English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 839-860 DOI: 10.7536/PC230208 前一篇   后一篇

• 综述 •

甲醇制烯烃反应中的凝聚态化学

王男, 魏迎旭*(), 刘中民*()   

  1. 中国科学院大连化学物理研究所 低碳催化技术国家工程研究中心 大连 116023
  • 收稿日期:2023-02-10 修回日期:2023-04-04 出版日期:2023-06-24 发布日期:2023-05-15
  • 基金资助:
    国家自然科学基金项目(22288101); 国家自然科学基金项目(21991092); 国家自然科学基金项目(21991090); 中国科学院大连化学物理研究所优秀博士后基金和中国科学院特别研究助理项目资助

Methanol to Olefins (MTO): A Condensed Matter Chemistry

Nan Wang, Yingxu Wei(), Zhongmin Liu()   

  1. National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received:2023-02-10 Revised:2023-04-04 Online:2023-06-24 Published:2023-05-15
  • Contact: *e-mail: weiyx@dicp.ac.cn (Yingxu Wei);liuzm@dicp.ac.cn (Zhongmin Liu)
  • Supported by:
    The National Natural Science Foundation of China(22288101); The National Natural Science Foundation of China(21991092); The National Natural Science Foundation of China(21991090); The Excellent Postdoctoral Support Program of Dalian Institute of Chemical Physics, CAS and the Excellent Research Assistant Funding Project of CAS

催化技术在现代工业生产和日常生活中发挥着举足轻重的作用,也是凝聚态化学材料和应用的重要内容。甲醇制烯烃反应在凝聚态晶体多孔材料上实现,是非石油资源制取低碳烯烃的重要途径,也是凝聚态材料催化应用的典型案例。反应机理和分子筛积碳机制是多相催化领域重要的研究方向。甲醇制烯烃反应是一个动态化学过程,经历诱导期、高效反应期、失活期和催化剂再生,分子筛纳米限域空间内活性有机物种和积碳物种的演变引导了这个催化反应历程。本文围绕这一主题,分别介绍了甲醇制烯烃反应分子筛催化材料及基于主客体化学的结构组成-反应性能的构效关系、甲醇转化反应的分子活化机制、动态催化反应网络以及基于分子筛-积碳主客体相互作用发展的择形催化原理和分子筛积碳失活机理及消碳再生机制。希望通过本文加深对分子筛催化甲醇制烯烃反应中的凝聚态化学的认识,并期待以凝聚态化学为指导,进一步推动分子筛催化材料和催化过程的优化和发展,为今后高效催化剂及催化体系的开发提供指导。

Catalysis is an essential component of condensed matter chemistry, with broad applications in contemporary industrial manufacturing and daily life. Methanol-to-olefins (MTO) reaction, facilitated by condensed-matter porous materials, represents a significant catalytic pathway for the production of light olefins from non-petroleum sources, exemplifying heterogeneous catalytic applications. Investigating reaction mechanisms and catalyst coking/decoking mechanisms is a central focus in catalysis research. The MTO reaction, transpiring within the confined spaces of zeolites and/or molecular sieves, encompasses a dynamic chemical process comprising an induction period, a highly efficient stage, catalyst deactivation, and catalyst regeneration. The formation, evolution, and degradation of active organic species and coke species within the nano-confined spaces of zeolites guide the course of the catalytic reaction. This feature review primarily highlights zeolite/molecular sieve catalysts for the MTO reaction, elucidating the structural-reaction-deactivation relationship based on host-guest chemistry, activation mechanisms of C1 reactants, the catalytic reaction network governed by dynamic mechanisms, chemistries involved in zeolite coking and decoking behavior, as well as the mechanisms of catalyst deactivation and regeneration. The ultimate aim is to provide a profound understanding of condensed matter chemistry in the context of heterogeneous methanol-to-olefins chemistry, thus advancing zeolite catalysis theory and fostering the development of efficient MTO catalysts and high-efficiency, low-carbon catalytic processes under the guidance of condensed matter chemistry.

Contents

1 Introduction

2 Catalysts for methanol-to-olefins

2.1 ZSM-5 catalyst with MFI topology structure

2.2 SAPO-34 with CHA topology structure

2.3 Other catalysts with 8-MR pore opening and cavity structure

3 Catalytic reaction mechanism for methanol conversion

3.1 Direct mechanism

3.2 Indirect mechanism

4 Mechanisms of catalyst deactivation/regeneration by zeolite coking/decoking for methanol conversion

4.1 Deactivation mechanism and chemistry involved in zeolite coking

4.2 Regeneration mechanism and chemistry involved in zeolite decoking

5 Conclusions and outlook

()
图1 MFI骨架结构 (a) 和孔道结构 (b)
Fig.1 The framework (a) and pore structures (b) of MFI
图2 CHA (SAPO-34沸石分子筛) 拓扑结构示意图
Fig.2 Illustrations of CHA topology (SAPO-34 molecular sieve)
图3 其他具有八元环孔口的笼结构沸石分子筛
Fig.3 Molecular sieves with 8 MR and cavity structure
图4 MTH过程凝聚态催化材料、工业化发展和反应机理研究的里程碑事件
Fig.4 MTH chronology shows milestones in the development of condensed-matter materials as catalysts, industrial processes and reaction mechanism study of MTO
图5 积碳SAPO-34分子筛催化剂消碳再生过程示意图[38]
Fig.5 Schematic of regeneration processes of coked SAPO-34 molecular sieve[38]. Copyright 2021 Elsevier Inc
图6 (a) HZSM-5催化剂在300 C下进行13C-甲醇转化25~240 s后的13C CP/MAS NMR谱图。*表示边带;(b) HZSM-5在300℃下进行13C-甲醇转化反应期间的原位13C MAS NMR谱图。0~5 min每20 s采集一次,5~12 min每60 s采集一次[57]
Fig.6 (a)13C CP/MAS NMR spectra of the HZSM-5 catalyst after13C methanol conversion at 300℃ for 25~240 seconds. * indicates the spinning sideband. (b) In situ solid-state13C MAS NMR spectra recorded during 13C methanol conversion over HZSM-5 at 300℃. The spectra were recorded every 20 s from 0 to 5 min and then every 60 seconds from 5 to 12 min[57]. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
表1 一系列利用固体核磁技术 (ssNMR) 观测到的碳正离子[13]
Table 1 A series of carbenium ions observed in zeolites with solid-state NMR spectroscopy during methanol reaction[13]. Copyright 2022 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图7 MTO反应传统的双循环机理和近期提出的基于环戊二烯的催化循环
Fig.7 The traditional dual cycles and the cyclopentadienes-based cycle newly proposed for methanol conversion
图8 Haw等于2003年提出的SAPO-34分子筛积碳失活机理示意图[15]
Fig.8 Schematic of the coking behavior and the deactivation mechanism of SAPO-34 molecular sieve proposed by Haw et al. in 2003[15]. Copyright 2003 American Chemical Society
图9 Gao等于2018年提出的SAPO-34积碳失活机理[61]
Fig.9 Deactivation mechanism of SAPO-34 during MTO reaction proposed by Gao et al. in 2018[61]. Copyright 2018 Elsevier Inc
图10 350℃时H-SAPO-34上积碳前躯体可能的演变路径[90]
Fig.10 The possible routes of coke precursor evolution over H-SAPO-34 at 350℃[90]. Copyright 2020 The Royal Society of Chemistry
图11 SAPO-34催化甲醇转化在300、325和350℃反应温度下的留存物种分析:(a) 失活的催化剂;(b) 从溶解的催化剂中提取的CH2Cl2溶液中的有机物;(c) 用GC-MS测定的主要积碳物种;(d) 受限积碳物种的1H-13C CP/MAS NMR共振峰强度比较[91]
Fig.11 Confined coke after methanol conversion at 300, 325 and 350℃. (a) Deactivated catalysts; (b) extracted organics in CH2Cl2 solution from dissolved catalysts; (c) main coke species determined with GC-MS; (d) resonance peak intensity comparison of1H-13C CP/MAS NMR spectra of confined organics[91]. Copyright 2012 The Royal Society of Chemistry
图12 (a) 稠环芳烃分子完整分子演变路径;(b) 通过MALDI FT-ICR质谱对笼结构分子筛中失活物种进行分子结构分析[64]
Fig.12 (a) Molecular evolution route of PAHs; (b) molecular structure analysis of deactivating species in cage-structured molecular sieves by MALDI FT-ICR mass spectra[64]. Copyright 2020 Springer Nature
图13 积碳ZSM-5沸石的电子衍射信号及积碳分布[93]
Fig.13 Electron diffraction mapping and distribution of coke species in ZSM-5 zeolites[93]. Copyright 2022 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图14 共进料水对甲醇制烯烃 (MTO) 反应积碳在晶粒内分布的影响[110]
Fig.14 Schematic of the effect of water addition on the distribution of coke at individual crystal level during methanol-to-olefin (MTO) reaction[110]. Copyright 2016 American Chemical Society
图15 将积碳选择性转化为萘的失活催化剂水汽再生策略,应用于循环流化床反应器-再生器装置中以实现MTO反应性能和原子经济性的改善[40]
Fig.15 Selective transformation of coke into specific naphthalenic species-rich catalyst, and improvement of MTO performance and atom economy implemented in the circulating fluidized bed reactor-regenerator configuration[40]. Copyright 2021 Springer Nature
图16 MTO全谱图产物分子演变轨迹和SAPO-34催化的MTO反应中积碳和水蒸气再生过程示意图[39]
Fig.16 A schematic compiling the molecule-resolved interpretation of full-spectrum MTO products evolution trajectory as well as the coking chemistry for MTO reaction over SAPO-34 and decoking chemistry for steam regeneration[39]. Copyright 2022 Elsevier Inc
[1]
Berzelius J J. Royal Swedisch Academy of Sciences, 1835.
[2]
Van Houten J. J. Chem. Educ., 2002, 79(2): 146.

doi: 10.1021/ed079p146     URL    
[3]
Olmsted J III. J. Chem. Educ., 2010, 87(10): 1045.

doi: 10.1021/ed100201t     URL    
[4]
Tian P, Wei Y X, Ye M, Liu Z M. ACS Catal., 2015, 5(3): 1922.

doi: 10.1021/acscatal.5b00007     URL    
[5]
Li Y, Yu J H. Nat. Rev. Mater., 2021, 6(12): 1156.

doi: 10.1038/s41578-021-00347-3    
[6]
Davis M E. Nature, 2002, 417(6891): 813.

doi: 10.1038/nature00785    
[7]
Dusselier M, Davis M E. Chem. Rev., 2018, 118(11): 5265.

doi: 10.1021/acs.chemrev.7b00738     pmid: 29746122
[8]
Busca G. Chem. Rev., 2007, 107(11): 5366.

doi: 10.1021/cr068042e     URL    
[9]
Corma A. Chem. Rev., 1995, 95(3): 559.

doi: 10.1021/cr00035a006     URL    
[10]
Wang S, Chen Y Y, Wei Z H, Qin Z F, Liang T Y, Dong M, Li J F, Fan W B, Wang J G. J. Phys. Chem. C, 2016, 120(49): 27964.

doi: 10.1021/acs.jpcc.6b08154     URL    
[11]
Smit B, Maesen T L M. Chem. Rev., 2008, 108(10): 4125.

doi: 10.1021/cr8002642     URL    
[12]
Smit B, Maesen T L M. Nature, 2008, 451(7179): 671.

doi: 10.1038/nature06552    
[13]
Zhang W N, Wei Y X, Liu Z M. In The Chemical Transformations of C1 Compounds, 2022, DOI: 10.1002/9783527831883.ch3.

doi: 10.1002/9783527831883.ch3    
[14]
Argauer R J, Landolt G R. US3702886, 1972.
[15]
Haw J F, Song W G, Marcus D M, Nicholas J B. Acc. Chem. Res., 2003, 36(5): 317.

doi: 10.1021/ar020006o     URL    
[16]
Hereijgers B P C, Bleken F, Nilsen M H, Svelle S, Lillerud K P, Bjørgen M, Weckhuysen B M, Olsbye U. J. Catal., 2009, 264(1): 77.

doi: 10.1016/j.jcat.2009.03.009     URL    
[17]
Conte M, Lopez-Sanchez J A, He Q, Morgan D J, Ryabenkova Y, Bartley J K, Carley A F, Taylor S H, Kiely C J, Khalid K, Hutchings G J. Catal. Sci. Technol., 2012, 2(1): 105.

doi: 10.1039/C1CY00299F     URL    
[18]
Goguen P W, Xu T, Barich D H, Skloss T W, Song W G, Wang Z K, Nicholas J B, Haw J F. J. Am. Chem. Soc., 1998, 120(11): 2650.

doi: 10.1021/ja973920z     URL    
[19]
Chen J L, Liang T Y, Li J F, Wang S, Qin Z F, Wang P F, Huang L Z, Fan W B, Wang J G. ACS Catal., 2016, 6(4): 2299.

doi: 10.1021/acscatal.5b02862     URL    
[20]
Galletero M S, Corma A, Ferrer B, FornÉs V, García H. J. Phys. Chem. B, 2003, 107(5): 1135.

doi: 10.1021/jp0210531     URL    
[21]
Margarit V J, Osman M, Al-Khattaf S, Martínez C, Boronat M, Corma A. ACS Catal., 2019, 9(7): 5935.

doi: 10.1021/acscatal.9b00763    
[22]
Wang N, Sun W J, Hou Y L, Ge B H, Hu L, Nie J Q, Qian W Z, Wei F. J. Catal., 2018, 360: 89.

doi: 10.1016/j.jcat.2017.12.024     URL    
[23]
Liu X L, Wang C M, Zhou J, Liu C, Liu Z C, Shi J, Wang Y D, Teng J W, Xie Z K. Chem. Soc. Rev., 2022, 51(19): 8174.

doi: 10.1039/D2CS00079B     URL    
[24]
Shen B Y, Wang H Q, Xiong H, Chen X, Bosch E G T, Lazić I, Qian W Z, Wei F. Nature, 2022, 607(7920): 703.

doi: 10.1038/s41586-022-04876-x    
[25]
Brent M, Celeste A, Patton R, Gajek R, Cannan T, Lanigen E, Lok B, Messina C, Flanigen E. EP103117-A1, 1984.
[26]
Lok B M, Messina C A, Patton R L, Gajek R T, Cannan T R, Flanigen E M. J. Am. Chem. Soc., 1984, 106(20): 6092.

doi: 10.1021/ja00332a063     URL    
[27]
Wang H D, Jiao F, Ding Y, Liu W J, Xu Z C, Pan X L, Bao X H. Natl. Sci. Rev., 2022, 9(9): nwac146.

doi: 10.1093/nsr/nwac146     URL    
[28]
Lin S F, Zhi Y C, Chen W, Li H, Zhang W N, Lou C Y, Wu X Q, Zeng S, Xu S T, Xiao J P, Zheng A M, Wei Y X, Liu Z M. J. Am. Chem. Soc., 2021, 143(31): 12038.

doi: 10.1021/jacs.1c03475     URL    
[29]
Olsbye U, Svelle S, Lillerud K P, Wei Z H, Chen Y Y, Li J F, Wang J G, Fan W B. Chem. Soc. Rev., 2015, 44(20): 7155.

doi: 10.1039/c5cs00304k     pmid: 26185806
[30]
Ye M, Tian P, Liu Z M. Engineering, 2021, 7(1): 17.

doi: 10.1016/j.eng.2020.12.001     URL    
[31]
Gao B B, Yang M, Qiao Y Y, Li J Z, Xiang X, Wu P F, Wei Y X, Xu S T, Tian P, Liu Z M. Catal. Sci. Technol., 2016, 6(20): 7569.

doi: 10.1039/C6CY01461E     URL    
[32]
Wu P F, Yang M, Zhang W N, Xu S T, Guo P, Tian P, Liu Z M. Chem. Commun., 2017, 53(36): 4985.

doi: 10.1039/C7CC01834G     URL    
[33]
Sun Q M, Xie Z K, Yu J H. Natl. Sci. Rev., 2018, 5(4): 542.

doi: 10.1093/nsr/nwx103     URL    
[34]
Zhong J W, Han J F, Wei Y X, Xu S T, He Y L, Zheng Y J, Ye M, Guo X W, Song C S, Liu Z M. Chem. Commun., 2018, 54(25): 3146.

doi: 10.1039/C7CC09239C     URL    
[35]
Arora S S, Nieskens D L S, Malek A, Bhan A. Nat. Catal., 2018, 1(9): 666.

doi: 10.1038/s41929-018-0125-2    
[36]
Zhao X B, Li J Z, Tian P, Wang L Y, Li X F, Lin S F, Guo X W, Liu Z M. ACS Catal., 2019, 9(4): 3017.

doi: 10.1021/acscatal.8b04402     URL    
[37]
Zhou J B, Zhi Y C, Zhang J L, Liu Z Q, Zhang T, He Y L, Zheng A M, Ye M, Wei Y X, Liu Z M. J. Catal., 2019, 377: 153.

doi: 10.1016/j.jcat.2019.06.014     URL    
[38]
van Vreeswijk S H, Weckhuysen B M. Joule, 2021, 5(4): 757.

doi: 10.1016/j.joule.2021.03.008     URL    
[39]
Wang N, Wang L, Zhi Y C, Han J F, Zhang C W, Wu X Q, Zhang J L, Wang L Y, Fan B H, Xu S T, Zheng Y J, Lin S F, Wu R N, Wei Y X, Liu Z M. J. Energy Chem., 2023, 76: 105.

doi: 10.1016/j.jechem.2022.09.014     URL    
[40]
Zhou J B, Gao M B, Zhang J L, Liu W J, Zhang T, Li H, Xu Z C, Ye M, Liu Z M. Nat. Commun., 2021, 12: 17.

doi: 10.1038/s41467-020-20193-1    
[41]
Zhou J B, Zhao J P, Zhang J L, Zhang T, Ye M, Liu Z M. Chin. J. Catal., 2020, 41(7): 1048.

doi: 10.1016/S1872-2067(20)63552-5     URL    
[42]
Li J Z, Wei Y X, Chen J R, Xu S T, Tian P, Yang X F, Li B, Wang J B, Liu Z M. ACS Catal., 2015, 5(2): 661.

doi: 10.1021/cs501669k     URL    
[43]
Yang M, Li B, Gao M B, Lin S F, Wang Y, Xu S T, Zhao X B, Guo P, Wei Y X, Ye M, Tian P, Liu Z M. ACS Catal., 2020, 10(6): 3741.

doi: 10.1021/acscatal.9b04703     URL    
[44]
Pinilla-Herrero I, Olsbye U, Márquez-Álvarez C, Sastre E. J. Catal., 2017, 352: 191.

doi: 10.1016/j.jcat.2017.05.008     URL    
[45]
Yarulina I, Chowdhury A D, Meirer F, Weckhuysen B M, Gascon J. Nat. Catal., 2018, 1(6): 398.

doi: 10.1038/s41929-018-0078-5    
[46]
Xu S T, Zhi Y C, Han J F, Zhang W N, Wu X Q, Sun T T, Wei Y X, Liu Z M. Advances in Catalysis. Amsterdam: Elsevier, 2017. 37.
[47]
Chen W, Li G C, Yi X F, Day S J, Tarach K A, Liu Z Q, Liu S B, Edman Tsang S C, GÓra-Marek K, Zheng A M. J. Am. Chem. Soc., 2021, 143(37): 15440.

doi: 10.1021/jacs.1c08036     pmid: 34478267
[48]
Chowdhury A D, Houben K, Whiting G T, Mokhtar M, Asiri A M, Al-Thabaiti S A, Basahel S N, Baldus M, Weckhuysen B M. Angew. Chem. Int. Ed., 2016, 55(51): 15840.

doi: 10.1002/anie.201608643     pmid: 27805783
[49]
Chu Y Y, Yi X F, Li C B, Sun X Y, Zheng A M. Chem. Sci., 2018, 9(31): 6470.

doi: 10.1039/C8SC02302F     URL    
[50]
Comas-Vives A, Valla M, CopÉret C, Sautet P. ACS Cent. Sci., 2015, 1(6): 313.

doi: 10.1021/acscentsci.5b00226     URL    
[51]
Li J F, Wei Z H, Chen Y Y, Jing B Q, He Y, Dong M, Jiao H J, Li X K, Qin Z F, Wang J G, Fan W B. J. Catal., 2014, 317: 277.

doi: 10.1016/j.jcat.2014.05.015     URL    
[52]
Liu Y, Müller S, Berger D, Jelic J, Reuter K, Tonigold M, Sanchez-Sanchez M, Lercher J A. Angew. Chem. Int. Ed., 2016, 55(19): 5723.

doi: 10.1002/anie.201511678     URL    
[53]
Parvulescu A N, Mores D, Stavitski E, Teodorescu C M, Bruijnincx P C A, Gebbink R J M K, Weckhuysen B M. J. Am. Chem. Soc., 2010, 132(30): 10429.

doi: 10.1021/ja102566b     pmid: 20662520
[54]
Sun T T, Chen W, Xu S T, Zheng A M, Wu X Q, Zeng S, Wang N, Meng X J, Wei Y X, Liu Z M. Chem, 2021, 7(9): 2415.

doi: 10.1016/j.chempr.2021.05.023     URL    
[55]
Wang C, Chu Y Y, Xu J, Wang Q, Qi G D, Gao P, Zhou X, Deng F. Angew. Chem. Int. Ed., 2018, 57(32): 10197.

doi: 10.1002/anie.v57.32     URL    
[56]
Wang W, Buchholz A, Seiler M, Hunger M. J. Am. Chem. Soc., 2003, 125(49): 15260.

doi: 10.1021/ja0304244     pmid: 14653761
[57]
Wu X Q, Xu S T, Zhang W N, Huang J D, Li J Z, Yu B W, Wei Y X, Liu Z M. Angew. Chem. Int. Ed., 2017, 56(31): 9039.

doi: 10.1002/anie.201703902     URL    
[58]
Yang L, Yan T T, Wang C M, Dai W L, Wu G J, Hunger M, Fan W B, Xie Z K, Guan N J, Li L D. ACS Catal., 2019, 9(7): 6491.

doi: 10.1021/acscatal.9b00641    
[59]
Svelle S, Joensen F, Nerlov J, Olsbye U, Lillerud K P, Kolboe S, Bjørgen M. J. Am. Chem. Soc., 2006, 128(46): 14770.

doi: 10.1021/ja065810a     pmid: 17105263
[60]
Zhang W N, Zhi Y C, Huang J D, Wu X Q, Zeng S, Xu S T, Zheng A M, Wei Y X, Liu Z M. ACS Catal., 2019, 9(8): 7373.

doi: 10.1021/acscatal.9b02487     URL    
[61]
Gao S S, Xu S T, Wei Y X, Qiao Q L, Xu Z C, Wu X Q, Zhang M Z, He Y L, Xu S L, Liu Z M. J. Catal., 2018, 367: 306.

doi: 10.1016/j.jcat.2018.09.010     URL    
[62]
Goetze J, Meirer F, Yarulina I, Gascon J, Kapteijn F, Ruiz-Martínez J, Weckhuysen B M. ACS Catal., 2017, 7(6): 4033.

doi: 10.1021/acscatal.6b03677     pmid: 28603658
[63]
Guisnet M, Magnoux P. Appl. Catal., 1989, 54(1): 1.
[64]
Wang N, Zhi Y C, Wei Y X, Zhang W N, Liu Z Q, Huang J D, Sun T T, Xu S T, Lin S F, He Y L, Zheng A M, Liu Z M. Nat. Commun., 2020, 11: 1079.

doi: 10.1038/s41467-020-14493-9     pmid: 32103001
[65]
Guisnet M. Deactivation and Regeneration of Zeolite Catalysts. Imperial College Press, 2011. 217.
[66]
Wang F, Damascene Harindintwali J, Yuan Z Z, Wang M, Wang F M, Li S, Yin Z G, Huang L, Fu Y H, Li L, Chang S X, Zhang L J, Rinklebe J, Yuan Z Q, Zhu Q G, Xiang L L, Tsang D C W, Xu L, Jiang X, Liu J H, Wei N, Kästner M, Zou Y, Ok Y S, Shen J L, Peng D L, Zhang W, BarcelÓ D, Zhou Y J, Bai Z H, Li B Q, Zhang B, Wei K, Cao H J, Tan Z L, Zhao L B, He X, Zheng J X, Bolan N, Liu X H, Huang C P, Dietmann S, Luo M, Sun N N, Gong J R, Gong Y L, Brahushi F, Zhang T T, Xiao C D, Li X F, Chen W F, Jiao N Z, Lehmann J, Zhu Y G, Jin H G, Schäffer A, Tiedje J M, Chen J M. Innov., 2021, 2(4): 100180.
[67]
Bartholomew C H. Appl. Catal. A Gen., 2001, 212(1/2): 17.

doi: 10.1016/S0926-860X(00)00843-7     URL    
[68]
Bartholomew C, Argyle M. Catalysts, 2015, 5(2): 949.

doi: 10.3390/catal5020949     URL    
[69]
Wu X Q, Xu S T, Wei Y X, Zhang W N, Huang J D, Xu S L, He Y L, Lin S F, Sun T T, Liu Z M. ACS Catal., 2018, 8(8): 7356.

doi: 10.1021/acscatal.8b02385     URL    
[70]
Zhang W N, Zhang M Z, Xu S T, Gao S S, Wei Y X, Liu Z M. ACS Catal., 2020, 10(8): 4510.

doi: 10.1021/acscatal.0c00799     URL    
[71]
Dessau R. J. Catal., 1982, 78(1): 136.

doi: 10.1016/0021-9517(82)90292-5     URL    
[72]
Mole T. J. Catal., 1983, 84(2): 435.

doi: 10.1016/0021-9517(83)90014-3     URL    
[73]
Mole T, Whiteside J A, Seddon D. Journal of Catalysis, 1983, 82 (2): 261.

doi: 10.1016/0021-9517(83)90192-6     URL    
[74]
Chen N, Reagan W. J. Catal., 1979, 59(1): 123.

doi: 10.1016/S0021-9517(79)80050-0     URL    
[75]
Dahl I M, Kolboe S. J. Catal., 1994, 149(2): 458.

doi: 10.1006/jcat.1994.1312     URL    
[76]
Dahl I M, Kolboe S. J. Catal., 1996, 161(1): 304.

doi: 10.1006/jcat.1996.0188     URL    
[77]
Lesthaeghe D, HorrÉ A, Waroquier M, Marin G, Van Speybroeck V. Chem. Eur. J., 2009, 15(41): 10803.

doi: 10.1002/chem.200901723     URL    
[78]
Haw J F, Marcus D M. Top. Catal., 2005, 34(1/4): 41.

doi: 10.1007/s11244-005-3798-0     URL    
[79]
Bjørgen M, Lillerud K P, Olsbye U, Svelle S. In Studies in Surface Science and Catalysis, BellotNoronha F, SchmalM, FalabellaSousa-Aguiar E.Eds.; Elsevier, 2007. Vol. 167.
[80]
Bjorgen M, Svelle S, Joensen F, Nerlov J, Kolboe S, Bonino F, Palumbo L, Bordiga S, Olsbye U. J. Catal., 2007, 249(2): 195.

doi: 10.1016/j.jcat.2007.04.006     URL    
[81]
Dai W L, Wang C M, Dyballa M, Wu G J, Guan N J, Li L D, Xie Z K, Hunger M. ACS Catal., 2015, 5(1): 317.

doi: 10.1021/cs5015749     URL    
[82]
Castaño P. Catalysts, 2021, 11(7): 798.

doi: 10.3390/catal11070798     URL    
[83]
Martín A J, Mitchell S, Mondelli C, Jaydev S, PÉrez-Ramírez J. Nat. Catal., 2022, 5(10): 854.

doi: 10.1038/s41929-022-00842-y    
[84]
Chen D, Rebo H P, Moljord K, Holmen A. In Studies in Surface Science and Catalysis, BartholomewC H, FuentesG A.Eds. Elsevier, 1997. Vol. 111.
[85]
Guisnet M, Magnoux P. Catal. Today, 1997, 36(4): 477.

doi: 10.1016/S0920-5861(96)00238-6     URL    
[86]
Guisnet M, Magnoux P. Appl. Catal. A Gen., 2001, 212(1/2): 83.

doi: 10.1016/S0926-860X(00)00845-0     URL    
[87]
Vogt C, Weckhuysen B M. Nat. Rev. Chem., 2022, 6(2): 89.

doi: 10.1038/s41570-021-00340-y    
[88]
Borodina E, Meirer F, Lezcano-González I, Mokhtar M, Asiri A M, Al-Thabaiti S A, Basahel S N, Ruiz-Martinez J, Weckhuysen B M. ACS Catal., 2015, 5(2): 992.

doi: 10.1021/cs501345g     URL    
[89]
Borodina E, Sharbini Harun Kamaluddin H, Meirer F, Mokhtar M, Asiri A M, Al-Thabaiti S A, Basahel S N, Ruiz-Martinez J, Weckhuysen B M. ACS Catal., 2017, 7(8): 5268.

doi: 10.1021/acscatal.7b01497     pmid: 28824823
[90]
Yu B W, Zhang W N, Wei Y X, Wu X Q, Sun T T, Fan B H, Xu S T, Liu Z M. Chem. Commun., 2020, 56(58): 8063.

doi: 10.1039/D0CC02408B     URL    
[91]
Wei Y X, Li J Z, Yuan C Y, Xu S T, Zhou Y, Chen J R, Wang Q Y, Zhang Q, Liu Z M. Chem. Commun., 2012, 48(25): 3082.

doi: 10.1039/c2cc17676a     URL    
[92]
Müller S, Liu Y, Vishnuvarthan M, Sun X Y, van Veen A C, Haller G L, Sanchez-Sanchez M, Lercher J A. J. Catal., 2015, 325: 48.

doi: 10.1016/j.jcat.2015.02.013     URL    
[93]
Wennmacher J T C, Mahmoudi S, Rzepka P, Sik Lee S, Gruene T, Paunović V, van Bokhoven J A. Angewandte Chemie Int. Ed., 2022, 61(29): e202205413.
[94]
Lee S, Choi M. J. Catal., 2019, 375: 183.

doi: 10.1016/j.jcat.2019.05.030     URL    
[95]
Dahl I M, Mostad H, Akporiaye D, Wendelbo R. Microporous Mesoporous Mater., 1999, 29(1/2): 185.

doi: 10.1016/S1387-1811(98)00330-8     URL    
[96]
Ilias S, Bhan A. ACS Catal., 2013, 3(1): 18.

doi: 10.1021/cs3006583     URL    
[97]
Bleken F, Bjørgen M, Palumbo L, Bordiga S, Svelle S, Lillerud K P, Olsbye U. Top. Catal., 2009, 52(3): 218.

doi: 10.1007/s11244-008-9158-0     URL    
[98]
Yuen L T, Zones S I, Harris T V, Gallegos E J, Auroux A. Microporous Mater., 1994, 2(2): 105.

doi: 10.1016/0927-6513(93)E0039-J     URL    
[99]
Guisnet M, Costa L, Ribeiro F R. J. Mol. Catal. A Chem., 2009, 305(1/2): 69.

doi: 10.1016/j.molcata.2008.11.012     URL    
[100]
Zhong J W, Han J F, Wei Y X, Tian P, Guo X W, Song C S, Liu Z M. Catal. Sci. Technol., 2017, 7(21): 4905.

doi: 10.1039/C7CY01466J     URL    
[101]
Yang G J, Wei Y X, Xu S T, Chen J R, Li J Z, Liu Z M, Yu J H, Xu R R. J. Phys. Chem. C, 2013, 117(16): 8214.

doi: 10.1021/jp312857p     URL    
[102]
Dai W L, Wu G J, Li L D, Guan N J, Hunger M. ACS Catal., 2013, 3(4): 588.

doi: 10.1021/cs400007v     URL    
[103]
Vogt E T C, Weckhuysen B M. Chem. Soc. Rev., 2015, 44(20): 7342.

doi: 10.1039/c5cs00376h     pmid: 26382875
[104]
Wang A Y, Chen Y, Walter E D, Washton N M, Mei D H, Varga T, Wang Y L, Szanyi J, Wang Y, Peden C H F, Gao F. Nat. Commun., 2019, 10: 1137.

doi: 10.1038/s41467-019-09021-3    
[105]
Zhang R D, Liu N, Lei Z G, Chen B H. Chem. Rev., 2016, 116(6): 3658.

doi: 10.1021/acs.chemrev.5b00474     URL    
[106]
Stanciakova K, Weckhuysen B M. Trends Chem., 2021, 3(6): 456.

doi: 10.1016/j.trechm.2021.03.004     URL    
[107]
Marchi A J, Froment G F. Appl. Catal., 1991, 71(1): 139.

doi: 10.1016/0166-9834(91)85011-J     URL    
[108]
Gayubo A G, Aguayo A T, Sánchez del Campo A E, Benito P L, Bilbao J. In Studies in Surface Science and Catalysis, Delmon B, Froment G F. Amsterdam: Elsevier, 1999. 126:129.
[109]
Wu X C, Anthony R G. Appl. Catal. A Gen., 2001, 218(1/2): 241.

doi: 10.1016/S0926-860X(01)00651-2     URL    
[110]
De Wispelaere K, Wondergem C S, Ensing B, Hemelsoet K, Meijer E J, Weckhuysen B M, Van Speybroeck V, Ruiz-Martı?nez J. ACS Catal., 2016, 6(3): 1991.

doi: 10.1021/acscatal.5b02139     URL    
[111]
Wang H Q, Hou Y L, Sun W J, Hu Q K, Xiong H, Wang T F, Yan B H, Qian W Z. ACS Catal., 2020, 10(9): 5288.

doi: 10.1021/acscatal.9b05552     URL    
[112]
Liu G Y, Tian P, Li J Z, Zhang D Z, Zhou F, Liu Z M. Microporous Mesoporous Mater., 2008, 111(1/3): 143.

doi: 10.1016/j.micromeso.2007.07.023     URL    
[113]
Yang L, Wang C, Zhang L N, Dai W L, Chu Y Y, Xu J, Wu G J, Gao M B, Liu W J, Xu Z C, Wang P F, Guan N J, Dyballa M, Ye M, Deng F, Fan W B, Li L D. Nat. Commun., 2021, 12: 4661.

doi: 10.1038/s41467-021-24403-2     pmid: 34341350
[114]
Wang C, Yang L, Gao M B, Shao X, Dai W L, Wu G J, Guan N J, Xu Z C, Ye M, Li L D. J. Am. Chem. Soc., 2022, 144(46): 21408.

doi: 10.1021/jacs.2c10495     URL    
[115]
Watanabe Y, Koiwai A, Takeuchi H, Hyodo S A, Noda S. J. Catal., 1993, 143(2): 430.

doi: 10.1006/jcat.1993.1287     URL    
[1] 李清萍, 李涛, 邵琛琛, 柳伟. 普鲁士蓝基钠离子电池正极材料的改性[J]. 化学进展, 2023, 35(7): 1053-1064.
[2] 郑跃楠, 杨佳奇, 乔振安. 凝聚态化学视角下的多孔材料缺陷工程[J]. 化学进展, 2023, 35(6): 954-967.
[3] 王海, 王成涛, 周航, 王亮, 肖丰收. 小分子催化转化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 861-885.
[4] 秦学涛, 周子乔, 马丁. 金属/金属氧化物催化剂的SMSI效应[J]. 化学进展, 2023, 35(6): 928-939.
[5] 李庆贺, 乔波涛, 张涛. 单原子催化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 821-838.
[6] 肖丰收, 吴勤明, 王成涛. 分子筛催化反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 886-903.
[7] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[11] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[12] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[13] 邵秀丽, 王驷骐, 张轩, 李军, 王宁宁, 王政, 袁忠勇. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666.
[14] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[15] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
阅读次数
全文


摘要

甲醇制烯烃反应中的凝聚态化学