English
新闻公告
More
化学进展 2023, Vol. 35 Issue (9): 1369-1388 DOI: 10.7536/PC230115 前一篇   后一篇

• 综述 •

基于多齿钯化合物的磁性纳米颗粒催化材料的设计合成及应用

马云华, 邵晗, 蔺腾龙, 邓钦月*()   

  1. 上海理工大学材料与化学学院 上海 200093
  • 收稿日期:2023-02-01 修回日期:2023-03-24 出版日期:2023-09-24 发布日期:2023-05-30
  • 作者简介:

    邓钦月 硕士生导师。2018年复旦大学博士毕业至今在上海理工大学工作。研究领域包括金属有机催化材料的设计合成及催化应用研究。在主流期刊(参与)发表SCI收录论文共计25篇,申请国家发明专利5项,已授权4项。

  • 基金资助:
    上海市青年教师培养资助项目(slg20035)

Design, Synthesis and Application of Magnetic Nanoparticle Catalytic Materials Based on Multientate Palladium Compounds

Yunhua Ma, Han Shao, Tenglong Lin, Qinyue Deng()   

  1. College of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
  • Received:2023-02-01 Revised:2023-03-24 Online:2023-09-24 Published:2023-05-30
  • Contact: *e-mail: dqy1991@usst.edu.cn
  • Supported by:
    The Shanghai Young Teachers Training and Support Program(slg20035)

催化剂负载化是实现绿色催化的有效策略之一。磁性纳米颗粒(MNPs)负载的钯催化剂因其在反应体系中具有良好的分散性、高效的催化活性以及在外加磁场的作用下快速分离、高效回收等特点而被广泛研究并应用于有机合成反应中。其中MNPs负载的多齿钯化合物催化剂(MNPs@L-Pd)相比MNPs负载的钯纳米颗粒催化剂(MNPs@PdNP)具有更好的催化活性和稳定性。这主要是因为MNPs@L-Pd中修饰配体的引入一方面可以调节催化剂金属中心的电子效应和空间位阻实现对其活性的调控,另一方面使得催化剂金属中心与磁性材料之间产生稳定的化学键合的作用以实现对催化剂稳定性的调节。本文主要聚焦于MNPs@L-Pd,从催化剂稳定性和活性出发,分别阐述近10年基于不同配体及配位方式设计合成的MNPs@L-Pd的制备及其在C-X(Cl、Br、I)活化反应中应用的研究进展,并对这些反应进行总结,同时对发展前景作出展望。

Catalyst loading is one of the effective strategies for green catalysis. Palladium (Pd) catalysts supported by magnetic nanoparticles (MNPs) have been widely studied and used in organic synthesis due to their good dispersibility, high catalytic activity, rapid separation under the action of an external magnetic field, and efficient recovery. The MNPs-supported polydentate Pd compound catalyst (MNPs@L-Pd) shows better catalytic activity and stability than the MNPs-supported Pd nanoparticle catalyst (MNPs@PdNP). This is mainly because the introduction of the modified ligand in MNPs@L-Pd can regulate the electronic effect and steric hindrance of the catalyst metal center to achieve the regulation of its activity, on the other hand, it makes the stable chemical bond between the catalyst metal center and the magnetic material to achieve the regulation of stability. This paper mainly focuses on MNPs@L-Pd, the preparation of MNPs@L-Pd based on different ligands and coordination methods and its application in C-X(Cl, Br, I) activation reaction in the past 10 years are reviewed from the aspects of catalyst stability and activity, and the prospect of these reactions are also presented.

Contents

1 Introduction

2 Palladium-catalyzed system based on bidentate coordination mode

2.1 N-Pd-N coordination bond catalytic system

2.2 O-Pd-N coordination bond catalytic system

2.3 P-Pd-P coordination bond catalytic system

2.4 S-Pd-N coordination bond catalytic system

2.5 Se-Pd-N coordination bond catalytic system

3 Palladium-catalyzed system based on tridentate coordination mode

4 Palladium-catalyzed system based on tetradecentate coordination mode

5 Palladium-catalyzed system based on multidentate coordination mode

6 Palladium-catalyzed system based on Pd-C covalent bonds

7 Conclusion and outlook

()
图1 催化剂优势片段配位方式示意图
Fig.1 Schematic diagram of the coordination mode of the dominant fragment of the catalyst
图式1 MNP-1的合成及其在Suzuki偶联反应中的应用[19]
Scheme 1 Synthesis of MNP-1 and its application in Suzuki coupling reaction[19]
图式2 MNP-2的合成及其在Suzuki偶联反应中的应用[20]
Scheme 2 Synthesis of MNP-2 and its application in Suzuki coupling reaction[20]
图式3 MNP-3的合成及其在Suzuki偶联反应中的应用[21]
Scheme 3 Synthesis of MNP-3 and its application in Suzuki coupling reaction[21]
图式4 MNP-4的合成及其在Suzuki偶联反应中的应用[22]
Scheme 4 Synthesis of MNP-4 and its application in Suzuki coupling reaction[22]
图式5 MNP-5和MNP-6的合成及其在Heck偶联反应中的应用[23,24]
Scheme 5 Synthesis of MNP-5 and MNP-6 and their application in Heck coupling reaction[23,24]
图式6 MNP-7的合成及其在交叉偶联反应中的应用[25]
Scheme 6 Synthesis of MNP-7 and its application in cross-coupling reaction[25]
图式7 MNP-8的合成及其在C-S和C-Se交叉偶联反应中的应用[26]
Scheme 7 Synthesis of MNP-8 and its application in cross-coupling of C-S and C-Se[26]
图式8 MNP-9的合成及其在交叉偶联反应和氰基化反应中的应用[27]
Scheme 8 Synthesis of MNP-9 and its application in cross-coupling and cyanidation reactions[27]
图式9 MNP-10的合成及其在Heck和Suzuki交叉偶联反应中的应用[29]
Scheme 9 Synthesis of MNP-10 and its application in Heck and Suzuki cross-coupling reactions[29]
图式10 MNP-11的合成及其在Suzuki交叉偶联反应中的应用[30]
Scheme 10 Synthesis of MNP-11 and its application in Suzuki cross-coupling reactions[30]
图式11 MNP-12的合成及其在C-C交叉偶联反应中的应用[31]
Scheme 11 Synthesis of MNP-12 and its application in C-C cross-coupling reactions[31]
图式12 MNP-13的合成及其在C-C偶联反应中的应用[32]
Scheme 12 Synthesis of MNP-13 and its application in C-C cross-coupling reactions[32]
图式13 MNP-14的合成及其在C-C偶联反应中的应用[33]
Scheme 13 Synthesis of MNP-14 and its application in C-C cross-coupling reactions[33]
图式14 MNP-15的合成及其在Heck偶联反应中的应用[34]
Scheme 14 Synthesis of MNP-15 and its application in Heck coupling reactions[34]
图式15 MNP-16的合成及其在Heck偶联反应中的应用[37]
Scheme 15 Synthesis of MNP-16 and its application in Heck coupling reactions[37]
图式16 MNP-17的合成及其在Buchwald-Hartwig 胺化反应中的应用[38]
Scheme 16 Synthesis of MNP-17 and its application in Buchwald-Hartwig amination[38]
图式17 MNP-18的合成及其在C-C偶联反应中的应用[39]
Scheme 17 Synthesis of MNP-18 and its application in C-C coupling reactions[39]
图式18 MNP-19的合成及其在Heck偶联反应中的应用[40]
Scheme 18 Synthesis of MNP-19 and its application in Heck coupling reactions[40]
图式19 MNP-20的合成及其在Suzuki偶联反应中的应用[41]
Scheme 19 Synthesis of MNP-20 and its application in Suzuki coupling reactions[41]
图式20 MNP-21的合成及其在C-C偶联反应中的应用[42]
Scheme 20 Synthesis of MNP-21 and its application in C-C coupling reactions[42]
图式21 MNP-22的合成及其在Sonogashira偶联反应中的应用[43]
Scheme 21 Synthesis of MNP-22 and its application in Sonogashira coupling reactions[43]
图式22 MNP-23的合成及其在C-C偶联反应中的应用[44]
Scheme 22 Synthesis of MNP-23 and its application in C-C coupling reactions[44]
图式23 MNP-24的合成及其在C-C偶联反应中的应用[45]
Scheme 23 Synthesis of MNP-24 and its application in C-C coupling reactions[45]
图式24 MNP-25的合成及其在C-C偶联反应中的应用[46]
Scheme 24 Synthesis of MNP-25 and its application in C-C coupling reactions[46]
图式25 MNP-26的合成及其在CO2环碳酸酯反应中的应用[48]
Scheme 25 Synthesis of MNP-26 and its application in CO2 cyclocarbonate reaction[48]
图式26 MNP-27的合成及其在Suzuki偶联反应中的应用[49]
Scheme 26 Synthesis of MNP-27 and its application in Suzuki coupling reactions[49]
图式27 MNP-28的合成及其在Suzuki偶联反应中的应用[50]
Scheme 27 Synthesis of MNP-28 and its application in Suzuki coupling reactions[50]
图式28 MNP-29的合成及其在C-C偶联反应中的应用[51]
Scheme 28 Synthesis of MNP-29 and its application in C-C coupling reactions[51]
图式29 MNP-30的合成及其在C-C偶联反应中的应用[52]
Scheme 29 Synthesis of MNP-30 and its application in C-C coupling reactions[52]
图式30 MNP-31和MNP-32的结构示意图[53]
Scheme 30 Schematic representation of the structures of MNP-31 and MNP-32[53]
图式31 MNP-33的合成及其在C-C偶联反应中的应用[54]
Scheme 31 Synthesis of MNP-33 and its application in C-C coupling reactions[54]
图式32 MNP-34的合成及其在Suzuki偶联反应中的应用[55]
Scheme 32 Synthesis of MNP-34 and its application in Suzuki coupling reactions[55]
图式33 MNP-35和MNP-36的合成及其在Suzuki偶联反应中的应用[56,57]
Scheme 33 Synthesis of MNP-35 and MNP-36 and their application in Suzuki coupling reactions[56,57]
图式34 MNP-37的合成及其在Suzuki偶联反应中的应用[58]
Scheme 34 Synthesis of MNP-37 and its application in Suzuki coupling reactions[58]
图式35 MNP-38的合成及其在Suzuki偶联反应中的应用[59]
Scheme 35 Synthesis of MNP-38 and its application in Suzuki coupling reactions[59]
图式36 MNP-39的合成及其在C-C偶联反应中的应用[60]
Scheme 36 Synthesis of MNP-39 and its application in C-C coupling reactions[60]
图式37 MNP-40的合成及其在C-C偶联反应中的应用[61,62]
Scheme 37 Synthesis of MNP-40 and its application in C-C coupling reactions[61,62]
图式38 MNP-41的合成及其在Suzuki偶联反应中的应用[63]
Scheme 38 Synthesis of MNP-41 and its application in Suzuki coupling reactions[63]
表1 不同磁性纳米颗粒负载的催化剂对Suzuki-Miyaura反应的性能
Table 1 Performance of catalysts supported by different magnetic nanoparticles for Suzuka-Miyaura reaction
Pd catalyst (mol%) Standard conditions Yield(%) Reusability TOF(h-1) ref
MNP-2 (0.14 mol% Pd) K2CO3, EtOH/H2O(1∶1), 80 ℃, 50 min 95% 8 814.28 20a
MNP-3 (0.01 mol% Pd) K2CO3, EtOH/H2O(1∶1), 70 ℃, 30 min 96% 12 19 200 21a
MNP-4 (0.1 mol% Pd) Et3N or Na2CO3, EtOH/H2O(1∶1), 80 ℃,
30 min
99% 7 1980 22b
MNP-10 (0.009 mol% Pd) K2CO3, EtOH/H2O(1∶1), 75 ℃, 1.0 h 97% 5 10 778 29a
MNP-12 (0.47 mol% Pd) K2CO3, H2O, 60~90 ℃, 20 min 95% 6 612 31a
MNP-13 (0.1 mol% Pd) K2CO3, H2O, 90 ℃, 1.0 h 95% 6 950 32a
MNP-14 (0.09 mol% Pd) K2CO3, H2O, reflux, 1.0 h 93% 6 1033.3 33a
MNP-18 (0.01 mol% Pd) Et3N, H2O, 80 ℃, 45 min 91% 9 12 133.3 39a
MNP-20 (0.04 mol% Pd ) K2CO3, EtOH/H2O(2∶1), 60 ℃, 1.5 h 95% 7 1583.3 41a
MNP-21 (0.5 mol% Pd) Et3N, DMF, 100 ℃, 3 h 92% 10 61.3 42a
MNP-23 (0.3 mol% Pd) K2CO3, NMP, 100 ℃, 2.5 h 88% 8 117 44a
MNP-27 (0.017 mol% Pd) K2CO3, EtOH/H2O(1∶1), 80 ℃, 3.0 h 86% 7 1686.3 49a
MNP-28 (0.34 mol% Pd) K2CO3, EtOH/H2O(2∶1), 60 ℃, 3.0 h 92% 20 6903 50a
MNP-29 (0.825 mol% Pd) K2CO3, NMP, 90 ℃, 1.0 h 88% 6 107 51a
MNP-34 (0.5 mol%) K3PO4, Toluene, 100 ℃, 24.0 h 99% 7 8.25 55c
MNP-35 (0.15 mol% Pd) K2CO3, EtOH/H2O(1∶1), 70 ℃, 1.0 h 95% 5 633.3 56a
MNP-36 (0.15 mol% Pd) K2CO3, EtOH/H2O(1∶1), R.T, 2.0 h 95% 7 316.7 57a
MNP-37 (0.022 mmol% Pd ) Na2CO3, EtOH, 60 ℃, 20 min 95% 5 12 954.5 58a
MNP-38 (0.021 mmol% Pd) NaHCO3, EtOH/H2O(1∶1), 70 ℃, 10 min 98% 13 2940×104 59a
MNP-39 (0.37 mol% Pd ) K2CO3, H2O, 60 ℃, 3.0 h 96% 8 86.5 60a
MNP-40-A (1.5 mol% ) Na2CO3, PEG-400, 80 ℃, 100 min 88% 8 35.2 61a
MNP-40-B (0.83 mol% ) Na2CO3, PEG-400, 80 ℃, 3.0 h 93% 7 37.3 62a
MNP-41 (0.5 mol%) K2CO3, EtOH/H2O(2∶1), 60 ℃, 12.0 h 93% 12 15.5 63d
表2 不同磁性纳米颗粒负载的催化剂对Heck反应的性能
Table 2 Performance of catalysts supported by different magnetic nanoparticles for Heck reaction
表3 不同磁性纳米颗粒负载的催化剂对其他C-C偶联反应的性能
Table 3 Performance of catalysts supported by different magnetic nanoparticles for other C-C coupling reactions
[1]
Zhao G, Xu X J. Nanoscale, 2021, 13 (24): 10649.

doi: 10.1039/D1NR02464G     URL    
[2]
Vogel P, Lam Y H, Simon A, Houk K N. Catalysts, 2016, 6 (9): 128.

doi: 10.3390/catal6090128     URL    
[3]
Gabriele B. Molecules, 2022, 27 (4): 1227.

doi: 10.3390/molecules27041227     URL    
[4]
Niu B, Yang K, Lawrence B, Ge H. ChemSusChem, 2019, 12 (13): 2955.

doi: 10.1002/cssc.v12.13     URL    
[5]
Wang Q J, Su Y J, Li L X, Huang H M. Chem.Soc.Rev., 2016, 45 (5): 1257.
[6]
Xia Y, Qiu D, Wang J B. Chem.Rev., 2017, 117 (23): 13810.
[7]
Sain Shalu, Jain S, Srivastava M, Vishwakarma R, Dwivedi J. Curr. Org. Synth., 2019, 16 (8): 1105.

doi: 10.2174/1570179416666191104093533     pmid: 31984919
[8]
Wu X F, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed., 2010, 49 (48): 9047.

doi: 10.1002/anie.v49.48     URL    
[9]
Beller M, Zapf A, Mägerlein W. Chem. Eng. Technol., 2001, 24 (6): 575.

doi: 10.1002/1521-4125(200106)24:6;<575::AID-CEAT575;>3.0.CO;2-D     URL    
[10]
Dobrounig P, Trobe M, Breinbauer R. Monatsh. Chem., 2017, 148 (1): 3.

doi: 10.1007/s00706-016-1883-7     pmid: 28127089
[11]
Cole-Hamilton D J, Tooze R P. Catalyst Separation, Recovery and Recycling. New York: Springer, 2006.
[12]
Mallesham B, Raikwar D, Shee D. Advanced Functional Solid Catalysts for Biomass Valorization. Eds.: Mustansar H C, Sudarsanam P. Amsterdam: Elsevier, 2020.1.
[13]
Liu J, Zhu Q R, Du J, Zhang X L. Chin. J. Org. Chem., 2015, 35(1): 15.

doi: 10.6023/cjoc201408014     URL    
((刘杰, 朱庆仁, 杜娟, 张袖丽. 有机化学, 2015, 35(1): 15.)

doi: 10.6023/cjoc201408014    
[14]
Franzen R G. Top. Catal., 2016, 59 (13): 1143.

doi: 10.1007/s11244-016-0635-6     URL    
[15]
Qiao N N. Mater Dissertation of Guangdong Pharmaceutical University, 2019.
(乔妮娜. 广东药科大学硕士论文, 2019.).
[16]
Yan T L, Zhang Y, Zhu X Q, Zhang X H, Liu Z T, Dai J T, Xu G D. Journal of Yangzhou University Natural Science Edition, 2022, 25(1): 19.
( 颜廷良, 张玉, 朱啸庆, 张雪华, 刘总堂, 戴兢陶, 徐国栋. 扬州大学学报(自然科学版), 2022, 25(1): 19.)
[17]
Mu J L, Hu T W, Shan S Y, Jiang L H, Wang Y M, Jia Q M. Polymeric Materials Science and Engineering, 2013, 29(7): 179.
母佳利, 胡庭维, 陕绍云, 蒋利红, 王亚明, 贾庆明. 高分子材料科学与工程, 2013, 29(7): 179.).
[18]
Wang H B. Mater Dissertation of Lanzhou University, 2013.
(王海博. 兰州大学硕士论文, 2013.).
[19]
Bui N T, Dang T B, Le H V, Phan N T S. Chin. J. Catal., 2011, 32 (11/12): 1667.

doi: 10.1016/S1872-2067(10)60270-7     URL    
[20]
Beygzadeh M, Alizadeh A, Khodaei M M, Kordestani D. Catal. Commun., 2013, 32: 86.

doi: 10.1016/j.catcom.2012.11.028     URL    
[21]
Yang P B, Ma R, Bian F L. ChemCatChem, 2016, 8 (24): 3746.

doi: 10.1002/cctc.v8.24     URL    
[22]
Nehlig E, Waggeh B, Millot N, Lalatonne Y, Motte L, GuÉnin E. Dalton Trans., 2015, 44 (2): 501.

doi: 10.1039/c4dt02899f     pmid: 25429437
[23]
Bodaghifard M A. J. Organomet. Chem., 2019, 886: 57.

doi: 10.1016/j.jorganchem.2019.02.010    
[24]
Aryanasab F, Shabanian M, Laoutid F, Vahabi H. Appl. Organomet. Chem., 2021, 35 (5): e6198.

doi: 10.1002/aoc.v35.5     URL    
[25]
Dehbanipour Z, Zarnegaryan A. Inorg. Chem. Commun., 2022, 141.
[26]
Xu X Q, Wang W Q, Lu L, Zhang J Z, Luo J. Catal. Lett., 2022, 152 (10): 3031.

doi: 10.1007/s10562-021-03908-x    
[27]
Cai Y, Yuan H L, Gao Q, Wu L L, Xue L J, Feng N J, Sun Y. Catal. Lett., 2023, 153(2): 460.

doi: 10.1007/s10562-022-03990-9    
[28]
Bauer R E, Grimsdale A C, Müllen K. Functional Molecular Nanostructures. Ed.: Schlüter A D. Berlin, Heidelberg: Springer, 2005. 253.
[29]
Ma R, Yang P B, Bian F L. New J. Chem., 2018, 42 (6): 4748.

doi: 10.1039/C7NJ05014C     URL    
[30]
Sorokina S A, Kuchkina N V, Lawson B P, Krasnova I Y, Nemygina N A, Nikoshvili L Z, Talanova V N, Stein B D, Pink M, Morgan D G, Sulman E M, Bronstein L M, Shifrina Z B. Appl. Surf. Sci., 2019, 488: 865.

doi: 10.1016/j.apsusc.2019.05.141     URL    
[31]
Sheikh S, Nasseri M A, Chahkandi M, Reiser O, Allahresani A. RSC Adv., 2022, 12 (15): 8833.

doi: 10.1039/D2RA00487A     URL    
[32]
Yang J H, Wang D F, Liu W D, Zhang X, Bian F L, Yu W. Green Chem., 2013, 15 (12): 3429.

doi: 10.1039/c3gc40941d     URL    
[33]
Wang D F, Liu W D, Bian F L, Yu W. New J. Chem., 2015, 39 (3): 2052.

doi: 10.1039/C4NJ01581A     URL    
[34]
Barazandehdoust M, Mamaghani M, Kefayati H. React. Kinet., Mech. Catal., 2020, 129 (2): 1007.
[35]
Khoobi MM, Ma?mani L, Rezazadeh F, Zareie Z, Foroumadi A, Ramazani A, Shafiee A. J. Mol. Catal. A: Chem., 2012, 359: 74.

doi: 10.1016/j.molcata.2012.03.023     URL    
[36]
Ma?mani L, Sheykhan M, Heydari A, Faraji M, Yamini Y. Appl. Catal., A, 2010, 377 (1): 64.
[37]
Mohammadnia M, Poormirzaei N. Nanoscale Adv., 2021, 3 (7): 1917.

doi: 10.1039/d0na00954g     pmid: 36133091
[38]
Zarnaghash N, Panahi F, Khalafi-Nezhad A. J. Iran. Chem. Soc., 2015, 12 (11): 2057.

doi: 10.1007/s13738-015-0682-0     URL    
[39]
Sobhani S, Habibollahi A, Zeraatkar Z. Org. Process Res. Dev., 2019, 23 (7): 1321.

doi: 10.1021/acs.oprd.8b00426    
[40]
Rangraz Y, Nemati F, Elhampour A. New J. Chem., 2018, 42 (18): 15361.

doi: 10.1039/C8NJ02433B     URL    
[41]
Rangraz Y, Nemati F, Elhampour A. J. Phys. Chem. Solids, 2020, 138: 109251.

doi: 10.1016/j.jpcs.2019.109251     URL    
[42]
Sobhani S, Zeraatkar Z, Zarifi F. New J. Chem., 2015, 39 (9): 7076.

doi: 10.1039/C5NJ00344J     URL    
[43]
Esmaeilpour M, Sardarian A R, Javidi J. J. Organomet. Chem., 2014, 749: 233.

doi: 10.1016/j.jorganchem.2013.10.011     URL    
[44]
Esmaeilpour M, Javidi J. J. Chin. Chem. Soc., 2015, 62 (7): 614.

doi: 10.1002/jccs.v62.7     URL    
[45]
Sardarian A R, Kazemnejadi M, Esmaeilpour M. Dalton Trans., 2019, 48 (9): 3132.

doi: 10.1039/c9dt00060g     pmid: 30775761
[46]
Tashrifi Z, Bahadorikhalili S, Lijan H, Ansari S, Hamedifar H, Mahdavi M. New J. Chem., 2019, 43 (23): 8930.

doi: 10.1039/c9nj01562k    
[47]
Liao Q L, Tannenbaum R, Wang Z L. J. Phys. Chem. B, 2006, 110 (29): 14262.

doi: 10.1021/jp0625154     URL    
[48]
Qiu J P, Yu L, Ni J G, Fei Z X, Li W D, Sadeghzadeh S M. New J. Chem., 2020, 44 (4): 1269.

doi: 10.1039/C9NJ05513D     URL    
[49]
Rahman M, L Sarjadi M S, Akhter M S, Hannan J J, Sarkar S M. Arabian J. Chem., 2022, 15 (8): 103983.

doi: 10.1016/j.arabjc.2022.103983     URL    
[50]
Ren F F, Li S, Zheng W Q, Song Q Y, Jia W H, Nan Y Q, Jia H J, Liu J, Bao J J, Li Y X. Colloids Surf., A, 2022, 642: 128611.

doi: 10.1016/j.colsurfa.2022.128611     URL    
[51]
Esmaeilpour M, Javidi J, Dodeji F N, Hassannezhad H. J. Iran. Chem. Soc., 2014, 11 (6): 1703.

doi: 10.1007/s13738-014-0443-5     URL    
[52]
Bahadorikhalili S, Ma?mani L, Mahdavi H, Shafiee A. RSC Adv., 2015, 5 (87): 71297.

doi: 10.1039/C5RA12747E     URL    
[53]
Martinez-Olid F, AndrÉs R, Flores J C, GÓmez-Sal P, HeuzÉ K, Vellutini L. Dalton Trans., 2016, 45 (29): 11633.

doi: 10.1039/C6DT01330A     URL    
[54]
Kaur A, Singh V. Chem. Lett., 2016, 45 (1): 83.

doi: 10.1246/cl.150868     URL    
[55]
Deng Q Y, Shen Y J, Zhu H B, Tu T. Chem. Commun. (Camb), 2017, 53 (97): 13063.
[56]
Vishal K, Fahlman B D, Sasidhar B S, Patil S A, Patil S A,. Catal. Lett., 2017, 147 (4): 900.

doi: 10.1007/s10562-017-1987-7     URL    
[57]
Kandathil V, Fahlman B D, Sasidhar B S, Patil S A, Patil S A,. New J. Chem., 2017, 41 (17): 9531.

doi: 10.1039/C7NJ01876B     URL    
[58]
Rafiee F, Mehdizadeh N. Catal. Lett., 2018, 148 (5): 1345.

doi: 10.1007/s10562-018-2363-y    
[59]
Rafiee F, Hosseini S A. Appl. Organomet. Chem., 2018, 32 (11): e4519.

doi: 10.1002/aoc.v32.11     URL    
[60]
Esmaeilpour M, Sardarian A R, Firouzabadi H. J. Organomet. Chem., 2018, 873: 22.

doi: 10.1016/j.jorganchem.2018.08.002     URL    
[61]
Tahmasbi B, Ghorbani-Choghamarani A. New J. Chem., 2019, 43 (36): 14485.

doi: 10.1039/c9nj02727k    
[62]
Ghorbani-Choghamarani A, Tahmasbi B, Hudson R H E, Heidari A. Micropor. Mesopor. Mater., 2019, 284: 366.

doi: 10.1016/j.micromeso.2019.04.061     URL    
[63]
Zuo B, Shao H, Zheng Y, Ma Y H, Li W F, Huang M X, Deng Q Y. Asian J. Org. Chem., 2022, 11 (5): e202200018.

doi: 10.1002/ajoc.v11.5     URL    
[64]
Lakhdar S. Synthesis, 2020, 52 (22): 3492.

doi: 10.1055/s-0040-1706070     URL    
[65]
Liu Y Y, Liu J, Lu L Q, Xiao W J. Top Curr. Chem. (Cham), 2019, 377 (6): 37.
[66]
Zhou W J, Cao G M, Zhang Z P, Yu D G. Chem. Lett., 2019, 48 (3): 181.

doi: 10.1246/cl.190006     URL    
[67]
Sauermann N, Meyer T H, Qiu Y A, Ackermann L. ACS Catal., 2018, 8 (8):7086.

doi: 10.1021/acscatal.8b01682     URL    
[68]
Luscombe C K, Yadav P, Velmurugan N. Synthesis, 2023, 55(01): 1.

doi: 10.1055/a-1939-7052     URL    
[1] 张云飞, 杨波, 张鸿, 余刚, 邓述波, 刘剑洪. 负载型催化剂用于卤代有机污染物氢解去除[J]. 化学进展, 2013, 25(12): 2159-2168.
[2] 黄天天, 付雁, 张金利, 李韡*. 蛋白功能化磁性纳米颗粒的制备及应用[J]. 化学进展, 2012, 24(08): 1610-1622.
[3] 周慧睿, 陶可, 孙康. 荧光磁性纳米复合颗粒的制备及研究进展[J]. 化学进展, 2011, 23(6): 1100-1107.
[4] 陶可,窦红静,孙康. 铁的氧化物纳米颗粒及其组装体的化学制备*[J]. 化学进展, 2006, 18(11): 1460-1467.
[5] 李华明,舒火明,叶兴凯,吴越. 钯配合物催化烯烃氧化合成酮类物质的研究进展*[J]. 化学进展, 2001, 13(06): 461-.