) 双金属纳米粒子中原子(或柱)Z-衬度线扫分析结果[31]
Fig.6 (A) The HAADF-STEM image of Ru-co-Pt/C. (B~D) Energy dispersive X-ray spectroscopy (EDX) elemental mapping image of Pt (B), Ru (C), and Pt + Ru (D) in the selected area. (E) The atomic-resolution HADDF-STEM image of a typical particle in the selected area. (F) A model for the structure of Ru-co-Pt, in which the atom columns mainly composed of Pt and Ru are marked with red and green balls, respectively. (G) The enlarged HAADF-STEM image of the selected typical bimetallic particle in (E). (H) Line scan Z-contrast analysis of atom columns in the bimetallic nanoparticle in (E) along the arrow in (F)[31]. Reproduced from Ref. 31 with permission from the Royal Society of Chemistry
图7 (A,B) Ru-co-Pt/C中Ru和Pt的X射线光电子能谱图, (C, D) Ru-co-Pt/C样品的Ru K边和Pt L3边的扩展X射线吸收精细结构谱图[31]
Fig.7 (A, B) XPS spectra of Ru 3d (A) and Pt 4f levels (B) in Ru-co-Pt/C, respectively. (C, D) Fourier transform (FT) EXAFS spectra of Ru K edge (C) and Pt L3 edge (D) for Ru-co-Pt/C, respectively[31]. Reproduced from Ref. 31 with permission from the Royal Society of Chemistry
图8 (A)Ru-co-Ru/C、Pt-co-Pt/C和Ru-co-Pt/C三种催化剂催化CO2加氢反应性能,(B)Ru-co-Pt/C在不同温度下催化CO2加氢反应性能,(C)Ru-co-Pt/C在130℃下催化CO2加氢稳定性测试,(D~F)Ru-co-Ru/C、Pt-co-Pt/C和Ru-co-Pt/C催化CO2加氢生成的产物分布图,Wn代表Cn物质的质量分数[31]
Fig.8 (A) Catalytic performance of Ru-co-Ru/C, Pt-co-Pt/C, and Ru-co-Pt/C in CO2 hydrogenation, respectively. (B) Catalytic performance of Ru-co-Pt/C in CO2 hydrogenation at different temperatures. (C) The stability of Ru-co-Pt/C in CO2 hydrogenation at 130℃. (D~F) Product distributions in CO2 hydrogenation over Ru-co-Ru/C (D), Pt-co-Pt/C (E), and Ru-co-Pt/C (F) at 130℃, respectively. Wn represents the mass percentage of Cn compounds in the products [31]. Reproduced from Ref. 31 with permission from the Royal Society of Chemistry
图9 Pt42-Ru8纳米簇的俯视图(A)和侧视图(B)
Fig.9 The (A) top view and (B) side view of Pt42-Ru8 nanocluster. Reproduced from Ref. 31 with permission from the Royal Society of Chemistry
表1 由DFT理论计算获得的CO2氢化反应中若干基元反应能垒[31]
Table 1 The energy barriers of several primitive reactions in CO2 hydrogenation calculated via DFT. [31] Reproduced from Ref. 31 with permission from the Royal Society of Chemistry.
[1]
Ra E C, Kim K Y, Kim E H, Lee H, An K, Lee J S. ACS Catal., 2020, 10(19): 11318.

doi: 10.1021/acscatal.0c02930     URL    
[2]
Ye R P, Ding J, Gong W B, Argyle M D, Zhong Q, Wang Y J, Russell C K, Xu Z H, Russell A G, Li Q H, Fan M H, Yao Y G. Nat. Commun., 2019, 10: 5698.

doi: 10.1038/s41467-019-13638-9    
[3]
Sharma P, Sebastian J, Ghosh S, Creaser D, Olsson L. Catal. Sci. Technol., 2021, 11(5): 1665.

doi: 10.1039/D0CY01913E     URL    
[4]
Liu M, Yi Y H, Wang L, Guo H C, Bogaerts A. Catalysts, 2019, 9(3): 275.

doi: 10.3390/catal9030275     URL    
[5]
Zhang Z E, Pan S Y, Li H, Cai J C, Olabi A G, Anthony E J, Manovic V. Renew. Sustain. Energy Rev., 2020, 125: 109799.

doi: 10.1016/j.rser.2020.109799     URL    
[6]
Porosoff M D, Yan B H, Chen J G. Energy Environ. Sci., 2016, 9(1): 62.

doi: 10.1039/C5EE02657A     URL    
[7]
De Luna P, Hahn C, Higgins D, Jaffer S A, Jaramillo T F, Sargent E H. Science, 2019, 364(6438): eaav3506.

doi: 10.1126/science.aav3506     URL    
[8]
Siudyga T, Kapkowski M, Bartczak P, Zubko M, Szade J, Balin K, Antoniotti S, Polanski J. Green Chem., 2020, 22(15): 5143.

doi: 10.1039/D0GC01332C     URL    
[9]
Wu C Y, Lin L L, Liu J J, Zhang J P, Zhang F, Zhou T, Rui N, Yao S Y, Deng Y C, Yang F, Xu W Q, Luo J, Zhao Y, Yan B H, Wen X D, Rodriguez J A, Ma D. Nat. Commun., 2020, 11: 5767.

doi: 10.1038/s41467-020-19634-8    
[10]
Petala A, Panagiotopoulou P. Appl. Catal. B Environ., 2018, 224: 919.

doi: 10.1016/j.apcatb.2017.11.048     URL    
[11]
Wang J J, Li G N, Li Z L, Tang C Z, Feng Z C, An H Y, Liu H L, Liu T F, Li C. Sci. Adv., 2017, 3: e1701290.

doi: 10.1126/sciadv.1701290     URL    
[12]
Porosoff M D, Yang X F, Boscoboinik J A, Chen J G. Angew. Chem. Int. Ed., 2014, 53(26): 6705.

doi: 10.1002/anie.201404109     pmid: 24839958
[13]
Xu Y F, Li X Y, Gao J H, Wang J, Ma G Y, Wen X D, Yang Y, Li Y W, Ding M Y. Science, 2021, 371(6529): 610.

doi: 10.1126/science.abb3649     URL    
[14]
Zhang Y R, Yang X L, Yang X F, Duan H M, Qi H F, Su Y, Liang B L, Tao H B, Liu B, Chen D, Su X, Huang Y Q, Zhang T. Nat. Commun., 2020, 11: 3185.

doi: 10.1038/s41467-020-17044-4     pmid: 32581251
[15]
Li Y W, Gao W, Peng M, Zhang J B, Sun J L, Xu Y, Hong S, Liu X, Liu X W, Wei M, Zhang B S, Ma D. Nat. Commun., 2020, 11: 61.

doi: 10.1038/s41467-019-13691-4    
[16]
Li Z L, Wang J J, Qu Y Z, Liu H L, Tang C Z, Miao S, Feng Z C, An H Y, Li C. ACS Catal., 2017, 7(12): 8544.

doi: 10.1021/acscatal.7b03251     URL    
[17]
Wei J, Ge Q J, Yao R W, Wen Z Y, Fang C Y, Guo L S, Xu H Y, Sun J. Nat. Commun., 2017, 8: 15174.

doi: 10.1038/ncomms15174     URL    
[18]
Gao P, Li S G, Bu X N, Dang S S, Liu Z Y, Wang H, Zhong L S, Qiu M H, Yang C G, Cai J, Wei W, Sun Y H. Nat. Chem., 2017, 9(10): 1019.

doi: 10.1038/nchem.2794     URL    
[19]
He Z H, Qian Q L, Zhang Z F, Meng Q L, Zhou H C, Jiang Z W, Han B X. Phil. Trans. R. Soc. A., 2015, 373(2057): 20150006.

doi: 10.1098/rsta.2015.0006     URL    
[20]
He Z H, Cui M, Qian Q L, Zhang J J, Liu H Z, Han B X. Proc. Natl. Acad. Sci. U. S. A., 2019, 116(26): 12654.

doi: 10.1073/pnas.1821231116     URL    
[21]
He Z H, Qian Q L, Ma J, Meng Q L, Zhou H C, Song J L, Liu Z M, Han B X. Angew. Chem. Int. Ed., 2016, 55(2): 737.

doi: 10.1002/anie.201507585     URL    
[22]
Wang L X, Wang L, Zhang J, Liu X L, Wang H, Zhang W, Yang Q, Ma J Y, Dong X, Yoo S J, Kim J G, Meng X J, Xiao F S. Angew. Chem. Int. Ed., 2018, 57(21): 6104.

doi: 10.1002/anie.v57.21     URL    
[23]
Wang Y, Ren J W, Deng K, Gui L L, Tang Y Q. Chem. Mater., 2000, 12(6): 1622.

doi: 10.1021/cm0000853     URL    
[24]
Zuo B J, Wang Y, Wang Q L, Zhang J L, Wu N Z, Peng L D, Gui L L, Wang X D, Wang R M, Yu D P. J. Catal., 2004, 222: 493.

doi: 10.1016/j.jcat.2003.12.007     URL    
[25]
Zhang J L, Wang Y, Ji H, Wei Y G, Wu N Z, Zuo B J, Wang Q L. J. Catal., 2005, 229(1): 114.

doi: 10.1016/j.jcat.2004.09.029     URL    
[26]
Wang Y, Zhang J L, Wang X D, Ren J W, Zuo B J, Tang Y Q. Top. Catal., 2005, 35(1/2): 35.

doi: 10.1007/s11244-005-3811-7     URL    
[27]
Wang Y, Wang X D. Elsevier, Amsterdam, 2008. 327.
[28]
Yu Y L, Huang J, Wang Y. Sustain. Energy Fuels, 2020, 4(1): 96.

doi: 10.1039/C9SE00612E     URL    
[29]
Huang J, Cai Y C, Yu Y L, Wang Y. Chem. Res. Chin. Univ., 2022, 38(1): 223.

doi: 10.1007/s40242-021-1382-1    
[30]
Yu Y L, Huang J, Wang Y. ChemCatChem, 2018, 10(21): 4863.
[31]
Yu Y L, Cai Y C, Liang M H, Tan X, Huang J, Kotegawa F, Li Z Z, Zhou J H, Jiang H, Harada M, Wang Y. Catal. Sci. Technol., 2022, 12(12): 3786.

doi: 10.1039/D2CY00500J     URL    
[32]
Hu X, Zhang G T, Bu F X, Lei A W. ACS Catal., 2017, 7(2): 1432.

doi: 10.1021/acscatal.6b03388     URL    
[33]
Li L, Herzon S B. J. Am. Chem. Soc., 2012, 134(42): 17376.

doi: 10.1021/ja307145e     URL    
[34]
Yuzawa H, Yoneyama S, Yamamoto A, Aoki M, Otake K, Itoh H, Yoshida H. Catal. Sci. Technol., 2013, 3(7): 1739.

doi: 10.1039/c3cy00019b     URL    
[35]
Franke R, Selent D, Börner A. Chem. Rev., 2012, 112(11): 5675.

doi: 10.1021/cr3001803     URL    
[36]
Wang P, Liu H, Yang D. Prog. Chem., 2022, 34(5): 1076.
( 王鹏, 刘欢, 杨妲. 化学进展, 2022, 34(5): 1076.).

doi: 10.7536/PC210522    
[37]
Bhatnagar A K, Gupta A K, Joshi S C, Goyal H B. Patent, 1130/DEL/2002.
[38]
Lin H, Meng Y Y, Li N, Tang Y H, Dong S, Wu Z L, Xu C L, Kazlauskas R, Chen H G. Angew. Chem. Int. Ed., 2022, 61(32): e202206472.
[39]
Xu D, Wang Y Q, Ding M Y, Hong X L, Liu G L, Tsang S C E. Chem, 2021, 7(4): 849.

doi: 10.1016/j.chempr.2020.10.019     URL    
[40]
Liu Y, Chen L F, Cheng T, Guo H Y, Sun B, Wang Y. J. Power Sources, 2018, 395: 66.

doi: 10.1016/j.jpowsour.2018.05.055     URL    
[41]
Yan M Y, Wu T, Chen L F, Yu Y L, Liu B, Wang Y, Chen W X, Liu Y, Lian C, Li Y D. ChemCatChem, 2018, 10(11): 2433.

doi: 10.1002/cctc.v10.11     URL    
[42]
Speder J, Altmann L, Roefzaad M, Bäumer M, Kirkensgaard J J K, Mortensen K, Arenz M. Phys. Chem. Chem. Phys., 2013, 15(10): 3602.

doi: 10.1039/c3cp50195g     URL    
[43]
Quinson J, Inaba M, Neumann S, Swane A A, Bucher J, Kunz S, Arenz M, ACS Catal. 2018, 8: 6627.

doi: 10.1021/acscatal.8b00694     URL    
[44]
Cheng T, Tan X, Chen L F, Zhao X S, Kotegawa F, Huang J, Liu Y, Jiang H, Harada M, Wang Y. Energy Technol., 2022, 10(11): 2200680.

doi: 10.1002/ente.v10.11     URL    
[45]
Wang Y, Hao M G. Nanomaterials, 2023, 13(3): 565.

doi: 10.3390/nano13030565     URL    
[46]
Liang M H, Wang X D, Liu H Q, Liu H C, Wang Y. J. Catal., 2008, 255(2): 335.

doi: 10.1016/j.jcat.2008.02.025     URL    
[47]
Wang Y, Ren P J, Hu J T, Tu Y C, Gong Z M, Cui Y, Deng D H. Nat. Commun., 2021, 12: 5814.

doi: 10.1038/s41467-021-26089-y    
[48]
Yu J, Chen W M, Li K X, Zhang C H, Li M Z, He F, Jiang L, Li Y L, Song W G, Cao C Y. Angew. Chem. Int. Ed., 2022, 61(34): e202207255.
[49]
Cheng Y L, Zhao X S, Yu Y L, Chen L F, Cheng T, Huang J, Liu Y, Harada M, Ishihara A, Wang Y. J. Power Sources, 2020, 446: 227332.

doi: 10.1016/j.jpowsour.2019.227332     URL    
[1] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[2] 吴亚娟, 罗静雯, 黄永吉. 二氧化碳与二甲胺催化合成N,N-二甲基甲酰胺[J]. 化学进展, 2022, 34(6): 1431-1439.
[3] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[4] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[5] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[6] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[7] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[8] 林鑫, 管凡夫, 温佳琳, 邵攀霖, 张绪穆. 二茂铁骨架系列三齿配体的合成及其在铱催化不对称氢化中的应用[J]. 化学进展, 2020, 32(11): 1680-1696.
[9] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[10] 刘景昊, 伍学谦, 吴玉锋, 俞嘉梅. 计算模拟研究金属有机骨架材料吸附分离C2、C3烃类气体[J]. 化学进展, 2020, 32(1): 133-144.
[11] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[12] 杨梦茹, 李华静, 罗宁丹, 李锦, 周安宁, 李远刚. 二氧化碳电催化还原产乙烯: 催化剂、反应条件和反应机理[J]. 化学进展, 2019, 31(2/3): 245-257.
[13] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[14] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[15] 刘孟岩, 王元双, 邓雯, 温珍海. 铜基电催化剂还原CO2[J]. 化学进展, 2018, 30(4): 398-409.