English
新闻公告
More
化学进展 2023, Vol. 35 Issue (4): 606-619 DOI: 10.7536/PC220934 前一篇   后一篇

• 综述 •

钼酸铋在光催化技术中的改性与应用

王丹丹1,2,*(), 蔺兆鑫3,4, 谷慧杰3,4, 李云辉3,4, 李洪吉1,2,*(), 邵晶3,4,*()   

  1. 1.吉林师范大学工程学院 四平 136000
    2.吉林师范大学环境友好材料制备与应用教育部重点实验室 长春 130103
    3.长春理工大学 化学与环境工程学院 长春 130022
    4.长春理工大学中山研究院 中山 528437
  • 收稿日期:2022-09-29 修回日期:2023-01-30 出版日期:2023-04-24 发布日期:2023-02-20
  • 作者简介:

    王丹丹 吉林师范大学讲师,中国科学院大学博士,主要研究方向为高效光催化剂的制备与应用研究。已在Applied Catalysis B: Environmental等杂志发表多篇高水平文章。

    李洪吉 吉林师范大学副教授,江苏大学博士,主要研究方向为基于表面增强拉曼散射技术的分子印迹传感器的构建。已在Sensors and Actuators:B.Chemical、Talanta、Journal of Environmental Chemical Engineering,等杂志发表多篇高水平文章

    邵 晶 长春理工大学教授,长春理工大学博士,主要研究方向为无机/有机光电功能材料。已在Journal of Environmental Chemical Engineering等杂志发表多篇高水平文章。

  • 基金资助:
    吉林省科学技术发展项目(YDZJ202201ZYTS629); 吉林省自然科学基金项目(YDZJ202201ZYTS356); 吉林省自然科学基金项目(YDZJ202101ZYTS073)

Modification and Application of Bi2MoO6 in Photocatalytic Technology

Dandan Wang1,2(), Zhaoxin Lin3,4, Huijie Gu3,4, Yunhui Li3,4, Hongji Li1,2(), Jing Shao3,4()   

  1. 1. College of Engineering, Jilin Normal University,Siping 136000, China
    2. Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education,Changchun 130103, China
    3. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology,Changchun 130022, China
    4. Zhongshan Institute of Changchun University of Science and Technology,Zhongshan 528437, China
  • Received:2022-09-29 Revised:2023-01-30 Online:2023-04-24 Published:2023-02-20
  • Contact: *e-mail: dandanwang@jlnu.edu.cn (Dandan Wang); jlsdlhj@163.com (Hongji Li); shaojing7079@163.com (Jing Shao)
  • Supported by:
    development of Science and Technology of Jilin Province(YDZJ202201ZYTS629); Natural Science Foundation Project of Jilin Province(YDZJ202201ZYTS356); Natural Science Foundation Project of Jilin Province(YDZJ202101ZYTS073)

目前,生态污染和能源短缺成为威胁人类生存的全球性问题,绿色、低碳的光催化技术对解决环境及能源问题具有战略性意义。作为三元奥里维里斯型(Aurivillius)化合物,Bi2MoO6凭借独特的层状结构引起研究者的广泛关注。然而,由于高的载流子复合率限制了其在光催化技术中的应用。本文重点总结概括对Bi2MoO6基光催化剂性能改性的策略,如表面结构调控、缺陷工程、金属沉积、构建异质结及光敏化处理。在诸多改性策略中重点论述Bi2MoO6基异质结的构建对光催化性能的影响。并对Bi2MoO6基光催化剂当前在光催化技术中面临的挑战及未来的发展前景进行展望,为加快Bi2MoO6基光催化剂的发展提供新思路。

At present, ecological pollution and energy shortage have become global problems threatening human survival. Green and low energy consumption photocatalytic technology is of strategic significance to solve environmental disaster and energy crisis. As a ternary Aurivillius compound, Bi2MoO6 has attracted extensive attention of researchers due to its unique layered structure. However, the high carrier recombination rate limits its application in photocatalysis. This paper summarizes the strategies for modifying the performance of Bi2MoO6 based photocatalysts, such as surface structure tuning, defect engineering, metal deposition, heterojunction fabrication and photosensitization treatment. In many modification strategies, the influence of the construction of Bi2MoO6 based heterojunction on the photocatalytic performance has been mainly discussed. Finally, the current challenges faced by Bi2MoO6 based photocatalyst in photocatalysis technology are summarized, and the future development prospects are given, providing new ideas for accelerating the development of Bi2MoO6 based photocatalyst.

()
图1 Bi2MoO6晶体结构示意图[16]
Fig.1 Schematic diagram of Bi2MoO6 crystal structure[16]
表1 不同Bi2MoO6制备方法的对比
Table 1 Comparison of different preparation methods of Bi2MoO6
图2 Bi2MoO6光催化过程示意图
Fig.2 Schematic diagram of photocatalytic process of Bi2MoO6
图3 (a,b) HT-Bi2Mo6 (c,d)CP-Bi2Mo6的SEM图[47]
Fig.3 SEM of (a,b) HT-Bi2Mo6 and (c,d) CP-Bi2Mo2[47]
表2 近年来已报道的各类改性Bi2MoO6基光催化剂降解有机污染物性能的比较
Table 2 Comparison of various modified Bi2MoO6 based photocatalysts reported for organic pollutant degradation in recent years
表3 近年来已报道的各类改性Bi2MoO6基光催化剂还原CO2性能的比较
Table 3 Comparison of various modified Bi2MoO6 based photocatalysts reported for CO2 reduction in recent years
图4 p-n异质结电荷转移示意图
Fig.4 Schematic of charge transfer of p-n heterojunction
图5 Ⅰ型、Ⅱ型及Ⅲ型异质结的能带排列示意图
Fig.5 Schematic of energy band arrangement of type Ⅰ, type Ⅱ and type Ⅲ heterojunction
图6 (a)直接Z型异质结 (b)氧化还原对Z型异质结 (c)固体介质Z型异质结示意图
Fig.6 Schematic diagram of (a) Direct Z-type het erojunction (b) Redox pair Z-type heterojunction (c) Z-type heterojunction in solid medium
图7 S型异质结电荷迁移示意图
Fig.7 Schematic of charge transfer of S-scheme heterojunction
表4 近年来已报道的各类Bi2MoO6基异质结光催化剂降解性能的比较
Table 4 Comparison of Bi2MoO6 based heterojunction photocatalysts reported for organic pollutant degradation in recent years
表5 各类异质结的优缺点的比较
Table 5 Comparison of advantages and disadvantages of various heterojunctions
[1]
Mohit Y, Seema , Amrish C, Klara H. J. Photochem., 2019, 383: 112014.
[2]
Gao M C, Yang J X, Sun T, Zhang Z Z, Zhang D F, Huang H J, Lin H X, Fang Y, Wang X X. Appl. Catal. B Environ., 2019, 243: 734.

doi: 10.1016/j.apcatb.2018.11.020     URL    
[3]
Low J, Cheng B, Yu J G. Appl. Surf. Sci., 2017, 392: 658.

doi: 10.1016/j.apsusc.2016.09.093     URL    
[4]
Jiang Z F, Sun H L, Wang T Q, Wang B, Wei W, Li H M, Yuan S Q, An T C, Zhao H J, Yu J G, Wong P K. Energy Environ. Sci., 2018, 11(9): 2382.

doi: 10.1039/C8EE01781F     URL    
[5]
Li X, Yu J G, Jaroniec M, Chen X B. Chem. Rev., 2019, 119(6): 3962.

doi: 10.1021/acs.chemrev.8b00400     URL    
[6]
Li X D, Liang L, Sun Y F, Xu J Q, Jiao X C, Xu X L, Ju H X, Pan Y, Zhu J F, Xie Y. J. Am. Chem. Soc., 2019, 141(1): 423.

doi: 10.1021/jacs.8b10692     URL    
[7]
Rachna S, Akhand P S, Sunil K, Balendu S G, Ki-hyun K. J. Cleaner Prod., 2019, 234: 1484.

doi: 10.1016/j.jclepro.2019.06.243     URL    
[8]
Ben Y J, Fu C X, Hu M, Liu L, Wong M H, Zheng C M. Environ. Res., 2019, 169: 483.

doi: 10.1016/j.envres.2018.11.040     URL    
[9]
Joel Y. Y. Loh, Nazir P. Kherani & Geoffrey A. Ozin. Nat. Sustain., 2021, 4: 466.

doi: 10.1038/s41893-021-00681-y    
[10]
Li J Y, Li Y H, Qi M Y, Lin Q, Tang Z R, Xu Y J. ACS Catal., 2020, 10(11): 6262.

doi: 10.1021/acscatal.0c01567     URL    
[11]
Cheng L, Xiang Q J, Liao Y L, Zhang H W. Energy Environ. Sci., 2018, 11(6): 1362.

doi: 10.1039/C7EE03640J     URL    
[12]
Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116(12): 7159.

doi: 10.1021/acs.chemrev.6b00075     URL    
[13]
Harshita C, Amrish C, Pravin P I, Garg S. J. Ind. Eng. Chem., 2021, 95(25): 1.

doi: 10.1016/j.jiec.2020.12.028     URL    
[14]
Wang L, Gao W, Zhao Z Y, Li P, He H C, Alsaedi A, Hayat T, Wang X Y, Zhou Y, Zou Z G. Catal. Sci. Technol., 2019, 9(24): 7045.

doi: 10.1039/c9cy02059d    
[15]
Wang J. Master Dissertation of Shanghai University Of Engineering Science, 2019.
王杰. 上海工程技术大学硕士论文, 2019.).
[16]
Núñez-González R, Rangel R, Antúnez-García J, Galván D H. Solid State Commun., 2020, 318: 113978.

doi: 10.1016/j.ssc.2020.113978     URL    
[17]
Zhao Y F, Mao Y F, Zhai X Y, Zhang G Y. Progress in Chemistry, 2021, 33(8): 1331.
赵依凡, 毛琦云, 翟晓雅, 张国英. 化学进展. 2021, 33(8): 1331. ).

doi: 10.7536/PC201236    
[18]
Liu X T, Gu S N, Zhao Y J, Zhou G W, Li W J. J. Mater. Sci. Technol., 2020, 56: 45.

doi: 10.1016/j.jmst.2020.04.023     URL    
[19]
Yin G L, Jia Y L, Lin Y H, Zhang C Y, Zhu Z H, Ma Y. New J. Chem., 2022, 46(3): 906.

doi: 10.1039/D1NJ04705A     URL    
[20]
Yu H B, Jiang L B, Wang H, Huang B B, Yuan X Z, Huang J H, Zhang J, Zeng G M. Small, 2019, 15(23): 1970122.

doi: 10.1002/smll.v15.23     URL    
[21]
Xia Y. Master Dissertation of Shenzhen University, 2020.
夏宇. 深圳大学硕士论文, 2020.).
[22]
Zhang X C, Ren G M, Zhang C M, Xue J B, Zhao Q, Li R, Wang Y F, Fan C M. Green Energy Environ., 2021, 6(5): 693.

doi: 10.1016/j.gee.2020.06.014     URL    
[23]
Fu F, Shen H D, Sun X, Xue W W, Shoneye A, Ma J N, Luo L, Wang D J, Wang J G, Tang J W. Appl. Catal. B Environ., 2019, 247: 150.

doi: 10.1016/j.apcatb.2019.01.056     URL    
[24]
Mao D, Wan J W, Wang J Y, Wang D. Adv. Mater., 2019, 31(38): 1970274.

doi: 10.1002/adma.v31.38     URL    
[25]
Zhu X W, Wang Z L, Zhong K, Li Q D, Ding P H, Feng Z Y, Yang J M, Du Y S, Song Y H, Hua Y J, Yuan J J, She Y B, Li H M, Xu H. Chem. Eng. J., 2022, 429: 132204.

doi: 10.1016/j.cej.2021.132204     URL    
[26]
Wang M, Yang C X, Zheng H Y, Guo P Y, Song E J. J. Chin. Ceram. Soc., 2015, 43(11): 1643.
王敏, 杨长秀, 郑浩岩, 郭鹏瑶, 宋恩军. 硅酸盐学报. 2015, 43(11): 1643.).
[27]
Umapathy V, Manikandan A, Arul Antony S, Ramu P, Neeraja P. Trans. Nonferrous Met. Soc. China, 2015, 25(10): 3271.

doi: 10.1016/S1003-6326(15)63948-6     URL    
[28]
Zhang Q, Wang X F, Duan F, Chen M Q. Chin. J. Inorg. Chem., 2015, 31(11): 2152.
张琴, 汪晓凤, 段芳, 陈明清. 无机化学学报, 2015, 31(11): 2152.).
[29]
Zhang T, Huang J F, Cao L Y, Zhou S. Journal of the Chinese Ceramic Society, 2013, 41(5): 710.
张婷, 黄剑锋, 曹丽云, 周森. 硅酸盐学报. 2013, 41(5): 710.).
[30]
Zuo G L, Ye H Y, Li R L. Environmental Protection of Chemical Industry, 2015, 35(1): 89.
左广玲, 叶红勇, 李入林. 化工环保. 2015, 35(1): 89.).
[31]
Li X Y, Wang C, Tang J W. Nat. Rev. Mater., 2022, 7(8): 617.

doi: 10.1038/s41578-022-00422-3    
[32]
Hunge Y M, Yadav A A, Kang S W, Mohite B M. Recent Pat. Nanotechnol., 2023, 17(1): 5.

doi: 10.2174/1872210516666220304162429     URL    
[33]
Geoffrey Ozin. Matter, 2022, 5(9): 2594.

doi: 10.1016/j.matt.2022.07.033     URL    
[34]
Sun C, Zhao Z T, Fan H G, Chen Y L, Liu X Y, Cao J, Lang J H, Wei M B, Liu H L, Yang L L. CrystEngComm, 2021, 23(41): 7270.

doi: 10.1039/D1CE00868D     URL    
[35]
Li W T, Huang W Z, Zhou H, Yin H Y, Zheng Y F, Song X C. J. Alloys Compd., 2015, 638: 148.

doi: 10.1016/j.jallcom.2015.03.103     URL    
[36]
Phuruangrat A, Buapoon S, Bunluesak T, Suebsom P, Wannapop S, Thongtem T, Thongtem S. J. Aust. Ceram. Soc., 2022, 58(3): 999.

doi: 10.1007/s41779-022-00765-8    
[37]
Ren G M, Liu S, Li Z Z, Bai H C, Hu X D, Meng X C. Advanced Science News, 2022: 2200154.
[38]
Yu Q, Jiang L Y, Gao S Y, Zhang S M, Ai T T, Feng X M, Wang W. Ceram. Int., 2017, 43(2): 2864.

doi: 10.1016/j.ceramint.2016.10.190     URL    
[39]
Wang M, Zheng H Y, Liu Q, Niu C, Che Y S, Dang M Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2013, 114: 74.
[40]
Shan L W, Wang G L, Suriyaprakash J, Li D, Liu L Z, Dong L M. J. Alloys Compd., 2015, 636: 131.

doi: 10.1016/j.jallcom.2015.02.113     URL    
[41]
Huo W C, Xu W N, Cao T, Guo Z Y, Liu X Y, Ge G X, Li N, Lan T, Yao H C, Zhang Y X, Dong F. J. Colloid Interface Sci., 2019, 557: 816.

doi: 10.1016/j.jcis.2019.09.089     URL    
[42]
Zhang W H, Yu N, Zhang L S, Jiang K W, Chen Y Z, Chen Z G. Mater. Lett., 2016, 163: 16.

doi: 10.1016/j.matlet.2015.09.113     URL    
[43]
Li X Y, Li W J, Liu X T, Fan H X, Geng L, Ma X H, Dong M, Liu S J. J. Alloys Compd., 2021, 889: 161757.

doi: 10.1016/j.jallcom.2021.161757     URL    
[44]
Li H D, Li W J, Wang F Z, Liu X T, Ren C J. Appl. Catal. B Environ., 2017, 217: 378.

doi: 10.1016/j.apcatb.2017.06.015     URL    
[45]
Jing K Q, Ma W, Ren Y H, Xiong J H, Guo B B, Song Y J, Liang S J, Wu L. Appl. Catal. B Environ., 2019, 243: 10.

doi: 10.1016/j.apcatb.2018.10.027     URL    
[46]
Chen Y, Yang W Y, Gao S, Sun C X, Li Q. ACS Appl. Nano Mater., 2018, 1(7): 3565.

doi: 10.1021/acsanm.8b00719     URL    
[47]
Anukorn P, Sunisa P, Phattranit D, Nuengruethai E, Somchai T, Titipun T. Mat. Sci. Semicon. Proc., 2015, 34: 175.

doi: 10.1016/j.mssp.2015.02.028     URL    
[48]
Xu F X, Wang J G, Zhang N C, Liang H, Sun H H. Appl. Surf. Sci., 2022, 575: 151738.

doi: 10.1016/j.apsusc.2021.151738     URL    
[49]
Meng X C, Zhang Z S. Appl. Surf. Sci., 2017, 392: 169.

doi: 10.1016/j.apsusc.2016.08.113     URL    
[50]
Phuruangrat A, Keereesaensuk P O, Karthik K, Dumrongrojthanath P, Ekthammathat N, Thongtem S, Thongtem T. J. Inorg. Organomet. Polym. Mater., 2020, 30(2): 322.

doi: 10.1007/s10904-019-01190-4    
[51]
Ji S L, Lei H, Wu M X, He Q S, Sun P F, Dong X P. J. Taiwan Inst. Chem. Eng., 2022, 133: 104260.

doi: 10.1016/j.jtice.2022.104260     URL    
[52]
Shen Z Y, Zhou H Y, Zhou P, Zhang H, Xiong Z K, Yu Y H, Yao G, Lai B. J. Hazard. Mater., 2022, 425: 127781.

doi: 10.1016/j.jhazmat.2021.127781     URL    
[53]
Zhang J J, Kai C M, Zhang F J, Wang Y R. Colloids Surf. A Physicochem. Eng. Aspects, 2022, 648: 129255.

doi: 10.1016/j.colsurfa.2022.129255     URL    
[54]
He W J, Wei Y C, Xiong J, Tang Z L, Song W Y, Liu J, Zhao Z. Chem. Eng. J., 2022, 433: 133540.

doi: 10.1016/j.cej.2021.133540     URL    
[55]
Risov D, Kousik D, Sathyapal R C, Sebastian C P. Chem. Commun., 2022, 58: 6638.

doi: 10.1039/D2CC00490A     URL    
[56]
Risov D, Kousik D, Bitan R, Chathakudath P V, Sebastian C P. Energy Environ. Sci., 2022, 15: 1967.

doi: 10.1039/D1EE02976B     URL    
[57]
Dai W L, Xiong W W, Yu J J, Zhang S Q, Li B, Yang L X, Wang T Y, Luo X B, Zou J P, Luo S L. ACS Appl. Mater. Interfaces, 2020, 12(23): 25861.

doi: 10.1021/acsami.0c04730     URL    
[58]
Dai W L, Yu J J, Xu H, Hu X, Luo X B, Yang L X, Tu X M. CrystEngComm, 2016, 18(19): 3472.

doi: 10.1039/C6CE00248J     URL    
[59]
Zhang L, Wang W, Wang H, Ma X, Bian Z Y. J. Mater. Sci. Mater. Electron., 2019, 30(6): 5808.

doi: 10.1007/s10854-019-00879-z    
[60]
Dai W L, Long J F, Yang L X, Zhang S Q, Xu Y, Luo X B, Zou J P, Luo S L. J. Energy Chem., 2021, 61: 281.

doi: 10.1016/j.jechem.2021.01.009     URL    
[61]
Li S G, Bai L Q, Ji N, Yu S X, Lin S, Tian N, Huang H W. J. Mater. Chem. A, 2020, 8(18): 9268.

doi: 10.1039/D0TA02102D     URL    
[62]
Mostafa Z, Fatemeh M, Peyman N, Mohammad H B. J. Mol. Struct., 2022, 1256: 132472.

doi: 10.1016/j.molstruc.2022.132472     URL    
[63]
Li S J, Hu S W, Jiang W, Liu Y, Zhou Y T, Liu J S, Wang Z H. J. Colloid Interface Sci., 2018, 530: 171.

doi: 10.1016/j.jcis.2018.06.084     URL    
[64]
Qiao X Q, Zhang Z W, Li Q H, Hou D F, Zhang Q C, Zhang J, Li D S, Feng P Y, Bu X H. J. Mater. Chem. A, 2018, 6(45): 22580.

doi: 10.1039/C8TA08294D     URL    
[65]
Du H, Liu Y N, Shen C C, Xu A W. Chin. J. Catal., 2017, 38(8): 1295.

doi: 10.1016/S1872-2067(17)62866-3     URL    
[66]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

doi: 10.1002/adma.v29.20     URL    
[67]
Li Z, Zheng R J, Dai S J, Zhao T L, Chen M, Zhang Q W. J. Alloys Compd., 2021, 882: 160681.

doi: 10.1016/j.jallcom.2021.160681     URL    
[68]
Subha N, Mahalakshmi M, Myilsamy M, Neppolian B, Murugesan V. J. Photochem. Photobiol. A Chem., 2019, 379: 150.

doi: 10.1016/j.jphotochem.2019.05.004     URL    
[69]
Cui H, Dong S Y, Wang K K, Luan M S, Huang T L. Sep. Purif. Technol., 2021, 255: 117758.

doi: 10.1016/j.seppur.2020.117758     URL    
[70]
Guo R N, Zhang X Y, Li B, Zhang H X, Gou J F, Cheng X W. J. Phys. D: Appl. Phys., 2019, 52(8): 085302.

doi: 10.1088/1361-6463/aaf4e2     URL    
[71]
Xu X M, Meng L J, Dai Y X, Zhang M, Sun C, Yang S G, He H, Wang S M, Li H. J. Hazard. Mater., 2020, 381: 120953.

doi: 10.1016/j.jhazmat.2019.120953     URL    
[72]
Wu H, Meng F M, Liu X B, Yu B. Nanotechnology, 2022, 33(11): 115203.

doi: 10.1088/1361-6528/ac3f13    
[73]
Shan L W, Li J C, Wu Z, Dong L M, Chen H T, Li D, Suriyaprakash J, Zhang X L. Chem. Eng. J., 2022, 436: 131516.

doi: 10.1016/j.cej.2021.131516     URL    
[74]
Kumar A, Singla Y, Sharma M, Bhardwaj A, Krishnan V. Chemosphere, 2022, 308: 136212.

doi: 10.1016/j.chemosphere.2022.136212     URL    
[75]
Mu F H, Miao X W, Cao J H, Zhao W, Yang G, Zeng H H, Li S J, Sun C. J. Clean. Prod., 2022, 360: 131948.

doi: 10.1016/j.jclepro.2022.131948     URL    
[76]
Zhou Y P, Jiao W Y, Xie Y, He F, Ling Y, Yang Q, Zhao J S, Ye H, Hou Y. J. Colloid Interface Sci., 2022, 608: 2213.

doi: 10.1016/j.jcis.2021.10.053     URL    
[77]
Guo R N, Zhang X Y, Li B, Zhang H X, Gou J F, Cheng X W. J. Phys. D: Appl. Phys., 2019, 52(8): 085302.

doi: 10.1088/1361-6463/aaf4e2     URL    
[78]
Wu J, Sun Y Y, Gu C H, Wang T, Xin Y J, Chai C, Cui C Y, Ma D. Appl. Catal. B Environ., 2018, 237: 622.

doi: 10.1016/j.apcatb.2018.06.016     URL    
[79]
Zhu P F, Chen Y J, Duan M, Ren Z H, Hu M. Catal. Sci. Technol., 2018, 8(15): 3818.

doi: 10.1039/C8CY01087K     URL    
[80]
Shen X F, Song B T, Shen X X, Shen C, Shan S D, Xue Q Q, Chen X B, Li S J. Chem. Eng. J., 2022, 445: 136703.

doi: 10.1016/j.cej.2022.136703     URL    
[81]
Li S J, Wang C C, Cai M J, Liu Y P, Dong K X, Zhang J L. J. Colloid Interface Sci., 2022, 624: 219.

doi: 10.1016/j.jcis.2022.05.151     URL    
[82]
Sun K Y, Zhou H L, Li X Y, Ma X H, Zhang D H, Li M C. J. Alloys Compd., 2022, 913: 165119.

doi: 10.1016/j.jallcom.2022.165119     URL    
[83]
Ou B, Wang J X, Wu Y, Zhao S, Wang Z. Chem. Eng. J., 2020, 380: 122600.

doi: 10.1016/j.cej.2019.122600     URL    
[84]
Liu J, Li J, Bing X M, Ng D H L, Cui X L, Ji F, Dienguila Kionga D. Mater. Res. Bull., 2018, 102: 379.

doi: 10.1016/j.materresbull.2018.03.010     URL    
[85]
Hu F X, Cui E T, Liu H X, Wu J, Dai Y, Yu G Y. J. Mater. Sci. Mater. Electron., 2019, 30(3): 2572.

doi: 10.1007/s10854-018-0532-9    
[86]
Li X Y, Ma T, Dong L X, Na Y, Liu Y M, Li Z, Zheng R J, Dai S J, Zhao T L. Adv. Powder Technol., 2022, 33(3): 103468.

doi: 10.1016/j.apt.2022.103468     URL    
[87]
Jia Y F, Li J J, Liu Z J, Wang Q Z, Zhang W B, Bae J S, Liu C L. Chem. Eng. J., 2022, 437: 135300.

doi: 10.1016/j.cej.2022.135300     URL    
[88]
Wang A W, Ni J X, Wang W, Wang X Y, Liu D M, Zhu Q. J. Hazard. Mater., 2022, 426: 128106.

doi: 10.1016/j.jhazmat.2021.128106     URL    
[89]
Wang Q M, Zhang Y J, Li J L, Liu N, Jiao Y F, Jiao Z B. J. Colloid Interface Sci., 2020, 567: 145.

doi: 10.1016/j.jcis.2020.02.003     URL    
[90]
Rama K C, Namgyu S, Yang S K, Misook K. Inorg. Chem. Front., 2020, 7(15): 2818.

doi: 10.1039/D0QI00339E     URL    
[91]
Heng H M, Gan Q, Meng P C, Liu X. J. Alloys Compd., 2017, 696: 51.

doi: 10.1016/j.jallcom.2016.11.116     URL    
[92]
Zhao J Q, Zhang H T, Jia S C, Jiang D M, Zhan Q F. J. Mater. Sci., 2021, 56(27): 15241.

doi: 10.1007/s10853-021-06263-9    
[93]
Zhen Y Z, Yang C M, Shen H D, Xue W W, Gu C R, Feng J H, Zhang Y C, Fu F, Liang Y C. Phys. Chem. Chem. Phys., 2020, 22(45): 26278.

doi: 10.1039/D0CP02199G     URL    
[94]
El-Sabban H A, Hegazey R M, Hamdy A, Moustafa Y. J. Mol. Struct., 2022, 1269: 133755.

doi: 10.1016/j.molstruc.2022.133755     URL    
[95]
Guo J H, Shi L, Zhao J Y, Wang Y, Tang K B, Zhang W Q, Xie C Z, Yuan X Y. Appl. Catal. B Environ., 2018, 224: 692.

doi: 10.1016/j.apcatb.2017.11.030     URL    
[96]
Zheng Y, Zhou T F, Zhao X D, Pang W K, Gao H, Li S A, Zhou Z, Liu H K, Guo Z P. Adv. Mater., 2017, 29(26): 1700396.

doi: 10.1002/adma.v29.26     URL    
[97]
Zhang X C, Ren G M, Zhang C M, Li R, Zhao Q, Fan C M. Catal. Lett., 2020, 150(9): 2510.

doi: 10.1007/s10562-020-03182-3    
[98]
Hu T P, Yang Y, Dai K, Zhang J F, Liang C H. Appl. Surf. Sci., 2018, 456: 473.

doi: 10.1016/j.apsusc.2018.06.186     URL    
[99]
Shi W L, Li M Y, Huang X L, Ren H J, Guo F, Tang Y B, Lu C Y. Chem. Eng. J., 2020, 394: 125009.

doi: 10.1016/j.cej.2020.125009     URL    
[100]
Wang D Y, Li K, Zhou C lei L, de Rancourt de MimÉrand Y, Jin X Y, Guo J. Appl. Surf. Sci., 2022, 585: 152591.

doi: 10.1016/j.apsusc.2022.152591     URL    
[101]
Meng Q Q, Lv C D, Sun J X, Hong W Z, Xing W N, Qiang L S, Chen G, Jin X L. Appl. Catal. B Environ., 2019, 256: 117781.

doi: 10.1016/j.apcatb.2019.117781     URL    
[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[8] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[9] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[10] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[11] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[12] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[13] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[14] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[15] 杨世迎, 刘俊琴, 李乾风, 李阳. 机械球磨改性零价铝的作用机制[J]. 化学进展, 2021, 33(10): 1741-1755.