English
新闻公告
More
化学进展 2023, Vol. 35 Issue (8): 1191-1198 DOI: 10.7536/PC221209 前一篇   后一篇

• 综述 •

1,6-己二醇选择氧化内酯化制备ε-己内酯

申小雨1, 杜中田1,*(), 郭百睿1, 郭忠旭1, 梁长海1,2,*()   

  1. 1 大连理工大学化工学院 盘锦 124221
    2 大连理工大学精细化工国家重点实验室 大连 116023
  • 收稿日期:2022-12-15 修回日期:2023-05-08 出版日期:2023-08-24 发布日期:2023-07-18
  • 作者简介:

    杜中田 毕业于中国科学院大连化学物理研究所,获理学博士学位,现就职于大连理工大学。主要从事选择氧化和催化新材料方面的应用基础研究,已在相关领域发表研究论文30余篇,并有多项中国发明专利获得授权。先后主持承担了国家自然科学基金项目3项、辽宁省自然科学基金项目2项,参与企业项目多项。

  • 基金资助:
    国家自然科学基金项目(22172010); 中央高校基本科研业务费(DUT2021TD103)

Selective Oxidative Lactonization of 1,6-Hexanediol into ε-Caprolactone

Xiaoyu Shen1, Zhongtian Du1(), Bairui Guo1, Zhongxu Guo1, Changhai Liang1,2()   

  1. 1 School of Chemical Engineering, Dalian University of Technology,Panjin 124221, China
    2 State Key Laboratory of Fine Chemicals, Dalian University of Technology,Dalian 116023, China
  • Received:2022-12-15 Revised:2023-05-08 Online:2023-08-24 Published:2023-07-18
  • Contact: *e-mail: duzhongtian@dlut.edu.cn(Zhongtian Du);changhai@dlut.edu.cn(Changhai Liang)
  • Supported by:
    National Natural Science Foundation of China(22172010); Fundamental Research Funds for the Central Universities(DUT2021TD103)

ε-己内酯是合成聚己内酯(PCL)等聚合物的关键单体,相关高分子材料具有良好的生物降解性和兼容性,在生物医药、环保材料等领域具有重要应用。ε-己内酯的绿色廉价制备是制约这类材料广泛使用的重要因素,其中1,6-己二醇选择氧化内酯化制备ε-己内酯有待进一步发展。本文分析对比了环己酮Baeyer-Villiger氧化法和1,6-己二醇氧化内酯化法制备ε-己内酯的优缺点,按照反应体系中是否加入电子受体(氧化剂)分类介绍了国内外1,6-己二醇选择氧化内酯化制备ε-己内酯相关的研究进展,并对相应反应体系、所用催化剂的优缺点进行了评述,最后对该转化过程的发展趋势进行了展望。

ε-Caprolactone is a key monomer for the synthesis of poly(ε-caprolactone) (PCL) with good biocompatibility and biodegradability, and relevant polymer materials could be applied in pharmaceutical, medicinal, and packaging applications. Green and economic synthesis of ε-caprolactone is vital to popularize such eco-friendly polymers, and selective oxidative lactonization of 1,6-hexanediol into ε-caprolactone remains to be developed. In this review, different routes for the synthesis of ε-caprolactone such as Baeyer-Villiger oxidation of cyclohexanone and oxidative lactonization of 1,6-hexanediol are comparatively analyzed. According to whether electron acceptors (oxidants) are added to the reaction systems, the related advances of oxidative lactonization of 1,6-hexanediol are summarized, and the advantages and disadvantages of the corresponding reaction systems and catalysts are reviewed. The development trend of oxidative lactonization of 1,6-hexanediol into ε-caprolactone is also proposed.

Contents

1 Introduction

2 Catalytic oxidation processes

2.1 Carbonyl compounds act as electron acceptors

2.2 Molecular oxygen acts as the electron acceptor

2.3 H2O2 acts as the oxidant

3 Catalytic dehydrogenation

3.1 Homogeneous catalysts

3.2 Heterogeneous catalysts

4 Conclusion and outlook

()
图1 有机过氧酸氧化环己酮制备ε-己内酯
Fig. 1 Oxidation of cyclohexanone into ε-caprolactone via Baeyer-Villiger oxidation
图2 从结构和组成角度对比分别从1,6-己二醇和环己酮制备ε-己内酯的路线
Fig. 2 The preparation routes of ε-caprolactone from 1,6-hexadiol and cyclohexanone compared from the perspective of structure and composition
图3 1,6-己二醇氧化内酯化制备ε-己内酯常见的反应路径
Fig. 3 Reaction pathway from 1,6-hexanediol to ε-caprolactone
图4 [{Ru(cymene)Cl2}2]/DPPF催化氧化1,6-己二醇制备ε-己内酯[26,27]
Fig. 4 [{Ru(cymene)Cl2}2]/DPPF catalyzed oxidation of 1,6-hexanediol to ε-caprolactone[26,27]
图5 环己酮和1,6-己二醇耦合氧化生成ε-己内酯[32]
Fig. 5 The coupled oxidation of 1,6-hexanediol and cyclohexanone to produce ε-caprolactone[32]
图6 从5-羟甲基糠醛出发制备ε-己内酯[37]
Fig. 6 Preparation of ε-caprolactone from 5-hydroxymethylfurfural[37]
图7 仿生催化氧化1,6-己二醇制备ε-己内酯[39]
Fig. 7 Biomimetic aerobic oxidation of 1,6-hexanediol into ε-caprolactone[39]
图8 Co@C-N(800)催化1,6-己二醇转化为ε-己内酯反应[43]
Fig. 8 Co@C-N(800) catalyzed oxidative lactonization of 1,6-hexanediol into ε-caprolactone[43]
图9 氯化十六烷基吡啶/磷钨酸催化1,6-己二醇制备ε-己内酯反应[45]
Fig. 9 Cetylpyridinium chloride/tungstophosphate-catalysed 1,6-hexanediol to ε-caprolactone[45]
图10 1,6-己二醇催化脱氢内酯化示意图
Fig. 10 Catalytic dehydrogenative lactonization of 1,6-hexanediol
图11 Fe-MACHO-BH催化1,6-己二醇制备ε-己内酯[47]
Fig. 11 Fe-MACHO-BH catalyzed dehydrogenative lactonization of 1,6-hexanediol to ε-caprolactone[47]
表1 1,6-己二醇氧化内酯化为ε-己内酯反应的原子经济性、理论副产物、可能安全隐患的对比1)
Table 1 Comparison of atom economy, theoretical by-products, and possible safety hazards in oxidative lactonization of 1,6-hexanediol into ε-caprolactone1)
[1]
Zhang H, Sun Z Q, Li S, Pang X, Chen X S. Polym. Mater. Sci. Eng., 2021, 37(1): 218.
(张涵, 孙志强, 李帅, 庞烜, 陈学思. 高分子材料科学与工程, 2021, 37(1): 218.).
[2]
Labet M, Thielemans W. Chem. Soc. Rev., 2009, 38(12): 3484.

doi: 10.1039/b820162p     URL    
[3]
Woodruff M A, Hutmacher D W. Prog. Polym. Sci., 2010, 35(10): 1217.

doi: 10.1016/j.progpolymsci.2010.04.002     URL    
[4]
Benhacine F, Ouargli A, Hadj-Hamou A S. Polym. Plast. Technol. Mater., 2019, 58(3): 328.
[5]
Sun Z Q, Duan R L, Xing D J, Pang X, Li Z Y, Chen X S. Curr. Cancer Drug Targets, 2017, 17(5): 445.

doi: 10.2174/1568009617666170109150430     URL    
[6]
国家发展改革委生态环境部关于进一步加强塑料污染治理的意见, 发改环资〔2020〕80号, 2020.
[7]
Renz M, Meunier B. Eur. J. Org. Chem., 1999, 1999(4): 737.

doi: 10.1002/(ISSN)1099-0690     URL    
[8]
Yan S H, Han L L, Shen W, Shen J F, Liu J W, Zhang Y. Chem. Ind. Eng. Prog., 2014, 33(11): 3061.
(严生虎, 韩玲玲, 沈卫, 沈介发, 刘建武, 张跃. 化工进展, 2014, 33(11): 3061.).
[9]
Yuan H R, Wang L Y, Du R F, Yao J, Li H R. Sci. Sin.-Chim., 2020, 50(2): 245.

doi: 10.1360/SSC-2019-0125     URL    
(袁浩然, 汪玲瑶, 杜仁峰, 姚加, 李浩然. 中国科学: 2020, 50(2): 245.).
[10]
Lu H, Gao W. Fine and Specialty Chemicals, 2013, 21(7): 9.
(鲁华, 高伟. 精细与专用化学品, 2013, 21(7): 9.).
[11]
Ding J, Zhao J Q, Cheng S B, Mu X H, Zong B N. Chem. Ind. Eng. Prog., 2015, 34(12): 4209.
(丁璟, 赵俊琦, 程时标, 慕旭宏, 宗保宁. 化工进展, 2015, 34( 12): 4209.).

doi: 10.16085/j.issn.1000-6613.2015.12.013    
[12]
Gao F F, Chen J, Huang Z W, Xia C G. J. Mol. Catal., 2018, 32(3): 276.
(高芳芳, 陈静, 黄志威, 夏春谷. 分子催化, 2018, 32(3): 276.).
[13]
Chen K Y, Koso S, Kubota T, Nakagawa Y, Tomishige K. ChemCatChem, 2010, 2(5): 547.

doi: 10.1002/cctc.201000018     URL    
[14]
Xiao C H, Du Z T, Li S J, Zhao Y B, Liang C H. ChemCatChem, 2020, 12(14): 3650.

doi: 10.1002/cctc.v12.14     URL    
[15]
ten Brink G J, Arends I W C E, Sheldon R A. Chem. Rev., 2004, 104(9): 4105.

pmid: 15352787
[16]
Cui X Z, Shi J L. Sci. China Mater., 2016, 59(8): 675.

doi: 10.1007/s40843-016-5081-x     URL    
[17]
Yan J, Zhao L H, Song C, Jiang Y L, Wei L C. Chem. Ind. Eng. Prog., 2017, 36(4): 1424.
(闫捷, 赵立红, 宋灿, 蒋元力, 魏灵朝. 化工进展, 2017, 36(4): 1424.).
[18]
Xie X M, Stahl S S. J. Am. Chem. Soc., 2015, 137(11): 3767.

doi: 10.1021/jacs.5b01036     URL    
[19]
Li X, Zheng J M, Yang X L, Dai W L, Fan K N. Chin. J. Catal., 2013, 34(5): 1013.

doi: 10.1016/S1872-2067(12)60534-8     URL    
[20]
Suzuki T, Morita K, Tsuchida M, Hiroi K. Org. Lett., 2002, 4(14): 2361.

doi: 10.1021/ol026091h     URL    
[21]
Fujita K I, Ito W, Yamaguchi R. ChemCatChem, 2014, 6(1): 109.

doi: 10.1002/cctc.v6.1     URL    
[22]
Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K. Green Chem., 2009, 11(6): 793.

doi: 10.1039/b900576e     URL    
[23]
Bagley M C, Lin Z F, Phillips D J, Graham A E. Tetrahedron Lett., 2009, 50(49): 6823.

doi: 10.1016/j.tetlet.2009.09.117     URL    
[24]
Kageyama T, Kawahara S, Kitamura K, Ueno Y, Okawara M. Chem. Lett., 1983, 12(7): 1097.

doi: 10.1246/cl.1983.1097     URL    
[25]
Shoji K, Takashi N, Noritaka N, Hiromichi Y, Shizuo F. Bull. Chem. Soc. Jpn., 1986, 59(3): 747.

doi: 10.1246/bcsj.59.747     URL    
[26]
Buntara T, Noel S, Phua P H, Melián-Cabrera I, De Vries J G, Heeres H J. Angew. Chem. Int. Ed., 2011, 50(31): 7083.

doi: 10.1002/anie.201102156     pmid: 21698732
[27]
Nicklaus C M, Phua P H, Buntara T, Noel S, Heeres H J, de Vries J G. Adv. Synth. Catal., 2013, 355(14/15): 2839.

doi: 10.1002/adsc.v355.14/15     URL    
[28]
Tang Y D, Meador R I L, Malinchak C T, Harrison E E, McCaskey K A, Hempel M C, Funk T W. J. Org. Chem., 2020, 85(4): 1823.

doi: 10.1021/acs.joc.9b01884     URL    
[29]
Promchana P, Choojun K, Leesakul N, Saithong S, Chainok K, Sooknoi T. React. Chem. Eng., 2022, 7(12): 2562.

doi: 10.1039/D2RE00159D     URL    
[30]
Liu X, Ryabenkova Y, Conte M. Phys. Chem. Chem. Phys., 2015, 17(2): 715.

doi: 10.1039/c4cp03568b     pmid: 25259662
[31]
Kara S, Spickermann D, Schrittwieser J H, Weckbecker A, Leggewie C, Arends I W C E, Hollmann F. ACS Catal., 2013, 3(11): 2436.

doi: 10.1021/cs400535c     URL    
[32]
Bornadel A, Hatti-Kaul R, Hollmann F, Kara S. ChemCatChem, 2015, 7(16): 2442.

doi: 10.1002/cctc.201500511     URL    
[33]
Bornadel A, Hatti-Kaul R, Hollmann F, Kara S. Tetrahedron, 2016, 72(46): 7222.

doi: 10.1016/j.tet.2015.11.054     URL    
[34]
Engel J, Mthethwa K S, Opperman D J, Kara S. Mol. Catal., 2019, 468: 44.
[35]
Engel J, Bornscheuer U T, Kara S. Org. Process Res. Dev., 2021, 25(3): 411.

doi: 10.1021/acs.oprd.0c00372     URL    
[36]
Dithugoe C D, Van Marwijk J, Smit M S, Opperman D J. ChemBioChem, 2019, 20(1): 96.

doi: 10.1002/cbic.201800533     pmid: 30252998
[37]
Pyo S H, Park J H, Srebny V, Hatti-Kaul R. Green Chem., 2020, 22(14): 4450.

doi: 10.1039/D0GC01454K     URL    
[38]
Zhang X W, Tan Z T, Li C J, Qi S Y, Xu M J, Li M, Xiong W L, Zhuang W, Liu D, Zhu C J, Ying H J. Bioresour. Bioprocess., 2021, 8(1): 94.

doi: 10.1186/s40643-021-00450-x    
[39]
Endo Y, Bäckvall J E. Chem. Eur. J., 2011, 17(45): 12596.
[40]
Gao S, Wang L Y, Chen B, Lv Y. CN201510882101.0, 2019.
[41]
Li X, Cui Y Y, Yang X L, Dai W L, Fan K N. Appl. Catal. A Gen., 2013, 458: 63.

doi: 10.1016/j.apcata.2013.03.020     URL    
[42]
Tang D Y, Shen Z W, Lechler S, Lu G L, Yao L, Hu Y Z, Huang X B, Muhler M, Zhao G X, Peng B X. J. Catal., 2023, 418: 237.

doi: 10.1016/j.jcat.2023.01.025     URL    
[43]
Zhong W, Liu H L, Bai C H, Liao S J, Li Y W. ACS Catal., 2015, 5(3): 1850.

doi: 10.1021/cs502101c     URL    
[44]
Nandan D, Zoppellaro G, Medrík I, Aparicio C, Kumar P, Petr M, Tomanec O, Gawande M B, Varma R S, Zboril R. Green Chem., 2018, 20(15): 3542.

doi: 10.1039/C8GC01333K     URL    
[45]
Ishii Y, Yoshida T, Yamawaki K, Ogawa M. J. Org. Chem., 1988, 53(23): 5549.

doi: 10.1021/jo00258a032     URL    
[46]
Bamoharram F F, Heravi M M, Roshani M, Gharib A, Jahangir M. J. Mol. Catal. A Chem., 2006, 252(1/2): 90.

doi: 10.1016/j.molcata.2006.01.067     URL    
[47]
Peña-LÓpez M, Neumann H, Beller M. ChemCatChem, 2015, 7(5): 865.

doi: 10.1002/cctc.201402967     URL    
[48]
Shinzaburo O. Bull. Chem. Soc. Jpn., 1962, 35(4):562.

doi: 10.1246/bcsj.35.562     URL    
[49]
Larkin D R. J. Org. Chem., 1965, 30(2): 335.

doi: 10.1021/jo01013a006     URL    
[50]
Abe K, Ohishi Y, Okada T, Yamada Y, Sato S. Catal. Today, 2011, 164(1): 419.

doi: 10.1016/j.cattod.2010.10.026     URL    
[51]
Touchy A S, Shimizu K I. RSC Adv., 2015, 5(37): 29072.
[52]
Liu Y, Zhou Q, Zheng C Y, Wang Y Z. Mod. Chem. Ind., 2007, (10): 41.
(刘燕, 周茜, 郑长义, 王玉忠. 现代化工, 2007, (10):41.).
[53]
Wu Y B, Song G Q, Yan G X, Wu Z L. Fine and Specialty Chemicals, 2015, 23(1): 37.
(吴彦彬, 宋国全, 闫广学, 吴正岭. 精细与专用化学品, 2015, 23(1): 37.).
[54]
Ichikawa N, Sato S, Takahashi R, Sodesawa T, Inui K. J. Mol. Catal. A Chem., 2004, 212(1/2): 197.

doi: 10.1016/j.molcata.2003.10.028     URL    
[55]
Zhu Y L, Yang J, Dong G Q, Zheng H Y, Zhang H H, Xiang H W, Li Y W. Appl. Catal. B Environ., 2005, 57(3): 183.

doi: 10.1016/j.apcatb.2004.11.004     URL    
[1] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[2] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[3] 刘喆, 张晓岚, 蔡婷, 袁静, 赵昆峰, 何丹农. 用于甲醛催化氧化的锰基催化剂及协同效应的影响[J]. 化学进展, 2019, 31(2/3): 311-321.
[4] 赵倩, 葛云丽, 纪娜, 宋春风, 马德刚, 刘庆岭. 催化氧化技术在可挥发性有机物处理的研究[J]. 化学进展, 2016, 28(12): 1847-1859.
[5] 王伟涛, 姚敏, 马养民, 张金. 氧气直接氧化苯制备苯酚[J]. 化学进展, 2014, 26(10): 1665-1672.
[6] 王猛, 惠永海, 张雪华, 魏雅娜, 史岷山, 王吉德*. 四氢呋喃的氧化[J]. 化学进展, 2013, 25(07): 1158-1165.
[7] 任芳芳, 蒋丰兴, 周卫强, 杜玉扣*, 徐景坤*. 导电聚合物/贵金属复合材料应用于C1小分子电催化氧化[J]. 化学进展, 2012, (9): 1818-1836.
[8] 张俊, 陈婧, 黄新松, 李广社*. CO催化氧化用纳米材料及其最新研究成果[J]. 化学进展, 2012, 24(07): 1245-1251.
[9] 汪玉娟, 徐杰, 尹国川. 均相催化氧化中的活性中间体多样性[J]. 化学进展, 2012, 24(0203): 203-211.
[10] 张国富, 温馨, 王涌, 莫卫民, 丁成荣. 氧化脱肟研究新进展[J]. 化学进展, 2012, 24(0203): 361-369.
[11] 朱刚利 杨伯伦. 液体有机氢化物储氢研究进展*[J]. 化学进展, 2009, 21(12): 2760-2770.
[12] 刘静 王梓萌 沈建东 张士成 陈建民. 挥发性有机污染物光催化氧化动力学中的L-H模型*[J]. 化学进展, 2009, 21(10): 2037-2043.
[13] 王树军,彭玉苓. 手性金属卟啉配合物的性能研究* [J]. 化学进展, 2009, 21(0708): 1515-1522.
[14] 任水英,解正峰,谢晓鹏,秦高飞,王吉德. 催化氧化合成己二酸的清洁方法*[J]. 化学进展, 2009, 21(04): 663-671.
[15] 李明燕,周春晖,Jorge N Beltramini,俞卫华,范永仙. 甘油的催化选择氧化*[J]. 化学进展, 2008, 20(10): 1474-1486.