English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 861-885 DOI: 10.7536/PC221133 前一篇   后一篇

• 综述 •

小分子催化转化中的凝聚态化学

王海, 王成涛, 周航, 王亮*(), 肖丰收*()   

  1. 浙江大学 化学工程与生物工程学院 杭州 310027
  • 收稿日期:2023-02-07 修回日期:2023-03-08 出版日期:2023-06-24 发布日期:2023-05-15
  • 作者简介:

    王 亮 浙江大学“百人计划”研究员,博士生导师。主要研究纳米与多孔催化材料及其在碳资源转化与精细化学品合成方面的应用。

Condensed Matter Chemistry in Catalytic Conversion of Small Molecules

Hai Wang, Chengtao Wang, Hang Zhou, Liang Wang(), Fengshou Xiao()   

  1. College of Chemical and Biological Engineering, Zhejiang University,Hangzhou 310027, China
  • Received:2023-02-07 Revised:2023-03-08 Online:2023-06-24 Published:2023-05-15
  • Contact: *e-mail: liangwang@zju.edu.cn(Liang Wang); fsxiao@zju.edu.cn(Fengshou Xiao)

催化在现代工业文明中占据极为重要的地位,在炼油、石油化工、精细化工、制药、环境保护等行业中具有主导作用。小分子的催化转化是解决相关能源和环境问题的关键技术,已成为当今国际社会研究的难点与热点之一。本文针对小分子催化转化中的凝聚态化学,讨论了烷烃脱氢、有机小分子加氢、高效产氢以及合成气转化等过程中凝聚态多层次结构对于催化性能的影响,强调了金属-载体之间的相互作用带来的凝聚态化学性质的变化,最后进行总结和展望。希望通过本文可以为凝聚态多层次结构和催化性能之间的构效关系研究提供思路,为今后高效催化剂的进一步开发与机理研究提供指导。

Catalysis has played an important role in the modern chemical industry. The processes of oil refining, petrochemical industry, fine chemical industry, pharmaceutical industry, and environmental protection strongly rely on catalysts. The catalytic transformation of small molecules is a key technology that provides solutions for energy and environmental problems, which has become one of the most important and hot topics in the international community. In this article, we summarize the progress of condensed matter chemistry and focus on the catalytic conversion of small molecules. The dehydrogenation of alkanes, hydrogenation of organic small molecules, efficient hydrogen production, and syngas conversion are summarized and discussed. The changes in the chemical properties of the condensed state caused by the metal-support interactions have been emphasized. We hope this review is helpful for the study of the structure-performance relationship between the multi-level structure of condensed matter and their catalytic properties, guiding the design of efficient catalysts in the future.

Contents

1 Introduction

2 Catalytic dehydrogenations of propane with different condensed matter structures

2.1 PtSn-based catalysts

2.2 PtZn-based catalysts

2.3 Pt-rare earth-based catalysts

2.4 Other dehydrogenation catalysts

3 Selective hydrogenations of organic molecules catalyzed by condensed matter with multi-level structure

3.1 Selective hydrogenation of nitro compounds

3.2 Reductive amination of oxygenated organic molecules

4 Hydrogen production catalyzed by condensed matter with multi-level structures

4.1 Methanol steam reforming

4.2 Water-gas shift reaction

5 Carbon monoxide oxidation catalyzed by condensed matter with multi-level structures

5.1 Gold nanoparticle catalyst for low temperature CO oxidation

5.2 Improved sinter-resistance of metal nanoparticles via condensed matter structure

5.3 Pt nanoparticle catalyst for low temperature CO oxidation

6 Syngas conversion on condensed matter structure

6.1 Identification of the active site in Rh-based catalyst

6.2 Catalysts composition

6.3 Morphologies of Rh species

6.4 Effect of additives

6.5 Effect of supports

6.6 Effect of synthetic methods

6.7 Encapsulated Rh catalysts

7 Conclusion and outlook

()
图1 Bell等提出的高活性PtZn中心的形成过程[24]
Fig.1 The formation process of PtZn active site proposed by Bell et al.[24]. Copyright 2021, American Chemical Society
图2 (a,b)ZnO-S-1和K-CrOx/Al2O3催化剂的丙烷脱氢转化率以及丙烯时空产率对比;(c)ZnO-S-1催化丙烷脱氢的反应机理[26]
Fig.2 (a, b) Comparison of propane dehydrogenation conversion and propylene yield between ZnO-S-1 and K-CrOx/Al2O3 catalysts; (c) Reaction mechanism of propane dehydrogenation on ZnO-S-1[26]. Copyright 2021, Nature Publishing Group
图3 不同催化剂表面以*C2H4和*H为指示符的二维反应相图[27]
Fig.3 Two-dimensional reaction phase diagrams for the EDH reaction with the two descriptors of *C2H4 and *H on the surface of different catalysts[27]. Copyright 2020, American Chemical Society
图4 芳香硝基化合物加氢反应路径图
Fig.4 Scheme showing the hydrogenation of aromatic nitro compounds
图5 普通负载型金属催化剂及具有多层次凝聚态结构负载型金属催化剂结构模型图
Fig.5 Scheme showing the structure of general supported metal catalyst and supported metal catalyst with multi-level condensed matter structure
图6 (a)Pt/TiO2-SMSI表面对氯硝基苯的吸附[35];(b)Pt/TiO2-SMSI的高分辨TEM照片[36];(c)Pd/C、Pd/Al2O3及Pd/ZnO催化对氯硝基苯选择性加氢[39]
Fig.6 (a) Adsorption of chloronitrobenzene on Pt/TiO2-SMSI[35], Copyright 1993, Elsevier; (b) High-resolution TEM images of Pt/TiO2-SMSI[36], Copyright 2008, American Chemical Society; (c) Pd/C, Pd/Al2O3 and Pd/ZnO catalyzed selective hydrogenation of p-chloronitrobenzene[39], Copyright 2013, American Chemical Society
图7 (a)金属@碳层结构的构筑示意图[43];(b)利用ALD技术合成具有管套管结构的Ni/Al2O3和Pt/TiO2串联催化剂[44];(c~e)Pd@beta和Pd/C的结构模型及硝基化合物选择性加氢性能对比[45]
Fig.7 (a) Scheme showing the synthesis of metal@carbon structure[43], Copyright 2017, Elsevier; (b) Synthesis of Ni/Al2O3 and Pt/TiO2 catalysts with tubular and encapsulated structure by ALD technique[44], Copyright 2016, Wiley-VCH; (c~e) Structural models of Pd@beta and Pd/C and the comparison of their catalytic performance in hydrogenation of nitro compounds[45], Copyright 2017, Wiley-VCH
图8 (a)糠醛还原胺化的反应网络;(b)Ru/Nb2O5催化糠醛还原胺化的时间曲线图[51]
Fig.8 (a) Reaction networks for reductive amination of furfural; (b) Time-dependent curve of furfural reductive amination on Ru/Nb2O5[51], Copyright 2017, American Chemical Society
图9 (a)Ni@TiO2-x高效催化LT-WGS反应示意图及(b)氧化还原机理催化循环示意图[73]
Fig.9 (a) LT-WGS reaction catalyzed by highly efficient Ni@TiO2-x and (b) schematic diagram based on a redox mechanism[73], Copyright 2018, American Chemical Society
图10 金属-载体相互作用对催化材料几何/电子结构的影响
Fig.10 Effect of metal-support interaction on geometrical/electronic structure of catalysts
图11 利用湿化学方法[97]及高温CO2诱导构筑SMSI[100]
Fig.11 SMSI constructed through wet chemistry method[97] and high temperature CO2-induced method[100]. Copyright 2019, American Chemical Society; Copyright 2021, Nature Publishing Group
图12 Rh基催化剂上CO吸附红外[116]
Fig.12 CO adsorption IR spectra on Rh-based catalyst[116]. Copyright 1992, Elsevier
图13 (A)Rh、Rh49Mn和Rh47Mn3 颗粒表面CH4生成能量计算[127];(B)RhMn合金催化剂模型[128];(C~J)不同RhMn催化剂的H2-TPR图谱、同步辐射表征、XPS图谱及HRTEM表征[129]
Fig.13 (A) CH4 formation energy on the surface of Rh, Rh49Mn and Rh47Mn3[127], Copyright 2010, Elsevier; (B) Model of RhMn alloy catalyst[128], Copyright 2008, AIP Publishing; (C~J) H2-TPR profiles, synchrotron radiation characterizations, XPS profiles, and HRTEM characterizations of different RhMn catalysts[129], Copyright 2014, Elsevier
图14 Rh(111)和Fe促进的Rh(111)表面 C H 3 * + H* → CH4 (g) + 2*基元步骤能垒计算[136]
Fig.14 Energy barrier of C H 3 * + H* → CH4 (g) + 2* on Rh (111) surface promoted by Rh (111) and Fe[136]. Copyright 2009, American Chemical Society
图15 Rh/SiO2催化剂制备示意图及催化数据[142]
Fig.15 Scheme showing the preparation of Rh/SiO2 catalyst and the catalytic performance[142]. Copyright 2013, Elsevier
图16 不同负载型金属催化剂结构模型图
Fig.16 Structural models of different supported metal catalysts
图17 (a)强静电吸附法(SEA)制备的RhMn/SiO2催化剂示意图;(b)金属纳米颗粒粒径统计;(c)催化剂暗场透射电镜照片;(d)EELS元素谱图[152]
Fig.17 (a) Scheme showing the preparation of RhMn/SiO2 via strong electrostatic adsorption (SEA); (b) size distributions of metal nanoparticles; (c) dark field transmission electron microscopy of catalyst; (d) EELS elemental spectra[152]. Copyright 2013, Wiley-VCH
图18 溶胶-凝胶技术制备FeOx-SiO2复合载体的催化剂[153]
Fig.18 Preparation of FeOx-SiO2 composite support by sol-gel method[153]. Copyright 2013, Elsevier
图19 (A)MnO/Rh/SiO2催化剂制备示意图及(B)催化数据[154]
Fig.19 (A) Scheme showing the synthesis of MnO/Rh/SiO2 catalyst and (B) the catalytic data[154]. Copyright 2017, American Chemical Society
图20 RhMn@MSN催化剂制备过程示意图[155]
Fig.20 Scheme showing the synthesis of RhMn@MSN catalyst[155]. Copyright 2012, Wiley-VCH
图21 RhMn@S-1催化剂(A)模型,(B、C)TEM照片及(D)CO加氢催化性能[157]
Fig.21 (A) Structural model, (B, C) TEM images and (D) CO hydrogenation performance of RhMn@S-1 catalyst[157]. Copyright 2020, American Chemical Society
[1]
Harris P J F. Int. Mater. Rev., 1995, 40: 97.

doi: 10.1179/imr.1995.40.3.97     URL    
[2]
Satoh N, Nakashima T, Yamamoto K. Sci. Rep., 2013, 3: 1959.

doi: 10.1038/srep01959    
[3]
Guo J, Huo J, Liu Y, Wu W, Wang Y, Wu M, Liu H, Wang G. Small Methods, 2019, 3: 1900159.

doi: 10.1002/smtd.v3.9     URL    
[4]
Chen S, Chang X, Sun G, Zhang T, Xu Y, Wang Y, Pei C, Gong J. Chem. Soc. Rev., 2021, 50: 3315.

doi: 10.1039/d0cs00814a     pmid: 33491692
[5]
Cybulskis V, Bukowski B C, Tseng H T, Gallagher J R, Wu Z, Wegener E, Kropf A J, Ravel B, Ribeiro F H, Greeley J, Miller J. ACS Catal., 2017, 7: 4173.

doi: 10.1021/acscatal.6b03603     URL    
[6]
Sattler J J H B, Martinez J R, Eduardo S J, Weckhuysen B M. Chem. Rev., 2014, 114: 10613.

doi: 10.1021/cr5002436     pmid: 25163050
[7]
Virnovskaia A, Morandi S, Rytter E, Giovanna G, Olsbye U. J. Phys. Chem. C., 2007, 111: 14732.

doi: 10.1021/jp074686u     URL    
[8]
Nagaraja B M, Shin C H, Jung K D. Appl. Catal. A., 2013, 467: 211.

doi: 10.1016/j.apcata.2013.07.022     URL    
[9]
Wu J, Peng Z M, Bell A T. J. Catal., 2014, 311: 161.

doi: 10.1016/j.jcat.2013.11.017     URL    
[10]
Mizuhata M, Yasuda K, Oguro K, Takenaka H. J. Catal., 1966, 6: 92.

doi: 10.1016/0021-9517(66)90113-8     URL    
[11]
Cortright R D, Dumesic J A. J. Catal., 1995, 157: 576.

doi: 10.1006/jcat.1995.1322     URL    
[12]
Natal-Santiago M A, Podkolzin S G, Cortright R D, Dumesic J A. Catal. Lett., 1997, 45: 155.

doi: 10.1023/A:1019004720871     URL    
[13]
Shen J, Hill J M, Watwe R M, Spiewak B E, Dumesic J A. J. Phys. Chem. B, 1999, 103: 3923.

doi: 10.1021/jp9902452     URL    
[14]
Yang M, Zhu Y, Zhou X, Sui Z, Chen D. ACS Catal., 2012, 2: 1247.

doi: 10.1021/cs300031d     URL    
[15]
Nykanen L, Honkala K. J. Phys. Chem. C., 2011, 115: 9578.

doi: 10.1021/jp1121799     URL    
[16]
Gao J, Zhao H, Yang X, Koel B E. Angew. Chem. Int. Ed., 2014, 53: 3641.

doi: 10.1002/anie.v53.14     URL    
[17]
Motagamwala A H, Almallahi R, Wortman J, Igenegbai V O, Linic S. Science, 2021, 373: 217.

doi: 10.1126/science.abg7894     pmid: 34244414
[18]
Liu L, Lopez-Haro M, Lopes C W, Rojas-Buzo S, Concepcion P, Manzorro R, Simonelli L, Sattler A, Serna P, Calvino J J, Corma A. Nat. Catal., 2020, 3: 628.

doi: 10.1038/s41929-020-0472-7    
[19]
Silvestre-Albero J, Serrano-Ruiz J C, Sepulveda-Escribano A, Rodriguez-Reinoso F. Appl. Catal. A, 2005, 292: 244.

doi: 10.1016/j.apcata.2005.06.005     URL    
[20]
Silvestre-Albero J, Serrano-Ruiz J C, Sepulveda-Escribano A, Rodriguez-Reinoso F. Appl. Catal. A, 2008, 351: 16.

doi: 10.1016/j.apcata.2008.08.021     URL    
[21]
Vu B K, Song M B, Ahn I Y, Suh Y W, Suh D J, Kim W I, Koh H L, Choi Y G, Shin E W. Appl. Catal. A, 2011, 400: 25.

doi: 10.1016/j.apcata.2011.03.057     URL    
[22]
Sun Q, Wang N, Fan Q, Zeng L, Mayoral A, Miao S, Yang R, Jiang Z, Zhou W, Zhang J, Zhang T, Xu J, Zhang P, Cheng J, Yang D, Jia R, Li L, Zhang Q, Wang Y, Terasaki O, Yu J. Angew. Chem. Int. Ed., 2020, 59: 19450.

doi: 10.1002/anie.v59.44     URL    
[23]
Chen S, Zhao, Z, Mu R, Chang X, Luo J, Purdy S C, Kropf A J, Sun G, Pei C, Miller J T, Zhou X, Vovk E, Yang Y, Gong J. Chem, 2021, 7: 387.

doi: 10.1016/j.chempr.2020.10.008     URL    
[24]
Qi L, Babucci M, Zhang Y F, Lund A, Liu L M, Li J W, Chen Y Z, Hoffman A S, Bare S R, Han Y, Gates B C, Bell A T. J. Am. Chem. Soc., 2021, 143: 21364.

doi: 10.1021/jacs.1c10261     URL    
[25]
Ryoo R, Kim J, Jo C, Han S W, Kim J C, Park H, Han J, Shin H S, Shin J W. Nature, 2020, 585: 221.

doi: 10.1038/s41586-020-2671-4    
[26]
Zhao D, Tian X N, Doronkin D E, Han S L, Kondratenko V A, Grunwaldt J D, Perechodjuk A, Vuong T H, Rabeah J, Eckelt R, Rodemerck U, Linke D, Jiang G Y, Jiao H J, Kondratenko E V. Nature, 2021, 599: 234.

doi: 10.1038/s41586-021-03923-3    
[27]
Yang Z, Li H, Zhou H, Wang L, Wang L, Zhu Q, Xiao J, Meng X, Chen J, Xiao F S. J. Am. Chem. Soc., 2020, 142: 16429.

doi: 10.1021/jacs.0c07792     URL    
[28]
Muller T E, Hultzsch K C, Yus M, Foubelo F, Tada M. Chem. Rev., 2008, 108: 3795.

doi: 10.1021/cr0306788     URL    
[29]
Hartwig J F. Nature, 2008, 455: 314.

doi: 10.1038/nature07369    
[30]
Formenti D, Ferretti F, Scharnagl F K, Beller M. Chem. Rev., 2018, 119: 2611.

doi: 10.1021/acs.chemrev.8b00547     URL    
[31]
Zhang S, Chang C, Huang Z, Li J, Wu Z, Ma Y, Zhang Z, Wang Y, Qu Y. J. Am. Chem. Soc., 2016, 138: 2629.

doi: 10.1021/jacs.5b11413     pmid: 26828123
[32]
Tauster S J, Fung S C, Garten R L. J. Am. Chem. Soc., 1978, 100: 170.

doi: 10.1021/ja00469a029     URL    
[33]
Dong J, Fu Q, Jiang Z, Mei B, Bao X. J. Am. Chem. Soc., 2018, 140: 13808.

doi: 10.1021/jacs.8b08246     URL    
[34]
Zhang Y, Liu J X, Qian K, Jia A, Li D, Shi L, Hu J, Zhu J, Huang W. Angew. Chem. Int. Ed., 2021, 60: 12074.

doi: 10.1002/anie.v60.21     URL    
[35]
Coq B, Tijani A, Dutartre R, Figueras F. J. Mol. Catal., 1993, 79: 253.

doi: 10.1016/0304-5102(93)85106-4     URL    
[36]
Corma A, Serna P, Concepcion P, Calvino J J. J. Am. Chem. Soc., 2008, 130: 8748.

doi: 10.1021/ja800959g     URL    
[37]
Macino M, Barnes A J, Althahban S M, Qu R Y, Gibson E K, Morgan D J, Freakley S J, Dimitratos N, Kiely C J, Gao X, Beale A M, Bethell D, He Q, Sankar M, Hutchings G J. Nat. Catal., 2019, 2: 873.

doi: 10.1038/s41929-019-0334-3    
[38]
Liu X, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H, Chen J M, Lee J F, Lin T S. J. Am. Chem. Soc., 2012, 134: 10251.

doi: 10.1021/ja3033235     URL    
[39]
Cardenas-Lizana F, Hao Y F, Crespo-Quesada M, Yuranov I, Wang X D, Keane M A, Kiwi-Minsker L. ACS Catal., 2013, 3: 1386.

doi: 10.1021/cs4001943     URL    
[40]
Wang G, Hilgert J, Richter F H, Wang F, Bongard H J, Spliethoff B, Weidenthaler C, Schuth F. Nat. Mater., 2014, 13: 293.

doi: 10.1038/nmat3872    
[41]
Murugesan K, Chandrashekhar V G, Kreyenschulte C, Beller M, Jagadeesh R V. Angew. Chem. Int. Ed., 2020, 59: 17408.

doi: 10.1002/anie.v59.40     URL    
[42]
Guan Q, Zhu C, Lin Y, Vovk E I, Zhou X, Yang Y, Yu H, Cao L, Wang, H, Zhang X, Liu X, Zhang M, Wei S, Li W, Lu J. Nat. Catal., 2021, 4: 840.

doi: 10.1038/s41929-021-00679-x    
[43]
Liu L, Gao F, Concepcion P, Corma A. J. Catal., 2017, 350: 218.

doi: 10.1016/j.jcat.2017.03.014     URL    
[44]
Ge H, Zhang B, Gu X, Liang H, Yang H, Gao Z, Wang J, Qin Y. Angew. Chem. Int. Ed., 2016, 55: 7081.

doi: 10.1002/anie.201600799     URL    
[45]
Zhang J, Wang L, Shao Y, Wang Y Q, Gates B C, Xiao F S. Angew. Chem. Int. Ed., 2017, 56: 9747.

doi: 10.1002/anie.201703938     pmid: 28503914
[46]
Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T. Nat. Commun., 2014, 5: 5634.

doi: 10.1038/ncomms6634    
[47]
Wang L, Zhu C, Xu M, Zhao C, Gu J, Cao L, Zhang X, Sun Z, Wei S, Zhou W, Li W X, Lu J. J. Am. Chem. Soc., 2021, 143: 18854.

doi: 10.1021/jacs.1c09498     URL    
[48]
Jin H, Li P, Cui P, Shi J, Zhou W, Yu X, Song W, Cao C Y. Nat. Commun., 2022, 13: 723.

doi: 10.1038/s41467-022-28367-9    
[49]
Murugesan K, Beller M, Jagadeesh R V. Angew. Chem. Int. Ed., 2019, 131: 5118.

doi: 10.1002/ange.v131.15     URL    
[50]
Tong T, Guo W, Liu X, Guo Y, Pao C, Chen J, Hu Y, Wang Y. J. Catal., 2019, 378: 392.

doi: 10.1016/j.jcat.2019.08.024    
[51]
Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M. J. Am. Chem. Soc., 2017, 139: 11493.

doi: 10.1021/jacs.7b04481     pmid: 28759206
[52]
Jagadeesh R V, Murugesan K, Alshammari A S, Neumann H, Pohl M M, Radnik J, Beller M. Science, 2017, 358: 326.

doi: 10.1126/science.aan6245     URL    
[53]
Hahn G, Kunnas P, De-Jonge N, Kempe R. Nat. Catal., 2019, 2: 71.

doi: 10.1038/s41929-018-0202-6    
[54]
Ho C R, Defalque V, Zheng S, Bell A T. ACS Catal., 2019, 9: 2931.

doi: 10.1021/acscatal.8b04612     URL    
[55]
Wang T, Ibanez J, Wang K, Fang L, Sabbe M, Michel C, Paul S, Pera-Titus M, Sautet P. Nat. Catal., 2019, 2: 773.

doi: 10.1038/s41929-019-0327-2    
[56]
Shimizu K, Kon K, Onodera W, Yamazaki H, Kondo J N. ACS Catal., 2013, 3: 112.

doi: 10.1021/cs3007473     URL    
[57]
Schultz M G, Diehl T, Brasseur G P, Zittel W. Science, 2003, 302: 624.

pmid: 14576429
[58]
Zou X, Zhang Y. Chem. Soc. Rev., 2015, 44: 5148.

doi: 10.1039/C4CS00448E     URL    
[59]
Chen L, Hou K, Liu Y, Qi Z, Zheng Q, Lu Y, Chen J, Chen J, Pao C, Wang S, Li Y, Xie S, Liu F, Prendergast D, Klebanoff L E, Stavila V, Allendorf M D, Guo J, Zheng L, Su J, Somorjai G A. J. Am. Chem. Soc., 2019, 141: 17995.

doi: 10.1021/jacs.9b09431     pmid: 31647653
[60]
Palo D R, Dagle R A, Holladay J D. Chem. Rev., 2007, 107: 3992.

doi: 10.1021/cr050198b     URL    
[61]
Lin L, Yao S, Gao R, Liang X, Yu Q, Deng Y, Liu J, Peng M, Jiang Z, Li S, Li Y, Wen X, Zhou W, Ma D. Nat. Nanotechnol., 2019, 14: 354.

doi: 10.1038/s41565-019-0366-5    
[62]
Nilekar A U, Sasaki K, Farberow C A, Adzic R R, Mavrikakis M. J. Am. Chem. Soc., 2011, 133: 18574.

doi: 10.1021/ja2072675     URL    
[63]
Cortright R D, Davda R R, Dumesic J A. Nature, 2002, 418: 964.

doi: 10.1038/nature01009    
[64]
Lin L, Zhou W, Gao R, Yao S, Zhang X, Xu W, Zheng S, Jiang Z, Yu Q, Li Y, Shi C, Wen X, Ma D. Nature, 2017, 544: 80.

doi: 10.1038/nature21672    
[65]
Patel S, Pant K K. Appl. Catal. A, 2009, 356: 189.

doi: 10.1016/j.apcata.2009.01.002     URL    
[66]
Li D, Xu F, Tang X, Dai S, Pu T, Liu X, Tian P, Xuan F, Xu Z, Wachs I E, Zhu M. Nat. Catal., 2022, 5: 99.

doi: 10.1038/s41929-021-00729-4    
[67]
Yu K M K, Tong W Y, West A, Cheung K, Li T, Smith G, Guo Y L, Tsang S C E. Nat. Commun., 2012, 3: 1230.

doi: 10.1038/ncomms2242    
[68]
Chen L, Qi Z, Peng X, Chen J, Pao C, Zhang X, Dun C, Young M, Prendergast D, Urban J J, Guo J H, Somorjai G A, Su J. J. Am. Chem. Soc., 2021, 143: 12074.

doi: 10.1021/jacs.1c03895     URL    
[69]
Rodriguez J A, Ma S, Liu P, Hrbek J, Evans J, Perez M. Science, 2007, 318: 1757.

pmid: 18079397
[70]
Gokhale A A, Dumesic J A, Mavrikakis M. J. Am. Chem. Soc., 2008, 130: 1402.

doi: 10.1021/ja0768237     pmid: 18181624
[71]
Rodriguez J, Liu P, Hrbek J, Evans J, Perez M. Angew. Chem. Int. Ed., 2007, 46: 1329.

doi: 10.1002/(ISSN)1521-3773     URL    
[72]
Liang J, Lin J, Liu J, Wang X, Zhang T, Li J. Angew. Chem. Int. Ed., 2020, 59: 12868.

doi: 10.1002/anie.v59.31     URL    
[73]
Xu M, Yao S, Rao D, Niu Y, Liu N, Peng M, Zhai P, Man Y, Zheng L, Wang B, Zhang B, Ma D, Wei M. J. Am. Chem. Soc., 2018, 140: 11241.

doi: 10.1021/jacs.8b03117     URL    
[74]
Yang M, Li S, Wang Y, Herron J A, Xu Y, Allard L F, Lee S, Huang J, Mavrikakis M, Flytzani-Stephanopoulos M. Science, 2016, 346: 1498.

doi: 10.1126/science.1260526     URL    
[75]
Yao S, Zhang X, Zhou W, Gao R, Xu W, Ye Y, Lin L, Wen X, Liu P, Chen B, Crumlin E, Guo J, Zuo Z, Li W Z, Xie J L, Lu L, Kiely C J, Gu L, Shi C, Rodriguez J A, Ma D. Science, 2017, 357: 389.

doi: 10.1126/science.aah4321     URL    
[76]
Zhang X, Zhang M T, Deng Y C, Xu M Q, Artiglia L, Wen W, Gao R, Chen B, Yao S, Zhang X, Peng M, Yan J, Li A, Jiang Z, Gao X, Cao S, Yang C, Kropf A J, Shi J, Xie J, Bi M, van Bokhoven J A, Li Y, Wen X, Flytzani-Stephanopoulos M, Shi C, Zhou W, Ma D. Nature, 2021, 589: 396.

doi: 10.1038/s41586-020-03130-6    
[77]
Freund H J, Meijer G, Scheffler M, Schlogl R, Wolf M. Angew. Chem. Int. Ed., 2011, 50: 10064.

doi: 10.1002/anie.201101378     URL    
[78]
Twigg M V. Appl. Catal. B, 2007, 70: 2.

doi: 10.1016/j.apcatb.2006.02.029     URL    
[79]
Liu K, Wang A, Zhang T. ACS Catal., 2012, 2: 1165.

doi: 10.1021/cs200418w     URL    
[80]
Haruta M, Yamada N, Kobayashi T, Iijima S. J. Catal., 1989, 115: 301.

doi: 10.1016/0021-9517(89)90034-1     URL    
[81]
Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett., 1987, 16: 405.

doi: 10.1246/cl.1987.405     URL    
[82]
Comotti M, Li W, Spliethoff B, Schüth F. J. Am. Chem. Soc., 2006, 128: 917.

doi: 10.1021/ja0561441     URL    
[83]
Arab L, Boutahala M, Djellouli B, Dintzer T, Pitchon V. Appl. Catal. A, 2014, 475: 446.

doi: 10.1016/j.apcata.2014.02.003     URL    
[84]
Lizuka Y, Tode T, Takao T, Yatsu K, Takeuchi T, Tsubota S, Haruta M. J. Catal., 1999, 187: 50.

doi: 10.1006/jcat.1999.2604     URL    
[85]
Mavrikakis M, Stoltze P, Nørskov J K. Catal. Lett., 2000, 64: 101.

doi: 10.1023/A:1019028229377     URL    
[86]
Lopez N,. Janssens T V W, Clausen B S, Xu Y, Mavrikakis M, Bligaard T, Nørskov J K. J. Catal., 2004, 223: 232.

doi: 10.1016/j.jcat.2004.01.001     URL    
[87]
Saavedra J,. Doan H A, Pursell C J, Grabow L C, Chandler B D. Science, 2014, 345: 1599.

doi: 10.1126/science.1256018     pmid: 25190716
[88]
Green I X, Tang W, Neurock M, Yates J T. Science, 2011, 333: 736.

doi: 10.1126/science.1207272     URL    
[89]
Yoon B, Ha¨kkinen H, Landman U, Wörz A S, Antonietti J M, Abbet S, Judai K, Heiz U. Science, 2005, 307: 403.

doi: 10.1126/science.1104168     URL    
[90]
Wang S, Zhao Q, Wei H, Wang J Q, Cho M, Cho H S, Terasaki O, Wan Y. J. Am. Chem. Soc., 2013, 135: 11849.

doi: 10.1021/ja403822d     URL    
[91]
Xiao J, Pan X, Guo S, Ren P, Bao X H. J. Am. Chem. Soc., 2015, 137: 477.

doi: 10.1021/ja511498s     URL    
[92]
Tauster S J. Acc. Chem. Res., 1987, 20: 389.

doi: 10.1021/ar00143a001     URL    
[93]
Van Deelen T M, Mejía C H, De Jong K P. Nat. Catal., 2019, 2: 955.

doi: 10.1038/s41929-019-0364-x    
[94]
Tang H, Su Y, Zhang B, Lee A F, Isaacs M A, Wilson K, Li L, Ren Y, Huang J, Haruta M, Qiao B, Liu X, Jin C, Su D S, Wang J H, Zhang T. Sci. Adv., 2017, 3: e1700231.

doi: 10.1126/sciadv.1700231     URL    
[95]
Liu S, Xu W, Niu Y, Zhang B, Zheng L, Liu W, Li L, Wang J H. Nat. Commun., 2019, 10: 5790.

doi: 10.1038/s41467-019-13755-5    
[96]
Wang Y, Widmann D, Heenemann M, Diemant T, Biskupek J, Schlögl R, Behm R J. J. Catal., 2017, 354: 46.

doi: 10.1016/j.jcat.2017.07.029     URL    
[97]
Zhang J, Wang H, Wang L, Ali S, Wang C, Wang L, Meng X, Li B, Su D S, Xiao F S. J. Am. Chem. Soc., 2019, 141: 2975.

doi: 10.1021/jacs.8b10864     pmid: 30677301
[98]
Tauster S J, Fung S C, Baker R T K, Horsley J A. Science, 1981, 211: 1121.

doi: 10.1126/science.211.4487.1121     pmid: 17755135
[99]
Matsubu J C, Zhang S, De Rita L, Marinkovic N S, Chen J G G, Graham G W, Pan X, Christopher P. Nat. Chem., 2017, 9: 120.

doi: 10.1038/nchem.2607     pmid: 28282057
[100]
Wang H, Wang L, Lin D, Feng X, Niu Y, Zhang B, Xiao F S. Nat. Catal., 2021, 4: 418.

doi: 10.1038/s41929-021-00611-3    
[101]
Wang H, Wang L, Xiao F S. Sci. China Chem., 2022, 65: 2051.

doi: 10.1007/s11426-022-1356-3    
[102]
Dong J, Fu Q, Li H, Xiao J, Yang B, Zhang B, Bai Y, Song T, Zhang R, Gao L, Cai J, Zhang H, Liu Z, Bao X. J. Am. Chem. Soc., 2020, 142: 17167.

doi: 10.1021/jacs.0c08139     URL    
[103]
Chen H, Yang Z, Wang X, Polo-Garzon F, Halstenberg P W, Wang T, Sun X, Yang S Z, Meyer H M, Wu Z, Dai S. J. Am. Chem. Soc., 2021, 143: 8521.

doi: 10.1021/jacs.0c12817     pmid: 34081447
[104]
Yu J, Sun X, Tong X, Zhang J, Li J, Li S, Liu Y, Tsubaki N, Abe T, Sun J. Nat. Commun., 2021, 12: 7209.

doi: 10.1038/s41467-021-27557-1    
[105]
Zhang J, Zhu D, Yan J, Wang C A. Nat. Commun., 2021, 12: 6665.

doi: 10.1038/s41467-021-27000-5     pmid: 34795268
[106]
Fu Q, Li W X, Yao Y, Liu H, Su H Y, Ma, Gu X K, Chen L, Wang Z, Zhang H, Wang B, Bao X H. Science, 2010, 328: 1141.

doi: 10.1126/science.1188267     URL    
[107]
Cao L, Liu W, Luo Q, Yin R, Wang B, Weissenrieder J, Soldemo M, Yan H, Lin Y, Sun Z, Ma C, Zhang W, Chen S, Wang H, Guan Q, Yao T, Wei S, Yang J, Lu J L. Nature, 2019, 565: 631.

doi: 10.1038/s41586-018-0869-5    
[108]
Chen G, Zhao Y, Fu G, Duchesne P N, Gu L, Zheng Y, Weng X, Chen M, Zhang P, Pao C W, Lee J F, Zheng N F. Science, 2014, 344: 495.

doi: 10.1126/science.1252553     URL    
[109]
Nie L, Mei D H, Xiong H, Peng B, Ren Z, Hernandez X I P,. De La Riva A, Wang M, Engelhard M H, Kovarik L, Datye A K, Wang Y. Science, 2017, 358: 1419.

doi: 10.1126/science.aao2109     URL    
[110]
Watson P R, Somorgai G A. J. Catal., 1981, 72: 347.

doi: 10.1016/0021-9517(81)90018-X     URL    
[111]
Watson P R, Somorgai G A. J. Catal., 1982, 74: 282.

doi: 10.1016/0021-9517(82)90034-3     URL    
[112]
Katzer J R, Sleight A W, Gajardo P, Michel J B, Gleason E F, McMillan S. Faraday Discuss., 1981, 72: 121.
[113]
Favre T L F, Vanderlee G, Ponec V. J. Chem. Soc. Chem. Commun., 1985, 4: 230.
[114]
Vanderlee G, Schuller B, Post H, Favre T L F, Ponec V. J. Catal., 1986, 98: 522.

doi: 10.1016/0021-9517(86)90340-4     URL    
[115]
Chuang S S C, Stevens R W, Khatri R. Top. Catal., 2005, 32: 225.

doi: 10.1007/s11244-005-2897-2     URL    
[116]
Chuang S S C, Pien S I. J. Catal., 1992, 135: 618.

doi: 10.1016/0021-9517(92)90058-P     URL    
[117]
Castner D G, Sexton B A, Somorjai G A. Surf. Sci., 1978, 71: 519.

doi: 10.1016/0039-6028(78)90444-2     URL    
[118]
Thiel P A, Williams E D, Yates J T, Weinberg W H. Surf. Sci., 1979, 84: 54.

doi: 10.1016/0039-6028(79)90279-6     URL    
[119]
Yates J T, Williams E D, Weinberg W H. Surf. Sci., 1980, 91: 562.

doi: 10.1016/0039-6028(80)90351-9     URL    
[120]
Gorodetskii V V, Nieuwenhuys B E. Surf. Sci., 1981, 105: 299.

doi: 10.1016/0039-6028(81)90163-1     URL    
[121]
Bowker M, Guo Q M, Joyner R. Surf. Sci., 1991, 253: 33.

doi: 10.1016/0039-6028(91)90579-H     URL    
[122]
Batteas J D, Gardin D E, Van Hove M A, Somorjai G A. Surf. Sci., 1993, 297: 11.

doi: 10.1016/0039-6028(93)90010-H     URL    
[123]
Sexton B A, Somorjai G A. J. Catal., 1977, 46: 167.

doi: 10.1016/0021-9517(77)90198-1     URL    
[124]
Castner D G, Somorjai G A. Surf. Sci., 1979, 83: 60.

doi: 10.1016/0039-6028(79)90480-1     URL    
[125]
Liu W, Ren D M. Surf. Sci., 1990, 232: 323.

doi: 10.1016/0039-6028(90)90125-R     URL    
[126]
Kim M J, Chae H J, Ha K S, Jeong K E, Kim C U, Jeong S Y, Kim T W. J. Nanosci. Nanotechnol., 2013, 13: 7511.

doi: 10.1166/jnn.2013.7909     URL    
[127]
Mei D, Rousseau R, Kathmann S M, Glezakou V A, Engelhard M H, Jiang W, Wang C, Gerber M A, White J F, Stevens D J. J. Catal., 2010, 271: 325.

doi: 10.1016/j.jcat.2010.02.020     URL    
[128]
Ma X, Deng H, Yang M M, Li W X. J. Chem. Phys., 2008, 129: 244711.

doi: 10.1063/1.3046691     URL    
[129]
Liu J, Guo Z, Childers D, Schweitzer N, Marshall C L, Klie R F, Miller J T, Meyer R J. J. Catal., 2014, 313: 149.

doi: 10.1016/j.jcat.2014.03.002     URL    
[130]
Jackson S D, Brandreth B J, Winstanley D A. J. Catal., 1987, 106: 464.

doi: 10.1016/0021-9517(87)90259-4     URL    
[131]
Bhasin M. J. Catal., 1978, 54: 120.

doi: 10.1016/0021-9517(78)90035-0     URL    
[132]
Liu W, Wang S, Sun T, Wang S,. Catal. Lett., 2015, 145: 1741.

doi: 10.1007/s10562-015-1577-5     URL    
[133]
Mo X, Gao J, Jmnajkaseam N, GoodwinJ G. J. Catal., 2009, 267: 167.

doi: 10.1016/j.jcat.2009.08.007     URL    
[134]
Nonneman L E Y, Bastein A G T M, Ponec V, Burch R. Appl. Catal., 1990, 62: L23.

doi: 10.1016/S0166-9834(00)82230-7     URL    
[135]
Burch R, Petch M I. Appl. Catal. A, 1992, 88: 61.

doi: 10.1016/0926-860X(92)80196-J     URL    
[136]
Choi Y, Liu P. J. Am. Chem. Soc., 2009, 131: 13054.

doi: 10.1021/ja903013x     URL    
[137]
Chuang S C, Goodwin J G, Wender I. J. Catal., 1985, 95: 435.

doi: 10.1016/0021-9517(85)90121-6     URL    
[138]
Egbebi A, Schwartz V, Overbury S H, Spivey J J. Catal. Today, 2010, 149: 91.

doi: 10.1016/j.cattod.2009.07.104     URL    
[139]
Du Y H, Chen D A, Tsai K R. Appl. Catal., 1987, 35: 77.
[140]
Jiang D, Ding Y, Pan Z, Chen W, Luo H. Catal. Lett., 2008, 121: 241.

doi: 10.1007/s10562-007-9322-3     URL    
[141]
Yu J, Mao D, Han L, Guo Q, Lu G. Fuel Process. Technol., 2013, 106: 344.

doi: 10.1016/j.fuproc.2012.08.020     URL    
[142]
Yu J, Mao D, Han L, Guo Q, Lu G. J. Mol. Catal. A Chem., 2013, 367: 38.

doi: 10.1016/j.molcata.2012.10.022     URL    
[143]
Han L, Mao D, Yu J, Guo Q, Lu G. Catal. Commun., 2012, 23: 20.

doi: 10.1016/j.catcom.2012.02.032     URL    
[144]
Han L, Mao D, Yu J, Guo Q, Lu G. Appl. Catal. A, 2013, 454: 81.

doi: 10.1016/j.apcata.2013.01.008     URL    
[145]
Chai S H, Howe J Y, Wang X Q, Kidder M, Schwartz V, Golden M L, Overbury S H, Dai S, Jiang D. Carbon, 2012, 50: 1574.

doi: 10.1016/j.carbon.2011.11.036     URL    
[146]
Arakawa H, Takeuchi K, Matsuzaki T, Sugi Y. Chem. Lett., 1984, 1607.
[147]
Fan Z, Chen W, Pan X, Bao X. Catal. Today, 2009, 147: 86.

doi: 10.1016/j.cattod.2009.03.004     URL    
[148]
Ichikawa M, Shikakura K, Kawai M.Proceedings of Symposium, Dalian, China, 1982.
[149]
Tauster S J, Fung S C. J. Catal., 1978, 55: 29.

doi: 10.1016/0021-9517(78)90182-3     URL    
[150]
Kip B J, Smeets P A T, Van Grondelle J, Prins R. Appl. Catal., 1987, 33: 181.

doi: 10.1016/S0166-9834(00)80592-8     URL    
[151]
Subramanian N D, Gao J, Mo X H, Goodwin J G, Torres W, Spivey J J. J. Catal., 2010, 272: 204.

doi: 10.1016/j.jcat.2010.03.019     URL    
[152]
Liu J, Tao R, Guo Z, Regalbuto J R, Marshall C L, Klie R F, Miller J T, Meyer R J. ChemCatChem, 2013, 5: 3665.

doi: 10.1002/cctc.201300479     URL    
[153]
Wang J, Zhang Q, Wang Y. Catal. Today, 2011, 171: 257.

doi: 10.1016/j.cattod.2011.03.023     URL    
[154]
Yang N, Yoo J S, Schumann J, Bothra P, Singh J A, Valle E, Abild-Pedersen F, Nørskov J K, Bent S F. ACS Catal., 2017, 7: 5746.

doi: 10.1021/acscatal.7b01851     URL    
[155]
Huang Y, Deng W, Guo E, Chung P W, Chen S, Trewyn B G, Brown R C, Lin V S Y. ChemCatChem., 2012, 4: 674.

doi: 10.1002/cctc.v4.5     URL    
[156]
Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Nat. Mater., 2007, 6: 507.

doi: 10.1038/nmat1916    
[157]
Wang C, Zhang J, Qin G, Wang L, Zuidema E, Yang Q, Dang S, Yang C, Xiao J, Meng X, Mesters C, Xiao F S. Chem, 2020, 6: 646.

doi: 10.1016/j.chempr.2019.12.007     URL    
[1] 郑跃楠, 杨佳奇, 乔振安. 凝聚态化学视角下的多孔材料缺陷工程[J]. 化学进展, 2023, 35(6): 954-967.
[2] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[3] 秦学涛, 周子乔, 马丁. 金属/金属氧化物催化剂的SMSI效应[J]. 化学进展, 2023, 35(6): 928-939.
[4] 李庆贺, 乔波涛, 张涛. 单原子催化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 821-838.
[5] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[6] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[7] 闫文付, 徐如人. 凝聚液态水溶液中的化学反应[J]. 化学进展, 2022, 34(7): 1454-1491.
[8] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[9] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[10] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[11] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[12] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[13] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[14] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[15] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
阅读次数
全文


摘要

小分子催化转化中的凝聚态化学