English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 821-838 DOI: 10.7536/PC230310 前一篇   后一篇

• 综述 •

单原子催化中的凝聚态化学

李庆贺, 乔波涛*(), 张涛   

  1. 中国科学院大连化学物理研究所催化与新材料研究室 大连 116023
  • 收稿日期:2023-03-13 修回日期:2023-05-18 出版日期:2023-06-24 发布日期:2023-05-25
  • 作者简介:

    乔波涛 中国科学院大连化学物理研究所研究员、“张大煜优秀学 者”。现任《物理化学学报》、Catalysts等期刊编委,《催化学报》青年编委。获2012年首届全国催化新秀奖,2018年“兴辽英才计划青年拔尖人才”。主要研究单原子催化及其在能源转化与环境催化中的应用。在国际期刊上发表论文80余篇, 被引用1万余次。申请发明专利10余件。

  • 基金资助:
    国家重点研发计划(2021YFA1500503); 国家自然科学基金项目(21961142006); 国家自然科学基金项目(21972135); 中国科学院青年基础研究项目(YSBR-022)

Condensed Matter Chemistry in Single-Atom Catalysis

Qinghe Li, Botao Qiao(), Tao Zhang   

  1. CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received:2023-03-13 Revised:2023-05-18 Online:2023-06-24 Published:2023-05-25
  • Contact: *e-mail: bqiao@dicp.ac.cn
  • Supported by:
    The National Key Research and Development Program of China(2021YFA1500503); The National Natural Science Foundation of China(21961142006); The National Natural Science Foundation of China(21972135); The CAS Project for Young Scientists in Basic Research(YSBR-022)

单原子催化,由单原子催化剂推动的催化反应过程,是当前多相催化领域最活跃的研究前沿之一。单原子催化剂是由载体原子与单个金属原子中心通过共价、配位等相互作用,构筑成具有相对明确活性中心的多层次原子聚集体,其组成、结构与性质是凝聚态化学的典型研究对象。本文从凝聚态化学角度出发,简述“单原子催化”概念提出的历史基础和发展现状,系统总结“单原子催化”领域涉及的凝聚态现象即周围原子与金属中心形成的聚集体,详细阐述配位环境对聚集体结构、性质的影响及真实反应状态下聚集体结构动态演变,总结和展望单原子凝聚态效应在多相催化反应领域的应用和未来发展趋势。

Single-atom catalysis (SAC), the catalysis by single-atom catalysts (SACs), has been developed as one of the most active research frontiers in the field of heterogeneous catalysis. SACs are multilevel atomic aggregates with relatively clear active center consisting of single metal atoms stabilized on support atoms through covalent or coordination interaction. Their composition, structure and properties are typical research objects of condensed matter chemistry. This review paper starts from the view of condensed matter chemistry and the main contents are as follows: briefly describing the historical basis and development status of the concept of SAC; systematically summarizing the condensed matter phenomena involved in the field of SAC, that's the aggregate of the surrounding atoms and the metal center; elaborating the influence of coordination environment on the structure and properties of aggregates and the dynamic evolution of aggregate structure under real reaction condition. Finally, the application and future development trend of condensed matter effect of single atom in heterogeneous catalytic reactions are summarized and prospected.

Contents

1 Introduction

2 The concept of "single atom catalysis"

3 The development of "single atom catalysis"

3.1 Preparation of single atom catalyst

3.2 Characterization of single atom catalyst

3.3 Application of single atom catalyst

4 Condensation effect between metal center and coordination atoms

4.1 Interaction form between metal and support

4.2 Aggregates structure modulating via coordination atoms

4.3 Effect of metal aggregation form on catalytic performance

5 Dynamic evolution and characterization of aggregates under reactive conditions

6 Conclusion and outlook

()
图1 “单原子催化”概念提出
Fig.1 Proposing the concept of "single atom catalysis"
图2 “单原子催化”发展历程[27]
Fig.2 The development of "single-atom catalysis"[27]. Copyright 2020, Springer
图3 制备SACs的多种宿主材料[71]
Fig.3 Various host materials for preparation of SACs[71]. Copyright 2018, Wiley
表1 单原子催化剂不同制备方法对比
Table 1 Comparison of the different preparation methods for SACs
表2 单原子催化剂表征方法
Table 2 Characterization methods for SACs
图4 单原子催化剂聚集体构型(a)正四面体(b)平面四边形(c和d)正八面体
Fig.4 Aggregate configurations of SACs (a) tetrahedron, (b) Plane quadrilateral, (c) and (d) regular octahedron
表3 金属单原子(M)在载体(Sup)上锚定位置列表[19]
Table 3 A list of the anchoring positions of metal single atoms (M) on the support (Sup)[19]. Copyright 2020, ACS
图5 Pt1/TiO2催化剂原位CO-DRIFT谱图[107]
Fig.5 In situ CO-DRIFT spectra of Pt1/TiO2 catalyst[107]. Copyright 2020, Wiley
图6 Pt在不同载体上的烧结与分散[109]
Fig.6 Sintering and dispersion of Pt on different supports[109]. Copyright 2019, Springer
图7 纳米颗粒、团簇和单原子的(a)几何结构与(b)电子结构[24]
Fig.7 (a) Geometric and (b) electronic structures of nanoparticles, clusters and single atoms[24]. Copyright 2018, ACS
图8 CeO2负载的Ru单原子、团簇以及纳米颗粒的甲烷化活性对比[125]
Fig.8 Comparison of methanation activity of Ru single-atoms, clusters and nanoparticles supported on CeO2[125]. Copyright 2018, ACS
图9 In2O3负载的Re单原子、团簇以及纳米颗粒的CO2加氢产物选择性[127]
Fig.9 CO2 hydrogenation product selectivity of Re single-atoms, clusters and nanoparticles supported on In2O3[127]. Copyright 2022, ACS
图10 包裹纳米颗粒暴露单原子调控加氢产物选择性。乙炔半加氢反应中不同还原温度处理的催化剂(Pd/TiO2-H200,Pd单原子和Pd纳米颗粒共存;Pd/TiO2-H600,Pd纳米颗粒被包裹,Pd单原子为活性中心)的(a)C2H2转化率和(b)C2H4选择性[128]
Fig.10 Encapsulation nanoparticles while exposing single atoms to regulate hydrogenation product selectivity. Semi-hydrogenation of acetylene (a) The C2H2 conversion and (b) C2H4 selectivity of catalysts treated at different reduction temperatures (Pd/TiO2-H200: contains Pd single-atoms and Pd nanoparticles; Pd/TiO2-H600: Pd nanoparticles are encapsulated while exposing Pd single-atoms as the active center)[128]. Copyright 2022, Springer
图11 Co-N-C单原子催化剂形貌、组成及结构分析[132]
Fig.11 Morphology, composition and structure analysis of Co-N-C SACs[132]. Copyright 2016, Wiley
图12 SAA表征方法:(a,b)Pt1Cu SAA催化剂的 HAADF-STEM图像,Pt1Sn SAA催化剂的(c)Pt-L3 edge XANES 和 (d) Pt 4f XPS谱[139]
Fig.12 The characterizations of SAA. (a,b) HAADF-STEM images of Pt1Cu catalyst, (c) Pt-L3 edge XANES and (d) XPS Pt 4f spectra for Pt1Sn SAA[139]. Copyright 2018, Springer
图13 铜单原子催化剂在N2电化学还原反应中结构变化[146]
Fig.13 Structural changes of Cu SACs during the electrochemical reduction of N2[146]. Copyright 2018, ACS
图14 铜单原子催化剂在O2电化学还原反应中结构变化[147]
Fig.14 Structural changes of Cu SACs during the electrochemical reduction of O2[147]. Copyright 2021, ACS
图15 Cu单原子和团簇之间的可逆转变[148]
Fig.15 Reversible transition between Cu single-atoms and clusters[148]. Copyright 2022, ACS
[36]
Gao C, Low J, Long R, Kong T T, Zhu J F, Xiong Y J. Chem. Rev., 2020, 120(21): 12175.

doi: 10.1021/acs.chemrev.9b00840     URL    
[37]
Jiao L, Yan H Y, Wu Y, Gu W L, Zhu C Z, Du D, Lin Y H. Angew. Chem. Int. Ed., 2020, 59(7): 2565.

doi: 10.1002/anie.201905645     pmid: 31209985
[38]
Ji S F, Jiang B, Hao H G, Chen Y J, Dong J C, Mao Y, Zhang Z D, Gao R, Chen W X, Zhang R F, Liang Q, Li H J, Liu S H, Wang Y, Zhang Q H, Gu L, Duan D M, Liang M M, Wang D S, Yan X Y, Li Y D. Nat. Catal., 2021, 4(5): 407.

doi: 10.1038/s41929-021-00609-x    
[39]
Lang R, Li T B, Matsumura D, Miao S, Ren Y J, Cui Y T, Tan Y, Qiao B T, Li L, Wang A Q, Wang X D, Zhang T. Angew. Chem. Int. Ed., 2016, 55(52): 16054.

doi: 10.1002/anie.201607885     pmid: 27862789
[40]
Chen F, Li T B, Pan X L, Guo Y L, Han B, Liu F, Qiao B T, Wang A Q, Zhang T. Sci. China Mater., 2020, 63(6): 959.

doi: 10.1007/s40843-019-1204-y    
[41]
Cui X J, Li W, Ryabchuk P, Junge K, Beller M. Nat. Catal., 2018, 1(6): 385.

doi: 10.1038/s41929-018-0090-9    
[42]
Kaiser S K, Chen Z P, Faust Akl D, Mitchell S, PÉrez-Ramírez J. Chem. Rev., 2020, 120(21): 11703.

doi: 10.1021/acs.chemrev.0c00576     URL    
[43]
Valden M, Pere J, Xiang N, Pessa M. Chem. Phys. Lett., 1996, 257(3/4): 289.

doi: 10.1016/0009-2614(96)00554-4     URL    
[44]
Wu X Y, Zhang Q, Li W F, Qiao B T, Ma D, Wang S L. ACS Catal., 2021, 11(22): 14038.

doi: 10.1021/acscatal.1c03985     URL    
[45]
Niu W J, He J Z, Gu B N, Liu M C, Chueh Y L. Adv. Funct. Mater., 2021, 31(35): 2103558.

doi: 10.1002/adfm.v31.35     URL    
[46]
Wang X, Zhang Y, Wu J, Zhang Z, Liao Q, Kang Z, Zhang Y,. Chem. Rev., 2022, 122: 1273.

doi: 10.1021/acs.chemrev.1c00505     URL    
[47]
Wang Y, Mao J, Meng X G, Yu L, Deng D H, Bao X H. Chem. Rev., 2019, 119(3): 1806.

doi: 10.1021/acs.chemrev.8b00501     URL    
[48]
Liu P X, Zhao Y, Qin R X, Mo S G, Chen G X, Gu L, Chevrier D M, Zhang P, Guo Q, Zang D D, Wu B H, Fu G, Zheng N F. Science, 2016, 352(6287): 797.

doi: 10.1126/science.aaf5251     URL    
[49]
Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C L, Li J J, Wei S Q, Lu J L. J. Am. Chem. Soc., 2015, 137(33): 10484.

doi: 10.1021/jacs.5b06485     URL    
[50]
Farrauto R. Science, 2012, 337: 659.

doi: 10.1126/science.1226310     pmid: 22879495
[51]
Abbet S, Heiz U, Schneider W. J. Am. Chem. Soc., 2000, 122: 3453.

doi: 10.1021/ja9922476     URL    
[52]
Lu J L, Elam J W, Stair P C. Acc. Chem. Res., 2013, 46(8): 1806.

doi: 10.1021/ar300229c     URL    
[1]
Xu R R. Natl. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155     URL    
[2]
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128     URL    
[3]
Zhang T. Nano Lett., 2021, 21(23): 9835.

doi: 10.1021/acs.nanolett.1c02681     pmid: 34806383
[4]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

doi: 10.1038/nchem.1095    
[5]
Liang X, Fu N H, Yao S C, Li Z, Li Y D. J. Am. Chem. Soc., 2022, 144(40): 18155.

doi: 10.1021/jacs.1c12642     URL    
[6]
Langmuir I. Trans. Faraday Soc., 1922, 17: 607.

doi: 10.1039/TF9221700607     URL    
[7]
Taylor H P. Roy. Soc. A, 1925, 108: 105.
[8]
Bond G C. Surf. Sci., 1985, 156: 966.

doi: 10.1016/0039-6028(85)90273-0     URL    
[9]
Hellman A, Resta A, Martin N M, Gustafson J, Trinchero A, Carlsson P A, Balmes O, Felici R, van Rijn R, Frenken J W M, Andersen J N, Lundgren E, Grönbeck H. J. Phys. Chem. Lett., 2012, 3(6): 678.

doi: 10.1021/jz300069s     pmid: 26286272
[10]
Graham G W, König D, Poindexter B D, Remillard J T, Weber W H. Top. Catal., 1999, 8(1/2): 35.

doi: 10.1023/A:1019128203919     URL    
[11]
Nilsson J, Carlsson P A, Fouladvand S, Martin N M, Gustafson J, Newton M A, Lundgren E, Grönbeck H, Skoglundh M. ACS Catal., 2015, 5(4): 2481.

doi: 10.1021/cs502036d     URL    
[12]
William T, Kaden E, Kunkel W, Anderson S. Science, 2009, 326: 826.

doi: 10.1126/science.1180297     pmid: 19892976
[13]
Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Science, 2003, 301(5635): 935.

doi: 10.1126/science.1085721     URL    
[14]
Zhang X, Shi H, Xu B Q. Angew. Chem. Int. Ed., 2005, 44(43): 7132.

doi: 10.1002/(ISSN)1521-3773     URL    
[15]
Xiong H F, Lester K, Ressler T, Schlögl R, Allard L F, Datye A K. Catal. Lett., 2017, 147(5): 1095.

doi: 10.1007/s10562-017-2023-7     URL    
[16]
Uzun A, Ortalan V, Browning N, Gates B. Chem. Commun., 2009, 4657.
[17]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.

doi: 10.1021/ar300361m     URL    
[53]
Fonseca J, Lu J L. ACS Catal., 2021, 11(12): 7018.

doi: 10.1021/acscatal.1c01200     URL    
[54]
Zhang J F, Liu J Y, Xi L F, Yu Y F, Chen N, Sun S H, Wang W C, Lange K M, Zhang B. J. Am. Chem. Soc., 2018, 140(11): 3876.

doi: 10.1021/jacs.8b00752     URL    
[55]
Zhou M, Dick J E, Bard A J. J. Am. Chem. Soc., 2017, 139(48): 17677.

doi: 10.1021/jacs.7b10646     pmid: 29131602
[56]
Deng D H, Chen X Q, Yu L, Wu X, Liu Q F, Liu Y, Yang H X, Tian H F, Hu Y F, Du P P, Si R, Wang J H, Cui X J, Li H B, Xiao J P, Xu T, Deng J, Yang F, Duchesne P N, Zhang P, Zhou J G, Sun L T, Li J Q, Pan X L, Bao X H. Sci. Adv., 2015, 1(11): e1500462.

doi: 10.1126/sciadv.1500462     URL    
[57]
Chen X Q, Yu L, Wang S H, Deng D H, Bao X H. Nano Energy, 2017, 32: 353.

doi: 10.1016/j.nanoen.2016.12.056     URL    
[58]
Wu Y E, Wang D S, Li Y D. Sci. China Mater., 2016, 59(11): 938.

doi: 10.1007/s40843-016-5112-0     URL    
[59]
Zhang M L, Wang Y G, Chen W X, Dong J C, Zheng L R, Luo J, Wan J W, Tian S B, Cheong W C, Wang D S, Li Y D. J. Am. Chem. Soc., 2017, 139(32): 10976.

doi: 10.1021/jacs.7b05372     URL    
[60]
Zhang P F, Chen C, Zhang X H, Jiang Z G, Huang J L, Chen J H. Electrochim.Acta, 2019, 298: 570.

doi: 10.1016/j.electacta.2018.12.119     URL    
[61]
Wang X, Chen W X, Zhang L, Yao T, Liu W, Lin Y, Ju H X, Dong J C, Zheng L R, Yan W S, Zheng X S, Li Z J, Wang X Q, Yang J, He D S, Wang Y, Deng Z X, Wu Y E, Li Y D. J. Am. Chem. Soc., 2017, 139(28): 9419.

doi: 10.1021/jacs.7b01686     pmid: 28661130
[62]
Ji S F, Chen Y J, Fu Q, Chen Y F, Dong J C, Chen W X, Li Z, Wang Y, Gu L, He W, Chen C, Peng Q, Huang Y, Duan X F, Wang D S, Draxl C, Li Y D. J. Am. Chem. Soc., 2017, 139(29): 9795.

doi: 10.1021/jacs.7b05018     URL    
[63]
Cheng Y, Zhao S Y, Johannessen B, Veder J P, Saunders M, Rowles M R, Cheng M, Liu C, Chisholm M F, De Marco R, Cheng H M, Yang S Z, Jiang S P. Adv. Mater., 2018, 30(13): 1870088.

doi: 10.1002/adma.v30.13     URL    
[64]
Zhang B X, Zhang J L, Shi J B, Tan D X, Liu L F, Zhang F Y, Lu C, Su Z Z, Tan X N, Cheng X Y, Han B X, Zheng L R, Zhang J. Nat. Commun., 2019, 10: 2980.

doi: 10.1038/s41467-019-10854-1    
[65]
Giugni A. Nat. Nanotechnol., 2019, 14(9): 814.

doi: 10.1038/s41565-019-0524-9    
[66]
Huang Z W, Gu X, Cao Q Q, Hu P P, Hao J M, Li J H, Tang X F. Angew. Chem. Int. Ed., 2012, 51(17): 4198.

doi: 10.1002/anie.201109065     URL    
[67]
Wei S J, Li A, Liu J C, Li Z, Chen W X, Gong Y, Zhang Q H, Cheong W C, Wang Y, Zheng L R, Xiao H, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. Nat. Nanotechnol., 2018, 13(9): 856.

doi: 10.1038/s41565-018-0197-9    
[68]
Jones J, Xiong H F, DeLaRiva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernández X I, Wang Y, Datye A K. Science, 2016, 353(6295): 150.

doi: 10.1126/science.aaf8800     pmid: 27387946
[69]
Qu Y T, Li Z J, Chen W X, Lin Y, Yuan T W, Yang Z K, Zhao C M, Wang J, Zhao C, Wang X, Zhou F Y, Zhuang Z B, Wu Y E, Li Y D. Nat. Catal., 2018, 1(10): 781.

doi: 10.1038/s41929-018-0146-x    
[18]
Liu J Y. ACS Catal., 2017, 7(1): 34.

doi: 10.1021/acscatal.6b01534     URL    
[19]
Lang R, Du X R, Huang Y K, Jiang X Z, Zhang Q, Guo Y L, Liu K P, Qiao B T, Wang A Q, Zhang T. Chem. Rev., 2020, 120(21): 11986.

doi: 10.1021/acs.chemrev.0c00797     pmid: 33112599
[20]
Wang A Q, Li J, Zhang T. Nat. Rev. Chem., 2018, 2(6): 65.

doi: 10.1038/s41570-018-0010-1    
[21]
Flytzani-Stephanopoulos M, Gates B C. Annu. Rev. Chem. Biomol. Eng., 2012, 3: 545.

doi: 10.1146/annurev-chembioeng-062011-080939     pmid: 22559871
[22]
DeRita L, Dai S, Lopez-Zepeda K, Pham N, Graham G W, Pan X Q, Christopher P. J. Am. Chem. Soc., 2017, 139(40): 14150.

doi: 10.1021/jacs.7b07093     pmid: 28902501
[23]
Zhang L, Ren Y, Liu W, Wang A, Zhang T. Nat. Sci. Rev., 2018, 5: 653.

doi: 10.1093/nsr/nwy077     URL    
[24]
Liu L C, Corma A. Chem. Rev., 2018, 118(10): 4981.

doi: 10.1021/acs.chemrev.7b00776     URL    
[25]
Chen Y J, Ji S F, Chen C, Peng Q, Wang D S, Li Y D. Joule, 2018, 2(7): 1242.

doi: 10.1016/j.joule.2018.06.019     URL    
[26]
Su X, Yang X F, Huang Y Q, Liu B, Zhang T. Acc. Chem. Res., 2019, 52(3): 656.

doi: 10.1021/acs.accounts.8b00478     URL    
[27]
Mitchell S, Perez-Ramirez J. Nat. Commun., 2020, 11: 4302.

doi: 10.1038/s41467-020-18182-5     pmid: 32855411
[28]
Zhang L, Zhou M, Wang A, Zhang T. Chem. Rev., 2020, 120: 683.

doi: 10.1021/acs.chemrev.9b00230     URL    
[29]
Zhuo H Y, Yu X H, Yu Q, Xiao H, Zhang X, Li J. Sci. China Mater., 2020, 63(9): 1741.

doi: 10.1007/s40843-020-1426-0    
[30]
Hannagan R T, Giannakakis G, Flytzani-Stephanopoulos M, Sykes E C H. Chem. Rev., 2020, 120(21): 12044.

doi: 10.1021/acs.chemrev.0c00078     URL    
[31]
Qin R X, Liu K L, Wu Q Y, Zheng N F. Chem. Rev., 2020, 120(21): 11810.

doi: 10.1021/acs.chemrev.0c00094     URL    
[32]
Li L L, Chang X, Lin X Y, Zhao Z J, Gong J L. Chem. Soc. Rev., 2020, 49(22): 8156.

doi: 10.1039/D0CS00795A     URL    
[33]
Datye A K, Guo H. Nat. Commun., 2021, 12: 895.

doi: 10.1038/s41467-021-21152-0    
[34]
Hulva J, Meier M, Bliem R, Jakub Z, Kraushofer F, Schmid M, Diebold U, Franchini C, Parkinson G S. Science, 2021, 371(6527): 375.

doi: 10.1126/science.abe5757     pmid: 33479148
[35]
Wang Y X, Su H Y, He Y H, Li L G, Zhu S Q, Shen H, Xie P F, Fu X B, Zhou G Y, Feng C, Zhao D K, Xiao F, Zhu X J, Zeng Y C, Shao M H, Chen S W, Wu G, Zeng J, Wang C. Chem. Rev., 2020, 120(21): 12217.

doi: 10.1021/acs.chemrev.0c00594     URL    
[70]
Qu Y T, Chen B X, Li Z J, Duan X Z, Wang L G, Lin Y, Yuan T W, Zhou F Y, Hu Y D, Yang Z K, Zhao C M, Wang J, Zhao C, Hu Y M, Wu G, Zhang Q H, Xu Q, Liu B Y, Gao P, You R, Huang W X, Zheng L R, Gu L, Wu Y E, Li Y D. J. Am. Chem. Soc., 2019, 141(11): 4505.

doi: 10.1021/jacs.8b09834     URL    
[71]
Mitchell S, Vorobyeva E, PÉrez-Ramírez J. Angew. Chem. Int. Ed., 2018, 57(47): 15316.

doi: 10.1002/anie.201806936     pmid: 30080958
[72]
Zhang X B, Han S B, Zhu B E, Zhang G H, Li X Y, Gao Y, Wu Z X, Yang B, Liu Y F, Baaziz W, Ersen O, Gu M, Miller J T, Liu W. Nat. Catal., 2020, 3(4): 411.

doi: 10.1038/s41929-020-0440-2    
[73]
Li R T, Xu X Y, Zhu B E, Li X Y, Ning Y X, Mu R T, Du P F, Li M W, Wang H K, Liang J J, Chen Y S, Gao Y, Yang B, Fu Q, Bao X H. Nat. Commun., 2021, 12: 1406.

doi: 10.1038/s41467-021-21552-2    
[74]
Zhang X B, Li Z M, Pei W, Li G, Liu W, Du P F, Wang Z, Qin Z X, Qi H F, Liu X Y, Zhou S, Zhao J J, Yang B, Shen W J. ACS Catal., 2022, 12(6): 3634.

doi: 10.1021/acscatal.1c05695     URL    
[75]
Hou C C, Wang H F, Li C X, Xu Q. Energy Environ. Sci., 2020, 13(6): 1658.

doi: 10.1039/C9EE04040D     URL    
[76]
Kottwitz M, Li Y Y, Wang H D, Frenkel A I, Nuzzo R G. Chem. Methods, 2021, 1(6): 278.

doi: 10.1002/cmtd.v1.6     URL    
[77]
Li T B, Chen F, Lang R, Wang H, Su Y, Qiao B T, Wang A Q, Zhang T. Angew. Chem. Int. Ed., 2020, 59(19): 7430.

doi: 10.1002/anie.v59.19     URL    
[78]
Gao P, Liang G F, Ru T, Liu X Y, Qi H F, Wang A Q, Chen F E. Nat. Commun., 2021, 12: 4698.

doi: 10.1038/s41467-021-25061-0    
[79]
Yuan Q, Song X G, Feng S Q, Jiang M, Yan L, Li J W, Ding Y J. Chem. Commun., 2021, 57(4): 472.

doi: 10.1039/D0CC06863B     URL    
[80]
Chen Z P, Vorobyeva E, Mitchell S, Fako E, Ortuño M A, LÓpez N, Collins S M, Midgley P A, Richard S, VilÉ G, PÉrez-Ramírez J. Nat. Nanotechnol., 2018, 13(8): 702.

doi: 10.1038/s41565-018-0167-2    
[81]
Cui X J, Junge K, Dai X C, Kreyenschulte C, Pohl M M, Wohlrab S, Shi F, Brückner A, Beller M. ACS Cent. Sci., 2017, 3(6): 580.

doi: 10.1021/acscentsci.7b00105     URL    
[82]
Wang X L, Xiao H, Li A, Li Z, Liu S J, Zhang Q H, Gong Y, Zheng L R, Zhu Y Q, Chen C, Wang D S, Peng Q, Gu L, Han X D, Li J, Li Y D. J. Am. Chem. Soc., 2018, 140(45): 15336.

doi: 10.1021/jacs.8b08744     URL    
[83]
Cao L N, Liu W, Luo Q Q, Yin R T, Wang B, Weissenrieder J, Soldemo M, Yan H, Lin Y, Sun Z H, Ma C, Zhang W H, Chen S, Wang H W, Guan Q Q, Yao T, Wei S Q, Yang J L, Lu J L. Nature, 2019, 565(7741): 631.

doi: 10.1038/s41586-018-0869-5    
[84]
Liang S X, Hao C, Shi Y T. ChemCatChem, 2015, 7(17): 2559.

doi: 10.1002/cctc.201500363     URL    
[85]
Gates B C, Flytzani-Stephanopoulos M, Dixon D A, Katz A. Catal. Sci. Technol., 2017, 7(19): 4259.

doi: 10.1039/C7CY00881C     URL    
[86]
Zhang H B, Liu G G, Shi L, Ye J H. Adv. Energy Mater., 2018, 8(1): 1701343.

doi: 10.1002/aenm.v8.1     URL    
[87]
Parkinson G S. Chin. J. Catal., 2017, 38(9): 1454.

doi: 10.1016/S1872-2067(17)62878-X    
[88]
Qu W Y, Liu X N, Chen J X, Dong Y Y, Tang X F, Chen Y X. Nat. Commun., 2020, 11: 1532.

doi: 10.1038/s41467-020-15261-5    
[89]
Hoang S, Guo Y B, Binder A J, Tang W X, Wang S B, Liu J Y, Tran H, Lu X X, Wang Y, Ding Y, Kyriakidou E A, Yang J, Toops T J, Pauly T R, Ramprasad R, Gao P X. Nat. Commun., 2020, 11: 1062.

doi: 10.1038/s41467-020-14816-w     pmid: 32102998
[90]
Tian H, Cui X Z, Zeng L M, Su L, Song Y L, Shi J L. J. Mater. Chem. A, 2019, 7(11): 6285.

doi: 10.1039/c8ta12219a    
[91]
Hejazi S, Mohajernia S, Osuagwu B, Zoppellaro G, Andryskova P, Tomanec O, Kment S, Zbořil R, Schmuki P. Adv. Mater., 2020, 32(16): 1908505.

doi: 10.1002/adma.v32.16     URL    
[92]
Wan J W, Chen W X, Jia C Y, Zheng L R, Dong J C, Zheng X S, Wang Y, Yan W S, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(11): 1705369.

doi: 10.1002/adma.201705369     URL    
[93]
Hu Z, Yang C, Lv K L, Li X F, Li Q, Fan J J. Chem. Commun., 2020, 56(11): 1745.

doi: 10.1039/C9CC08578E     URL    
[94]
Matthey D, Wang J G, Wendt S, Matthiesen J, Schaub R, Lægsgaard E, Hammer B, Besenbacher F. Science, 2007, 315(5819): 1692.

pmid: 17379802
[95]
Wang F, Ma J Z, Xin S H, Wang Q, Xu J, Zhang C B, He H, Zeng X C. Nat. Commun., 2020, 11: 529.

doi: 10.1038/s41467-019-13937-1     pmid: 31988282
[96]
Qin R X, Zhou L Y, Liu P X, Gong Y, Liu K L, Xu C F, Zhao Y, Gu L, Fu G, Zheng N F. Nat. Catal., 2020, 3(9): 703.

doi: 10.1038/s41929-020-0481-6    
[97]
Heemeier M, Frank M, Libuda J, Wolter K, Kuhlenbeck H, Bäumer M, Freund H J. Catal. Lett., 2000, 68(1/2): 19.

doi: 10.1023/A:1019058714724     URL    
[98]
Zhao S, Chen F, Duan S B, Shao B, Li T B, Tang H L, Lin Q Q, Zhang J Y, Li L, Huang J H, Bion N, Liu W, Sun H, Wang A Q, Haruta M, Qiao B T, Li J, Liu J Y, Zhang T. Nat. Commun., 2019, 10: 3824.

doi: 10.1038/s41467-019-11871-w     pmid: 31444352
[99]
Yang K, Liu Y X, Deng J G, Zhao X T, Yang J, Han Z, Hou Z Q, Dai H X. Appl. Catal. B Environ., 2019, 244: 650.

doi: 10.1016/j.apcatb.2018.11.077     URL    
[100]
Yang M, Qi H F, Liu F, Ren Y J, Pan X L, Zhang L L, Liu X Y, Wang H, Pang J F, Zheng M Y, Wang A Q, Zhang T. Joule, 2019, 3(8): 1937.

doi: 10.1016/j.joule.2019.05.020    
[101]
Kuai L, Chen Z, Liu S J, Kan E J, Yu N, Ren Y M, Fang C H, Li X Y, Li Y D, Geng B Y. Nat. Commun., 2020, 11: 48.

doi: 10.1038/s41467-019-13941-5    
[102]
Azofra L M, MorlanÉs N, Poater A, Samantaray M K, Vidjayacoumar B, Albahily K, Cavallo L, Basset J M. Angew. Chem. Int. Ed., 2018, 57(48): 15812.

doi: 10.1002/anie.201810409     URL    
[103]
De S, Babak M V, Hülsey M J, Ang W H, Yan N. Chem. Asian J., 2018, 13(8): 1053.

doi: 10.1002/asia.v13.8     URL    
[104]
Moliner M, Gabay J E, Kliewer C E, Carr R T, Guzman J, Casty G L, Serna P, Corma A. J. Am. Chem. Soc., 2016, 138(48): 15743.

pmid: 27934002
[105]
Ye T N, Xiao Z W, Li J, Gong Y T, Abe H, Niwa Y, Sasase M, Kitano M, Hosono H. Nat. Commun., 2020, 11: 1020.

doi: 10.1038/s41467-019-14216-9    
[106]
Zhang Z L, Zhu Y H, Asakura H, Zhang B, Zhang J G, Zhou M X, Han Y, Tanaka T, Wang A Q, Zhang T, Yan N. Nat. Commun., 2017, 8: 16100.

doi: 10.1038/ncomms16100     URL    
[107]
Han B, Guo Y L, Huang Y K, Xi W, Xu J, Luo J, Qi H F, Ren Y J, Liu X Y, Qiao B T, Zhang T. Angew. Chem. Int. Ed., 2020, 59(29): 11824.

doi: 10.1002/anie.v59.29     URL    
[108]
Qiao B T, Liang J X, Wang A Q, Xu C Q, Li J, Zhang T, Liu J J. Nano Res., 2015, 8(9): 2913.

doi: 10.1007/s12274-015-0796-9     URL    
[109]
Lang R, Xi W, Liu J C, Cui Y T, Li T B, Lee A F, Chen F, Chen Y, Li L, Li L, Lin J, Miao S, Liu X Y, Wang A Q, Wang X D, Luo J, Qiao B T, Li J, Zhang T. Nat. Commun., 2019, 10: 234.

doi: 10.1038/s41467-018-08136-3     pmid: 30651560
[110]
Liang J X, Lin J, Liu J Y, Wang X D, Zhang T, Li J. Angew. Chem. Int. Ed., 2020, 59(31): 12868.

doi: 10.1002/anie.v59.31     URL    
[111]
Liu K P, Zhao X T, Ren G Q, Yang T, Ren Y J, Lee A F, Su Y, Pan X L, Zhang J C, Chen Z Q, Yang J Y, Liu X Y, Zhou T, Xi W, Luo J, Zeng C B, Matsumoto H, Liu W, Jiang Q K, Wilson K, Wang A Q, Qiao B T, Li W Z, Zhang T. Nat. Commun., 2020, 11: 1263.

doi: 10.1038/s41467-020-14984-9    
[112]
Wang Q, Huang X, Zhao zhi liang, Wang M Y, Xiang B, Li J, Feng Z X, Xu H, Gu M. J. Am. Chem. Soc., 2020, 142(16): 7425.

doi: 10.1021/jacs.9b12642     pmid: 32174114
[113]
Liu G L, Robertson A W, Li M M J, Kuo W C H, Darby M T, Muhieddine M H, Lin Y C, Suenaga K, Stamatakis M, Warner J H, Tsang S C E. Nat. Chem., 2017, 9(8): 810.

doi: 10.1038/nchem.2740     URL    
[114]
Qi K, Cui X Q, Gu L, Yu S S, Fan X F, Luo M C, Xu S, Li N B, Zheng L R, Zhang Q H, Ma J Y, Gong Y, Lv F, Wang K, Huang H H, Zhang W, Guo S J, Zheng W T, Liu P. Nat. Commun., 2019, 10: 5231.

doi: 10.1038/s41467-019-12997-7    
[115]
Yao Y G, Huang Z N, Xie P F, Wu L P, Ma L, Li T Y, Pang Z Q, Jiao M L, Liang Z Q, Gao J L, He Y, Kline D J, Zachariah M R, Wang C M, Lu J, Wu T P, Li T, Wang C, Shahbazian-Yassar R, Hu L B. Nat. Nanotechnol., 2019, 14(9): 851.

doi: 10.1038/s41565-019-0518-7    
[116]
Cao Y J, Chen S, Luo Q Q, Yan H, Lin Y, Liu W, Cao L L, Lu J L, Yang J L, Yao T, Wei S Q. Angew. Chem. Int. Ed., 2017, 56(40): 12191.

doi: 10.1002/anie.201706467     URL    
[117]
Hasegawa S, Kunisada Y, Sakaguchi N. J. Phys. Chem. C, 2017, 121(33): 17787.

doi: 10.1021/acs.jpcc.7b01241     URL    
[118]
Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S, Han C P, Li Y D, Gogotsi Y, Wang G X. Nat. Catal., 2018, 1(12): 985.

doi: 10.1038/s41929-018-0195-1    
[119]
Bruix A, Rodriguez J A, Ramírez P J, Senanayake S D, Evans J, Park J B, Stacchiola D, Liu P, Hrbek J, Illas F. J. Am. Chem. Soc., 2012, 134(21): 8968.

doi: 10.1021/ja302070k     URL    
[120]
Wang Z L, Xu S M, Xu Y Q, Tan L, Wang X, Zhao Y F, Duan H H, Song Y F. Chem. Sci., 2019, 10(2): 378.

doi: 10.1039/C8SC04480E     URL    
[121]
Li P S, Wang M Y, Duan X X, Zheng L R, Cheng X P, Zhang Y F, Kuang Y, Li Y P, Ma Q, Feng Z X, Liu W, Sun X M. Nat. Commun., 2019, 10: 1711.

doi: 10.1038/s41467-019-09666-0    
[122]
Mori K, Taga T, Yamashita H. ACS Catal., 2017, 7(5): 3147.

doi: 10.1021/acscatal.7b00312     URL    
[123]
Liu P G, Huang Z X, Yang S K, Du J Y, Zhang Y D, Cao R, Chen C, Li L, Chen T, Wang G M, Rao D W, Zheng X S, Hong X. ACS Catal., 2022, 12(13): 8139.

doi: 10.1021/acscatal.2c01704     URL    
[124]
Du J Y, Huang Y, Huang Z X, Wu G, Wu B, Han X, Chen C, Zheng X S, Cui P X, Wu Y E, Jiang J, Hong X. JACS Au, 2022, 2(5): 1078.

doi: 10.1021/jacsau.2c00192     URL    
[125]
Guo Y, Mei S, Yuan K, Wang D J, Liu H C, Yan C H, Zhang Y W. ACS Catal., 2018, 8(7): 6203.

doi: 10.1021/acscatal.7b04469     URL    
[126]
Zhao H B, Yu R F, Ma S C, Xu K Z, Chen Y, Jiang K, Fang Y, Zhu C X, Liu X C, Tang Y, Wu L Z, Wu Y Q, Jiang Q K, He P, Liu Z P, Tan L. Nat. Catal., 2022, 5(9): 818.

doi: 10.1038/s41929-022-00840-0    
[127]
Shen C Y, Sun K H, Zou R, Wu Q L, Mei D H, Liu C J. ACS Catal., 2022, 12(20): 12658.

doi: 10.1021/acscatal.2c03709     URL    
[128]
Guo Y L, Huang Y K, Zeng B, Han B, Akri M, Shi M, Zhao Y, Li Q H, Su Y, Li L, Jiang Q K, Cui Y T, Li L, Li R G, Qiao B T, Zhang T. Nat. Commun., 2022, 13: 2648.

doi: 10.1038/s41467-022-30291-x    
[129]
Han B, Li Q H, Jiang X Z, Guo Y L, Jiang Q K, Su Y, Li L, Qiao B T. Small, 2022, 18(45): 2204490.

doi: 10.1002/smll.v18.45     URL    
[130]
Liu P G, Huang Z X, Gao X P, Hong X, Zhu J F, Wang G M, Wu Y E, Zeng J, Zheng X S. Adv. Mater., 2022, 34(16): 2200057.

doi: 10.1002/adma.v34.16     URL    
[131]
Yang J, Li Q, Qiao B T. Chem. J. Chinese U., 2022, 43: 1.
[132]
Yin P Q, Yao T, Wu Y E, Zheng L R, Lin Y, Liu W, Ju H X, Zhu J F, Hong X, Deng Z X, Zhou G, Wei S Q, Li Y D. Angew. Chem. Int. Ed., 2016, 55(36): 10800.

doi: 10.1002/anie.201604802     URL    
[133]
Li Z, Chen Y J, Ji S F, Tang Y, Chen W X, Li A, Zhao J, Xiong Y, Wu Y E, Gong Y, Yao T, Liu W, Zheng L R, Dong J C, Wang Y, Zhuang Z B, Xing W, He C T, Peng C, Cheong W C, Li Q H, Zhang M L, Chen Z, Fu N H, Gao X, Zhu W, Wan J W, Zhang J, Gu L, Wei S Q, Hu P J, Luo J, Li J, Chen C, Peng Q, Duan X F, Huang Y, Chen X M, Wang D S, Li Y D. Nat. Chem., 2020, 12(8): 764.

doi: 10.1038/s41557-020-0473-9    
[134]
Liu S W, Li C Z, Zachman M J, Zeng Y C, Yu H R, Li B Y, Wang M Y, Braaten J, Liu J W, Meyer H M III, Lucero M, Kropf A J, Alp E E, Gong Q, Shi Q R, Feng Z X, Xu H, Wang G F, Myers D J, Xie J, Cullen D A, Litster S, Wu G. Nat. Energy, 2022, 7(7): 652.

doi: 10.1038/s41560-022-01062-1    
[135]
Jirkovský J S, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin D J. J. Am. Chem. Soc., 2011, 133(48): 19432.

doi: 10.1021/ja206477z     pmid: 22023652
[136]
Ge J J, He D S, Chen W X, Ju H X, Zhang H, Chao T T, Wang X Q, You R, Lin Y, Wang Y, Zhu J F, Li H, Xiao B, Huang W X, Wu Y E, Hong X, Li Y D. J. Am. Chem. Soc., 2016, 138(42): 13850.

doi: 10.1021/jacs.6b09246     URL    
[137]
Chao T T, Luo X, Chen W X, Jiang B, Ge J J, Lin Y, Wu G, Wang X Q, Hu Y M, Zhuang Z B, Wu Y E, Hong X, Li Y D. Angew. Chem. Int. Ed., 2017, 56(50): 16047.

doi: 10.1002/anie.201709803     URL    
[138]
Zhang X, Cui G Q, Feng H S, Chen L F, Wang H, Wang B, Zhang X, Zheng L R, Hong S, Wei M. Nat. Commun., 2019, 10: 5812.

doi: 10.1038/s41467-019-13685-2     pmid: 31862887
[139]
Sun G D, Zhao Z J, Mu R T, Zha S J, Li L L, Chen S, Zang K T, Luo J, Li Z L, Purdy S C, Kropf A J, Miller J T, Zeng L, Gong J L. Nat. Commun., 2018, 9: 4454.

doi: 10.1038/s41467-018-06967-8    
[140]
Kim J, Roh C W, Sahoo S K, Yang S, Bae J, Han J W, Lee H. Adv. Energy Mater., 2018, 8(1): 1701476.

doi: 10.1002/aenm.v8.1     URL    
[141]
Greiner M T, Jones T E, Beeg S, Zwiener L, Scherzer M, Girgsdies F, Piccinin S, Armbrüster M, Knop-Gericke A, Schlögl R. Nat. Chem., 2018, 10(10): 1008.

doi: 10.1038/s41557-018-0125-5     pmid: 30150725
[142]
Boyes E D, LaGrow A P, Ward M R, Mitchell R W, Gai P L. Acc. Chem. Res., 2020, 53(2): 390.

doi: 10.1021/acs.accounts.9b00500     URL    
[143]
Cao L L, Luo Q Q, Liu W, Lin Y, Liu X K, Cao Y J, Zhang W, Wu Y E, Yang J L, Yao T, Wei S Q. Nat. Catal., 2018, 2(2): 134.

doi: 10.1038/s41929-018-0203-5    
[144]
Cao L L, Luo Q Q, Chen J J, Wang L, Lin Y, Wang H J, Liu X K, Shen X Y, Zhang W, Liu W, Qi Z M, Jiang Z, Yang J L, Yao T. Nat. Commun., 2019, 10: 4849.

doi: 10.1038/s41467-019-12886-z    
[145]
Zhang L W, Long R, Zhang Y M, Duan D L, Xiong Y J, Zhang Y J, Bi Y P. Angew. Chem. Int. Ed., 2020, 59(15): 6224.

doi: 10.1002/anie.v59.15     URL    
[146]
Yang J, Qi H F, Li A Q, Liu X Y, Yang X F, Zhang S X, Zhao Q, Jiang Q K, Su Y, Zhang L L, Li J F, Tian Z Q, Liu W, Wang A Q, Zhang T. J. Am. Chem. Soc., 2022, 144(27): 12062.

doi: 10.1021/jacs.2c02262     URL    
[147]
Yang J, Liu W G, Xu M Q, Liu X Y, Qi H F, Zhang L L, Yang X F, Niu S S, Zhou D, Liu Y F, Su Y, Li J F, Tian Z Q, Zhou W, Wang A Q, Zhang T. J. Am. Chem. Soc., 2021, 143(36): 14530.

doi: 10.1021/jacs.1c03788     URL    
[148]
Bai X W, Zhao X H, Zhang Y H, Ling C Y, Zhou Y P, Wang J L, Liu Y Y. J. Am. Chem. Soc., 2022, 144(37): 17140.

doi: 10.1021/jacs.2c07178     URL    
[149]
Zhang S R, Nguyen L, Liang J X, Shan J J, Liu J Y, Frenkel A I, Patlolla A, Huang W X, Li J, Tao F. Nat. Commun., 2015, 6: 7938.

doi: 10.1038/ncomms8938    
[150]
Kropp T, Lu Z L, Li Z, Chin Y H C, Mavrikakis M. ACS Catal., 2019, 9(2): 1595.

doi: 10.1021/acscatal.8b03298     URL    
[151]
Wu D F, Liu S X, Zhong M Q, Zhao J F, Du C C, Yang Y L, Sun Y F, Lin J D, Wan S L, Wang S, Huang J Y, Yao Y L, Li Z, Xiong H F. ACS Catal., 2022, 12(19): 12253.

doi: 10.1021/acscatal.2c02103     URL    
[152]
Han B, Li T B, Zhang J Y, Zeng C B, Matsumoto H, Su Y, Qiao B T, Zhang T. Chem. Commun., 2020, 56(36): 4870.

doi: 10.1039/D0CC00230E     URL    
[153]
Jiang L Z, Liu K L, Hung S F, Zhou L Y, Qin R X, Zhang Q H, Liu P X, Gu L, Chen H M, Fu G, Zheng N F. Nat. Nanotechnol., 2020, 15(10): 848.

doi: 10.1038/s41565-020-0746-x    
[154]
Liu J C, Ma X L, Li Y, Wang Y G, Xiao H, Li J. Nat Commun, 2018, 9: 1610.

doi: 10.1038/s41467-018-03795-8    
[155]
Ma X L, Liu J C, Xiao H, Li J. J. Am. Chem. Soc., 2018, 140(1): 46.

doi: 10.1021/jacs.7b10354     URL    
[156]
Dong C Y, Gao Z R, Li Y L, Peng M, Wang M, Xu Y, Li C Y, Xu M, Deng Y C, Qin X T, Huang F, Wei X Y, Wang Y G, Liu H Y, Zhou W, Ma D. Nat. Catal., 2022, 5(6): 485.

doi: 10.1038/s41929-022-00769-4    
[157]
Guo Y, Wang M L, Zhu Q J, Xiao D Q, Ma D. Nat. Catal., 2022, 5(9): 766.

doi: 10.1038/s41929-022-00839-7    
[158]
Wu W C, Yu L D, Jiang Q Z, Huo M F, Lin H, Wang L Y, Chen Y, Shi J L. J. Am. Chem. Soc., 2019, 141(29): 11531.

doi: 10.1021/jacs.9b03503     URL    
[159]
Xu B L, Wang H, Wang W W, Gao L Z, Li S S, Pan X T, Wang H Y, Yang H L, Meng X Q, Wu Q W, Zheng L R, Chen S M, Shi X H, Fan K L, Yan X Y, Liu H Y. Angew. Chem. Int. Ed., 2019, 58(15): 4911.

doi: 10.1002/anie.v58.15     URL    
[160]
Lei Y, Butler D, Lucking M C, Zhang F, Xia T N, Fujisawa K, Granzier-Nakajima T, Cruz-Silva R, Endo M, Terrones H, Terrones M, Ebrahimi A. Sci. Adv., 2020, 6(32): eabc4250.

doi: 10.1126/sciadv.abc4250     URL    
[1] 郑跃楠, 杨佳奇, 乔振安. 凝聚态化学视角下的多孔材料缺陷工程[J]. 化学进展, 2023, 35(6): 954-967.
[2] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[3] 王海, 王成涛, 周航, 王亮, 肖丰收. 小分子催化转化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 861-885.
[4] 秦学涛, 周子乔, 马丁. 金属/金属氧化物催化剂的SMSI效应[J]. 化学进展, 2023, 35(6): 928-939.
[5] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[6] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[7] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[8] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[9] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[10] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[11] 韩鹏博, 徐赫, 安众福, 蔡哲毅, 蔡政旭, 巢晖, 陈彪, 陈明, 陈禹, 池振国, 代淑婷, 丁丹, 董宇平, 高志远, 管伟江, 何自开, 胡晶晶, 胡蓉, 胡毅雄, 黄秋忆, 康苗苗, 李丹霞, 李济森, 李树珍, 李文朗, 李振, 林新霖, 刘骅莹, 刘佩颖, 娄筱叮, 吕超, 马东阁, 欧翰林, 欧阳娟, 彭谦, 钱骏, 秦安军, 屈佳敏, 石建兵, 帅志刚, 孙立和, 田锐, 田文晶, 佟斌, 汪辉亮, 王东, 王鹤, 王涛, 王晓, 王誉澄, 吴水珠, 夏帆, 谢育俊, 熊凯, 徐斌, 闫东鹏, 杨海波, 杨清正, 杨志涌, 袁丽珍, 袁望章, 臧双全, 曾钫, 曾嘉杰, 曾卓, 张国庆, 张晓燕, 张学鹏, 张艺, 张宇凡, 张志军, 赵娟, 赵征, 赵子豪, 赵祖金, 唐本忠. 聚集诱导发光[J]. 化学进展, 2022, 34(1): 1-130.
[12] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[13] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[14] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[15] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
阅读次数
全文


摘要

单原子催化中的凝聚态化学