English
新闻公告
More
化学进展 2023, Vol. 35 Issue (4): 509-518 DOI: 10.7536/PC220939   后一篇

• 综述 •

表界面调制增强铋基催化剂的光生载流子分离和传输

徐怡雪1, 李诗诗1, 马晓双1, 刘小金1, 丁建军2,3,*(), 王育乔1,*()   

  1. 1.东南大学化学化工学院 纳米光电化学与器件研究中心 南京 211189
    2.中国科学院合肥物质科学研究院 固体物理研究所 合肥 230031
    3.安徽工业技术创新研究院 合肥 230088
  • 收稿日期:2022-10-02 修回日期:2022-12-16 出版日期:2023-04-24 发布日期:2023-02-20
  • 基金资助:
    国家自然科学基金项目(61774033); 安徽省重点研究与开发计划(2022107020009)

Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts

Yixue Xu1, Shishi Li1, Xiaoshuang Ma1, Xiaojin Liu1, Jianjun Ding2,3(), Yuqiao Wang1()   

  1. 1. Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University,Nanjing 211189, China
    2. Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences,Hefei 230031, China
    3. Anhui Institute of Innovation for Industrial Technology,Hefei 230088, China
  • Received:2022-10-02 Revised:2022-12-16 Online:2023-04-24 Published:2023-02-20
  • Contact: *e-mail: dingjj@rntek.cas.cn(Jianjun Ding), yqwang@seu.edu.cn(Yuqiao Wang)
  • Supported by:
    National Natural Science Foundation of China(61774033); Key Research and Development Project of Anhui Province(2022107020009)

光催化是一种理想的洁净能源生产和环境污染治理技术,在推动未来“碳达峰,碳中和”的实现和调整我国能源结构具有重要意义。层状结构的铋基催化剂因其具有合适的禁带宽度所以在光催化领域中备受关注。然而,低效率的光生载流子的分离与传输过程却限制了其光催化活性。本文简要地总结了通过表界面调控增强铋基催化剂光生载流子分离与传输效率的策略,包括形貌调控、缺陷工程、杂原子掺杂和异质结构建等。特别地,从电子和几何结构角度分析了上述策略对增强铋基催化剂内建电场的强度、构筑内部高效载流子传输通道和延长载流子寿命的作用机制,为进一步研究设计具有高效载流子分离和传输效率的催化剂提供理论参考依据。最后,分析了不同表面界面策略提高载流子分离和传输效率的具体原因以及铋基催化剂在工业应用中面临的挑战和发展前景。

Photocatalysis is an attractive technology for clean energy production and environmental pollution prevention, which is of significant importance in promoting the realization of “carbon peaking and carbon neutral” in the future and adjusting the energy structure of China. However, among the various photocatalytic materials, bismuth-based catalysts with layered structures are of considerable attention in the field of photocatalysis owing to their suitable band gap. However, the photocatalytic activity of bismuth-based catalysts is limited by the lower separation and transport efficiency of carriers. This paper provides a summary of the strategies to enhance the photogenerated carrier separation and transport efficiency of bismuth-based catalysts through surface interface modulation, including morphology modulation, defect engineering, heteroatom doping and heterostructure construction. Particularly, the mechanism of the above strategies for improving the strength of the built-in electric field of bismuth-based catalysts, constructing efficient internal carrier transport channels and prolonging carrier lifetime is analyzed from the perspective of electronic structure and geometry. It provides a theoretical reference for further research on the design of catalysts with high carrier separation and transport efficiency. Finally, we analyzed the specific reasons for the improvement of carrier separation and transport efficiency by different surface interface strategies and the challenges and development prospects of bismuth-based catalysts in industrial applications.

()
图1 (a)光电流响应图;(b)电化学阻抗图;(c,d)Bi4O5Br2和BiOBr的表面功函数[17]
Fig.1 (a) Photocurrent responses diagram; (b) electrochemical impedance plots; (c, d) the calculated surface work function of Bi4O5Br2 and BiOBr[17]. Copyright 2019, Elsevier
图2 不同Bi24O31Br10纳米结构的合成工艺[19]
Fig.2 Synthesis processes of different Bi24O31Br10 nanostructures[19]. Copyright 2019, Elsevier
图3 Bi2WO6的微棒结构到空心纳米管的演变过程示意图[20]
Fig.3 Schematic illustration of the evolution process from micro-rod structure to hollow nanotube Bi2WO6[20]. Copyright 2018, Elsevier
图4 在好氧和厌氧条件下可能发生的光催化选择性氧化反应途径[27]
Fig.4 Proposed possible photocatalytic selective oxidation reaction pathway under aerobic and anaerobic conditions[27]. Copyright 2021, Elsevier
图5 (a)具有W缺陷的Bi2WO6的HAADF-STEM图像,插图中描述了其{100}和{001}晶面的原子结构;(b,c)沿HAADF-STEM图像中橙色框和绿色框的强度;(d)选择性光催化苄基醇氧化生成苯甲醛示意图[28]
Fig.5 (a) HAADF-STEM image of Bi2WO6 with W defects, inset depicting the atomic structure of its {100} and {001} crystal planes; (b, c) intensity of the orange and green boxes along the HAADF-STEM image; (d) schematic diagram of selective photocatalytic benzyl-alcohol oxidation of benzaldehyde[28]. Copyright 2020, American Chemical Society
图6 (a)BOC、(b)BOC-OV、(c)BOC-ClV和(d)BOC-(O+Cl)V表面电荷密度分布[31]
Fig.6 Surface charge density distribution of (a) BOC, (b) BOC-OV, (c) BOC-ClV and (d) BOC-(O+Cl)V[31]. Copyright 2022, American Chemical Society
图7 (a~d)Bi3O4Br、Bi3O4Br含一个氧空位、Bi3O4Br含一个铋空位、Bi3O4Br含一个铋空位和一个氧空位的态密度计算;(e)飞秒分辨瞬态吸收光谱和(f)时间分辨瞬态荧光光谱[32]
Fig.7 (a~d) Density of states calculations for Bi3O4Br, Bi3O4Br with one oxygen vacancy, Bi3O4Br with one bismuth vacancy, and Bi3O4Br with one bismuth vacancy and one oxygen vacancy; (e) ultrafast TA spectroscopy and (f) time-resolved transient PL decay[32]. Copyright 2019, Wiley
图8 纯Bi3O4Cl和C掺杂Bi3O4Cl中电子和空穴的分离和迁移示意图[41]
Fig.8 Schematic illustration of the separation and migration of electrons and holes in pure Bi3O4Cl and C-doped Bi3O4Cl[41]. Copyright 2016, Wiley
图9 B体相掺杂对BiOCl-B-OV激子解离和载流子产生的影响示意图[43]
Fig.9 Schematic illustration of the effect of B doping on BiOCl-B-OV excitons dissociation and carrier generation[43]. Copyright 2021, Wiley
图10 (a)Bi4O5I2-Fe30的Fe K边缘扩展XANES振荡函数k3χ(k)和EXAFS;(b)Bi4O5I2-Fe30和Bi4O5I2能带结构的计算;(c)Bi4O5I2-Fe30和(d)Bi4O5I2的表面功函数计算[49]
Fig.10 (a) Fe K-edge extended XANES oscillation functions k3χ(k) and EXAFS spectra of Bi4O5I2-Fe30; (b) The calculated band structures; the calculated surface work function of Bi4O5I2-Fe30 and Bi4O5I2, (c) Bi4O5I2-Fe30 and (d) Bi4O5I2[49]. Copyright 2021, American Chemical Society
图11 BiOI/Bi2O2SO4 p-n异质结形成示意图[55]
Fig.11 Schematic illustration of the BiOI/Bi2O2SO4 p-n heterojunction[55]. Copyright 2022, Elsevier
图12 BP/MBWO异质结的制备说明示意图[59]
Fig.12 Illustration of the fabrication of the BP/MBWO heterojunction[59]. Copyright 2019, Wiley
图13 (a)接触前,(b)接触后,(c)S-异质结中光生载流子转移过程[64]
Fig.13 (a) Before contact, (b) after contact, (c) photogenerated charge carrier transfer process in S-scheme mode[64]. Copyright 2020, Elsevier
图14 提出了可见光下Bi2Sn2O7/Bi2MoO6 S-异质结的光催化改善机理[65]
Fig.14 Proposed photocatalysis improvement mechanism of the Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction under visible light[65]. Copyright 2022, Elsevier
[1]
Ma Y, Wang X L, Jia Y S, Chen X B, Han H X, Li C. Chem. Rev., 2014, 114(19): 9987.

doi: 10.1021/cr500008u     URL    
[2]
Di J, Xia J X, Li H M, Guo S J, Dai S. Nano Energy, 2017, 41: 172.

doi: 10.1016/j.nanoen.2017.09.008     URL    
[3]
Ouyang T, Wang H J, Huang H H, Wang J W, Guo S, Liu W J, Zhong D C, Lu T B. Angew. Chem. Int. Ed., 2018, 57(50): 16480.

doi: 10.1002/anie.201811010     pmid: 30362217
[4]
Kominami H, Yamamoto S, Imamura K, Tanaka A, Hashimoto K. Chem. Commun., 2014, 50(35): 4558.

doi: 10.1039/C3CC49340G     URL    
[5]
Yang X F, Qin J L, Jiang Y, Chen K M, Yan X H, Zhang D, Li R, Tang H. Appl. Catal. B Environ., 2015, 166: 231.
[6]
Xia D H, Liu H D, Xu B H, Wang Y C, Liao Y H, Huang Y J, Ye L Q, He C, Wong P K, Qiu R L. Appl. Catal. B Environ., 2019, 245: 177.

doi: 10.1016/j.apcatb.2018.12.056     URL    
[7]
Guan Y, Wu J, Lin Y Y, Liu Q Z, Qi Y F, Pan W G, He P, Qi X M, Wang R, Ji Z H. Appl. Surf. Sci., 2019, 481: 838.

doi: 10.1016/j.apsusc.2019.03.177    
[8]
Guan Y, Wu J, Man X K, Liu Q Z, Qi Y F, He P, Qi X M. Chem. Eng. J., 2020, 396: 125234.

doi: 10.1016/j.cej.2020.125234     URL    
[9]
Kim T W, Choi K S. Science, 2014, 343(6174): 990.

doi: 10.1126/science.1246913     URL    
[10]
Fan Z, Zhao Y B, Zhai W, Qiu L, Li H, Hoffmann M R. RSC Adv., 2016, 6(3): 2028.

doi: 10.1039/C5RA18768K     URL    
[11]
Zhang K, Wang J, Jiang W J, Yao W Q, Yang H P, Zhu Y F. Appl. Catal. B Environ., 2018, 232: 175.

doi: 10.1016/j.apcatb.2018.03.059     URL    
[12]
Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1): 253.

doi: 10.1039/B800489G     URL    
[13]
Chen L X. PANS, 2020, 117(16): 8672.
[14]
Li L, Salvador P A, Rohrer G S. Nanoscale, 2014, 6(1): 24.

doi: 10.1039/c3nr03998f     pmid: 24084897
[15]
Xiong J, Di J, Li H M. Adv. Sci., 2018, 5(7): 1800244.

doi: 10.1002/advs.v5.7     URL    
[16]
Cui P Z, Wang J L, Wang Z M, Chen J, Xing X R, Wang L Z, Yu R B. Nano Res., 2016, 9(3): 593.

doi: 10.1007/s12274-015-0939-z     URL    
[17]
Jin X L, Lv C D, Zhou X, Xie H Q, Sun S F, Liu Y, Meng Q Q, Chen G. Nano Energy, 2019, 64: 103955.

doi: 10.1016/j.nanoen.2019.103955     URL    
[18]
Ye L Q, Jin X L, Liu C, Ding C H, Xie H Q, Chu K H, Wong P K. Appl. Catal. B Environ., 2016, 187: 281.

doi: 10.1016/j.apcatb.2016.01.044     URL    
[19]
Chen X, Zhang J, Liu L, Hu B R, Zhao Y L, Zhao S, Zhao W T, Li S, Hai X. Appl. Surf. Sci., 2019, 491: 1.

doi: 10.1016/j.apsusc.2019.05.300    
[20]
Xiao L B, Lin R B, Wang J, Cui C, Wang J Y, Li Z Q. J. Colloid Interface Sci., 2018, 523: 151.

doi: 10.1016/j.jcis.2018.03.064     URL    
[21]
Di J, Zhu C, Ji M X, Duan M L, Long R, Yan C, Gu K Z, Xiong J, She Y B, Xia J X, Li H M, Liu Z. Angew. Chem. Int. Ed., 2018, 57(45): 14847.

doi: 10.1002/anie.201809492     URL    
[22]
Luo Z S, Ye X Y, Zhang S J, Xue S K, Yang C, Hou Y D, Xing W D, Yu R, Sun J, Yu Z Y, Wang X C. Nat. Commun., 2022, 13: 2230.

doi: 10.1038/s41467-022-29825-0    
[23]
Bai Y, Ye L Q, Chen T, Wang L, Shi X, Zhang X, Chen D. ACS Appl. Mater. Interfaces, 2016, 8(41): 27661.

doi: 10.1021/acsami.6b08129     URL    
[24]
Chen F, Huang H W, Ye L Q, Zhang T R, Zhang Y H, Han X P, Ma T Y. Adv. Funct. Mater., 2018, 28(46): 1804284.

doi: 10.1002/adfm.v28.46     URL    
[25]
Sun M L, Dong X A, Lei B, Li J Y, Chen P, Zhang Y X, Dong F. Nanoscale, 2019, 11(43): 20562.

doi: 10.1039/C9NR06874K     URL    
[26]
Ding J, Dai Z, Qin F, Zhao H P, Zhao S, Chen R. Appl. Catal. B Environ., 2017, 205: 281.

doi: 10.1016/j.apcatb.2016.12.018     URL    
[27]
Sun Z L, Yang X L, Yu X F, Xia L H, Peng Y H, Li Z, Zhang Y, Cheng J B, Zhang K S, Yu J Q. Appl. Catal. B Environ., 2021, 285: 119790.

doi: 10.1016/j.apcatb.2020.119790     URL    
[28]
Huang H W, Zhou C, Jiao X C, Yuan H F, Zhao J W, He C Q, Hofkens J, Roeffaers M B J, Long J L, Steele J A. ACS Catal., 2020, 10(2): 1439.

doi: 10.1021/acscatal.9b04789     URL    
[29]
Di J, Chen C, Zhu C, Song P, Xiong J, Ji M X, Zhou J D, Fu Q D, Xu M Z, Hao W, Xia J X, Li S Z, Li H M, Liu Z. ACS Appl. Mater. Interfaces, 2019, 11(34): 30786.

doi: 10.1021/acsami.9b08109     URL    
[30]
Gao S, Gu B C, Jiao X C, Sun Y F, Zu X L, Yang F, Zhu W G, Wang C M, Feng Z M, Ye B J, Xie Y. J. Am. Chem. Soc., 2017, 139(9): 3438.

doi: 10.1021/jacs.6b11263     URL    
[31]
Yang Z P, Shi Y B, Li H, Mao C L, Wang X B, Liu X F, Liu X, Zhang L Z. Environ. Sci. Technol., 2022, 56(6): 3587.

doi: 10.1021/acs.est.1c08532     URL    
[32]
Di J, Xia J X, Chisholm M F, Zhong J, Chen C, Cao X Z, Dong F, Chi Z, Chen H L, Weng Y X, Xiong J, Yang S Z, Li H M, Liu Z, Dai S. Adv. Mater., 2019, 31(28): 1807576.

doi: 10.1002/adma.v31.28     URL    
[33]
Li L Q, Long R, Bertolini T, Prezhdo O V. Nano Lett., 2017, 17(12): 7962.

doi: 10.1021/acs.nanolett.7b04374     URL    
[34]
Zhou W, Fu H G. Inorg. Chem. Front., 2018, 5(6): 1240.

doi: 10.1039/C8QI00122G     URL    
[35]
Xu Y C, Li H Z, Sun B J, Qiao P Z, Ren L P, Tian G H, Jiang B J, Pan K, Zhou W. Chem. Eng. J., 2020, 379: 122295.

doi: 10.1016/j.cej.2019.122295     URL    
[36]
Bai S, Zhang N, Gao C, Xiong Y J. Nano Energy, 2018, 53: 296.

doi: 10.1016/j.nanoen.2018.08.058     URL    
[37]
Li Z A, Wang J L, Chen J F, Liu L, Yang X F, Chen T, Chen Z Z, Yang M M, Yan W S, Fu Z P, Liu M, Lu Y L. J. Alloys Compd., 2019, 806: 492.

doi: 10.1016/j.jallcom.2019.07.216     URL    
[38]
Ikram M, Hassan J, Raza A, Haider A, Naz S, Ul-Hamid A, Haider J, Shahzadi I, Qamar U, Ali S. RSC Adv., 2020, 10(50): 30007.

doi: 10.1039/d0ra05862a     pmid: 35518250
[39]
Wang S, Bai L M, Ao X L. RSC Adv., 2018, 8(64): 36745.

doi: 10.1039/C8RA06778C     URL    
[40]
Wang Y Q, Xu X X, Lu W, Huo Y Q, Bian L J. Dalton Trans., 2018, 47(12): 4219.

doi: 10.1039/C7DT04912A     URL    
[41]
Li J, Cai L J, Shang J, Yu Y, Zhang L Z. Adv. Mater., 2016, 28(21): 4059.

doi: 10.1002/adma.201600301     URL    
[42]
Wang S Y, Ding X, Zhang X H, Pang H, Hai X, Zhan G M, Zhou W, Song H, Zhang L Z, Chen H, Ye J H. Adv. Funct. Mater., 2017, 27(47): 1703923.

doi: 10.1002/adfm.201703923     URL    
[43]
Shi Y B, Zhan G M, Li H, Wang X B, Liu X F, Shi L J, Wei K, Ling C C, Li Z L, Wang H, Mao C L, Liu X, Zhang L Z. Adv. Mater., 2021, 33(38): 2100143.

doi: 10.1002/adma.v33.38     URL    
[44]
Zhou J, Zhou J B, Hu Z S, Wang L. Mater. Sci. Semicond. Process., 2019, 90: 112.

doi: 10.1016/j.mssp.2018.10.012     URL    
[45]
Ding X, Zhao K, Zhang L Z. Environ. Sci. Technol., 2014, 48(10): 5823.

doi: 10.1021/es405714q     URL    
[46]
Jin X X, Wang R Y, Zhang L X, Si R, Shen M, Wang M, Tian J J, Shi J L. Angew. Chem. Int. Ed., 2020, 59(17): 6827.

doi: 10.1002/anie.v59.17     URL    
[47]
Wang Q, Li J, Tu X. Chem. Mater., 2019, 32: 734.

doi: 10.1021/acs.chemmater.9b03708     URL    
[48]
Di J, Chen C, Yang S Z, Chen S M, Duan M L, Xiong J, Zhu C, Long R, Hao W, Chi Z, Chen H L, Weng Y X, Xia J X, Song L, Li S Z, Li H M, Liu Z. Nat. Commun., 2019, 10: 2840.

doi: 10.1038/s41467-019-10392-w    
[49]
Jin X L, Xu Y X, Zhou X, Lv C D, Huang Q Z, Chen G, Xie H Q, Ge T, Cao J, Zhan J Q, Ye L Q. ACS Mater. Lett., 2021, 3(4): 364.
[50]
Zhang X C, Guan M H, Zhang Q R, Zhang C M, Li R, Liu J X, Wang Y W, Fan C M, Acta Phys. Sin., 2021, 70(8): 087101.

doi: 10.7498/aps     URL    
张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅. 物理学报, 2021, 70(8): 087101.).
[51]
Hao L, Kang L, Huang H W, Ye L Q, Han K L, Yang S Q, Yu H J, Batmunkh M, Zhang Y H, Ma T Y. Adv. Mater., 2019, 31(25): 1900546.

doi: 10.1002/adma.v31.25     URL    
[52]
Xie M Z, Fu X D, Jing L Q, Luan P, Feng Y J, Fu H G. Adv. Energy Mater., 2014, 4(5): 1300995.

doi: 10.1002/aenm.201300995     URL    
[53]
Wang M Y, Sun L, Lin Z Q, Cai J H, Xie K P, Lin C J. Energy Environ. Sci., 2013, 6(4): 1211.

doi: 10.1039/c3ee24162a     URL    
[54]
Yu J G, Low J, Xiao W, Zhou P, Jaroniec M. J. Am. Chem. Soc., 2014, 136(25): 8839.

doi: 10.1021/ja5044787     URL    
[55]
Geng Q, Xie H T, He Y, Sun Y J, Hou X F, Wang Z M, Dong F. Appl. Catal. B Environ., 2021, 297: 120492.

doi: 10.1016/j.apcatb.2021.120492     URL    
[56]
Li J F, Li Z Y, Liu X M, Li C Y, Zheng Y F, Yeung K W K, Cui Z D, Liang Y Q, Zhu S L, Hu W B, Qi Y J, Zhang T J, Wang X B, Wu S L. Nat. Commun., 2021, 12: 1224.

doi: 10.1038/s41467-021-21435-6    
[57]
Lu M L, Xiao X Y, Wang Y, Chen J Y. J. Alloys Compd., 2020, 831: 154789.

doi: 10.1016/j.jallcom.2020.154789     URL    
[58]
Kosco J, Bidwell M, Cha H, Martin T, Howells C T, Sachs M, Anjum D H, Gonzalez Lopez S, Zou L Y, Wadsworth A, Zhang W M, Zhang L S, Tellam J, Sougrat R, Laquai F, DeLongchamp D M, Durrant J R, McCulloch I. Nat. Mater., 2020, 19(5): 559.

doi: 10.1038/s41563-019-0591-1     pmid: 32015530
[59]
Hu J D, Chen D Y, Mo Z, Li N J, Xu Q F, Li H, He J H, Xu H, Lu J M. Angew. Chem., 2019, 131(7): 2095.

doi: 10.1002/ange.v131.7     URL    
[60]
Chen L, Wang J F, Li X J, Zhao C R, Hu X, Wu Y, He Y M. Inorg. Chem. Front., 2022, 9(11): 2714.

doi: 10.1039/D2QI00175F     URL    
[61]
Wang L, Zhao X, Lv D D, Liu C W, Lai W H, Sun C Y, Su Z M, Xu X, Hao W C, Dou S X, Du Y. Adv. Mater., 2020, 32(48): 2004311.

doi: 10.1002/adma.v32.48     URL    
[62]
Li G J, Lian Z, Wan Z W, Liu Z N, Qian J W, Deng Y, Zhang S L, Zhong Q. Appl. Catal. B Environ., 2022, 317: 121787.

doi: 10.1016/j.apcatb.2022.121787     URL    
[63]
Chen W X, Wei W, Wang K F, Zhang N, Chen G L, Hu Y J, Ostrikov K K. Nanoscale, 2021, 13(12): 6201.

doi: 10.1039/D1NR00317H     URL    
[64]
Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. Chem, 2020, 6(7): 1543.

doi: 10.1016/j.chempr.2020.06.010     URL    
[65]
Li S J, Wang C C, Liu Y P, Cai M J, Wang Y N, Zhang H Q, Guo Y, Zhao W, Wang Z H, Chen X B. Chem. Eng. J., 2022, 429: 132519.

doi: 10.1016/j.cej.2021.132519     URL    
[66]
Xu Y X, Jin X L, Ge T, Xie H Q, Sun R X, Su F Y, Li X, Ye L Q. Chem. Eng. J., 2021, 409: 128178.

doi: 10.1016/j.cej.2020.128178     URL    
[67]
Shi Y B, Li J, Mao C L, Liu S, Wang X B, Liu X F, Zhao S X, Liu X, Huang Y Q, Zhang L Z. Nat. Commun., 2021, 12: 5923.

doi: 10.1038/s41467-021-26219-6    
[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[3] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[4] 王晓方, 胡殷, 潘启发, 杨瑞龙, 龙重, 刘柯钊. 铀氮化物晶体结构及电子结构[J]. 化学进展, 2018, 30(12): 1803-1818.
[5] 靳永勇, 郝盼盼, 任军, 李忠. 单原子催化——概念、方法与应用[J]. 化学进展, 2015, 27(12): 1689-1704.
[6] 贾建峰, 武海顺*. Ⅲ-Ⅴ族多面体团簇的稳定性规律[J]. 化学进展, 2012, 24(06): 1008-1022.
[7] 陈丕恒, 赖新春, 汪小琳. 钚及其化合物的理论研究[J]. 化学进展, 2011, 23(7): 1316-1321.
[8] 苏静, 李隽. 锕系化合物荧光光谱理论研究进展[J]. 化学进展, 2011, 23(7): 1329-1337.
[9] 王艳 陶占良 陈军. 具有18电子结构的镁基过渡金属氢化物* [J]. 化学进展, 2010, 22(01): 234-240.
[10] 孔德生,吕文华,冯媛媛,毕思玮. DSA电极电催化性能研究及尚待深入探究的几个问题*[J]. 化学进展, 2009, 21(6): 1107-1117.
[11] 田蒙奎,上官文峰,王世杰,欧阳自远. 可见光响应光解水制氢的半导体光催化剂*[J]. 化学进展, 2007, 19(05): 680-688.
[12] 李志伟 赵存元 陈六平 . 芳香性团簇的结构和光谱性质的理论研究[J]. 化学进展, 2006, 18(12): 1599-1607.
[13] 李小罡,徐愉,刘云圻,朱道本,杨世和. 富勒烯金属包合物的研究进展*[J]. 化学进展, 2000, 12(04): 385-.