English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 886-903 DOI: 10.7536/PC221008 前一篇   后一篇

• 综述 •

分子筛催化反应中的凝聚态化学

肖丰收*(), 吴勤明, 王成涛   

  1. 浙江大学化学工程与生物工程学院 杭州 310028
  • 收稿日期:2022-10-17 修回日期:2022-12-31 出版日期:2023-06-24 发布日期:2023-02-20
  • 作者简介:

    肖丰收 浙江大学求是特聘教授,博士生导师。主要研究分子筛催化材料的设计合成及其在能源与环境方面的应用。

  • 基金资助:
    国家自然科学基金项目(U21B20101); 国家自然科学基金项目(22288101)

Condensed Matter Chemistry in Catalysis by Zeolites

Fengshou Xiao(), Qinming Wu, Chengtao Wang   

  1. College of Chemical and Biological Engineering, Zhejiang University,Hangzhou 310028,China
  • Received:2022-10-17 Revised:2022-12-31 Online:2023-06-24 Published:2023-02-20
  • Contact: *e-mail: fsxiao@zju.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(U21B20101); The National Natural Science Foundation of China(22288101)

本文致力于讨论气固相的分子筛催化反应中的凝聚态化学,主要涉及:(i) 气相中的反应物在分子筛孔道中的吸附;(ii) 反应物在分子筛催化中心上的吸附与催化转化;(iii) 反应产物从分子筛孔道中的脱附。在上述过程中,任何可以加快在分子筛上的反应物吸附、催化转化与反应产物脱附都可以提高分子筛催化材料的性能。为了实现这些目的,近年来人们提出了合成沸石催化材料的新策略,包括沸石晶体纳米化、引进介孔结构、制备沸石纳米片层和沸石晶体的浸润性调控。将具有催化功能的金属或金属氧化物物种引入到沸石晶体中,可以制备出结合沸石高稳定性与择形性以及高催化活性于一体的新型沸石催化材料,这对发展新的催化过程提供了新机遇。

This work is devoted to condensed matter chemistry in gas-phase catalytic reactions over zeolite catalysts, which mainly involve in the processes of (i) adsorption of gaseous reactants into zeolite micropores, (ii) conversion of the reactants on catalytic sites in zeolites, and (iii) desorption of products in zeolites. In the above processes, both fast adsorption in zeolite micropores and rapid desorption from zeolites can significantly improve the reaction rate. To realize these purposes, it has been developed new strategies for rational synthesis of zeolites including preparation of zeolite nanocrystals, introduction of mesopores into zeolite crystals, preparation of zeolite nanosheets, and adjusting wettability of zeolite crystals, which have been simply concluded. Furthermore, the catalytically active sites including single atoms and metal nanoparticles can be introduced into zeolite frameworks or zeolite crystals, which can combine both the advantages of high stability and excellent shape selectivity for zeolites and the advantages of high activity and anti-deactivation for metal species together, offering a good opportunity to design and preparation of new highly efficient zeolite-based catalysts in the future. Finally, it is suggested perspectives such as rational synthesis of zeolite catalysts by theoretical simulations from the energy comparison, preparation of highly efficient catalysts by incorporating catalytically active sites in zeolite framework from the requirements of catalytic reactions, and green synthesis of zeolites for reduction of harmful gases, polluted water, and solid wastes in industrial processes.

Contents

1 Introduction

2 Adsorption of gaseous reactants in zeolite micropores

2.1 Preparation of zeolite nanocrystals

2.2 Introduction of mesoporosity in zeolite crystals

2.3 Preparation of zeolite nanosheets

3 Conversion of reactants on catalytic sites in zeolites

3.1 Acidic sites in zeolite frameworks

3.2 Heteroatoms in zeolite frameworks

3.3 Multisites in zeolite crystals

4 Desorption of products from zeolite catalysts

4.1 Preparation of zeolite nanocrystals and nanosheets and introduction of mesopores into zeolite crystals

4.2 Adjusting wettability of zeolite catalysts

4.3 Selective adsorption of reaction products by zeolite additives

5 Conclusion and perspectives

()
图1 FCC催化剂的构成[31]
Fig.1 Typical chemical and structural composition of a FCC particle[31]. Copyright 2015, RSC
图2 以聚季铵盐PDADMAC为介孔模板合成的介孔Beta沸石的高分辨透射电子显微镜图,其中红线代表着介孔的走向[51]
Fig.2 HRTEM image of mesoporous Beta zeolite templated from mesoscale cationic polymer of PDADMAC[51]. Copyright 2006, Wiley-VCH
图3 以聚季铵盐PDADMAC为介孔模板合成的介孔Beta沸石与常规Beta沸石在苯与丙醇烷基化反应性能比较[51]
Fig.3 Catalytic conversions (conv., solid) and selectivities (select., empty) in the alkylation of benzene with isopropanol vs. reaction time over mesoporous Beta (square) and conventional Beta (triangle) catalysts[51]. Copyright 2006, Wiley-VCH
图4 介孔Y沸石和常规Y沸石的FCC性能比较[55]
Fig.4 Catalyst evaluation of two FCC catalysts that were prepared and deactivated under the same conditions (788℃ in 100% steam for 8 h), one of which contained a conventional zeolite USY (—◆—), whereas the other contained a mesostructured zeolite USY (---▲---). The catalyst evaluation was performed in an ACE unit at 527℃ by using a VGO feedstock. The lines were fitted by a kinetic lump model[55]. Copyright 2012, RSC
图5 无有机模板条件通过加入MFI晶种让沸石定向生长合成的介孔MFI扫描电子显微镜图[58]
Fig.5 SEM image of mesoporous MFI zeolite from seed-directed synthesis in the absence of any organic templates[58]. Copyright 2016, Elsevier
图6 不同的沸石催化剂在异丙苯催化裂化反应性能[58]
Fig.6 Catalytic properties in catalytic cracking of cumene over (a) ZSM-5-TPA synthesized from tetrapropylammonium (TPA) template, (b) ZSM-5-OTF synthesized in the absence of organic template, and (c) mesoporous MFI-SDS synthesized in the presence of zeolite seeds but the absence of organic template[58]. Copyright 2016, Elsevier
图7 (A) MWW沸石纳米片(Al-ECNU-7)与(B)常规MWW沸石的1,3,5-三异丙苯催化裂化性能[71]
Fig.7 Catalytic performances in 1,3,5-triisopropylbenzene cracking over (A) MWW zeolite nanosheets (Al-ECNU-7) and (B) conventional MWW zeolite[71]. Copyright 2016, ACS
图8 FER沸石纳米片(N-FER)与常规MWW沸石(C-FER)的1-丁烯催化异构性能[73]
Fig.8 Catalytic (circle) activities and (square) selectivities in 1-butene skeletal isomerization versus time on stream over the (solid) N-FER and (hollow) C-FER zeolites[73]. Copyright 2019, RSC
图9 (a)常规SAPO-11担载与(b)SAPO-11纳米片担载Pt催化剂在正十二烷加氢异构反应中的(A)转化率与(B)异构产物选择性[74]
Fig.9 Dependences of (A) conversion of n-dodecane, (B) C12 isomer selectivity in catalytic hydroisomerization over the (a) Pt/C-SAPO-11 and (b) Pt/N-SAPO-11[74]. Copyright 2017, RSC
图10 具有不同b-轴长度的TS-1沸石(a: 80 nm; b: 120 nm; c: 200 nm; d: 2.0 μm; e: 5.0 μm) 在环己酮肟贝克曼重排反应中的催化性能[70]
Fig.10 Catalytic conversion in Beckmann rearrangement of cyclohexanone oxime over TS-1 zeolite with b-axis of (a) 80 nm, (b) 120 nm, (c) 200 nm, (d) 2.0 μm, and (e) 5.0 μm[70]. Copyright 2011, RSC
图11 形成正碳离子的两种机理:质子化与抽取反应
Fig.11 Two mechanisms on the formation of carbonium species by protonation and abstraction
图12 在常规MOR和吡啶中毒的MOR沸石上乙酸甲酯脱羰基制备乙醇反应的催化性能[82]
Fig.12 Formation rate of CO and methyl acetate in decarbonylation of carboxylic acids over H-MOR and py-H-MOR[82]. Copyright 2021, ACS
图13 含有不同阳离子体系的起始凝聚所合成的ZSM-5具有不同的酸性中心位置[83]
Fig.13 Position of acidic sites in ZSM-5 structure in the presence of TPA+ cations or mixed TPA+ and Na+ cations[83]. Copyright 2015, ACS
图14 在氧化硅沸石骨架中引入杂原子的不同模式[84]
Fig.14 Proposed isomorphous substitutions for synthesizing heteroatom-substituted or connected zeolites. In the proposed models, the last model is a heteroatom-connection, while others are heteroatom-substitution[84]. Copyright 2022, Elseviere
图15 不同催化剂在乙烷脱氢制乙烯反应中的性能[89]
Fig.15 (A)Data showing the (a) ethane conversions and (b) ethene selectivities in a long-period ethane dehydrogenation (EDH) over the FeS-1-EDTA, PtSn/Al2O3, and Pt/Al2O3 catalysts. (c) Data characterizing the performance of the FeS-1-EDTA in propane dehydrogenation. (d) Data characterizing the performance of the PtSn/Al2O3 in propane dehydrogenation[89]. Copyright 2020, ACS
图16 硼硅分子筛(BS-1)和S-1分子筛担载B物种(B/S-1)在丙烷有氧脱氢制丙烯反应中的性能[90]
Fig.16 Dependences of propane conversion on reaction temperature over BS-1 and B/S-1; (B) dependences of olefin selectivity on propane conversion over BS-1; (C) the performances of BS-1 and B/S-1 before and after water treatment; (D) the durability data of BS-1[90]. Copyright 2021, Science
图17 一步合成的Cu-SSZ-13的SCR-NH3催化性能[98]
Fig.17 Catalytic performance in SCR-NH3 over one-pot synthesized Cu-SSZ-13 catalyst (ZJM-1)[98]. Copyright 2014, ACS
图18 ZSM-5担载Pt催化剂的甲苯催化燃烧性能,其中R和O分别代表还原与氧化处理,Meso代表具有介孔结构[100]
Fig.18 Catalytic performances in catalytic combustion of toluene over ZSM-5 supported Pt catalysts, where R and O stand for reduction and oxidation treatments for the catalysts, and meso means that the zeolite contains the mesoporosity[100]. Copyright 2015, Elsevier
图19 镶嵌(左侧)或担载(右侧)的Pd金属纳米颗粒催化剂的甲烷与氧气重整反应性能[101]
Fig.19 Catalytic performance in methane reforming over Pd nanoparticles (left) fixed in or (right) supported on S-1 zeolite[101]. Copyright 2018, Nature
图20 担载(左侧)和镶嵌(右侧)Pd金属纳米颗粒的催化剂在甲烷与氧气重整反应后的透射电子显微镜照片[101]
Fig.20 TEM images of used catalysts in methane reforming over Pd nanoparticles (left) supported on or (right) fixed in S-1 zeolite[101]. Copyright 2018, Nature
图21 不同SAPO-34分子筛的扫描电子显微镜照片[103]
Fig.21 SEM images of various SAPO-34 molecular sieves[103]. Copyright 2013, ACS
图22 不同晶体大小的SAPO-34催化剂在MTO反应中的稳定性[103]
Fig.22 Methanol conversion variation with time-on-stream over the SAPO-34 catalysts with different crystal particle sizes[103]. Copyright 2013, ACS
表1 不同催化剂在MTO反应30 min时的主要产物分布[106]
Table 1 Product distribution at reaction time of 30 min in MTO over various catalysts[106]
图23 硅铝比值在100左右的ITH沸石分子筛的扫描电子显微镜图像与MTO反应性能[107]
Fig.23 Dependences of methanol conversion and product selectivity on reaction time in MTP reaction over the aluminosilicate ITH zeolite[107]. Copyright 2020, Wiley
图24 在(a) Pt/Beta-Si, (b) Pt/Beta-SDS和(c) Pt/Beta-TEA催化剂上HCHO转化率与反应温度的关系,HCHO浓度80 ppm,O2 20%, 100 mL/min, 空速 60 000 mL/g·h, 相对湿度 50%, He为载气[108]
Fig.24 Dependences of HCHO conversion on reaction temperature in HCHO oxidation over the (a) Pt/Beta-Si, (b) Pt/Beta-SDS, and (c) Pt/Beta-TEA catalysts under HCHO concentration of 80 ppm, O2 20%, rate of 100 mL/min, space velocity of 60000 mL/g·h, relative humidity of 50%, and He as the balance gas[108]. Copyright 2020, Elsevier
图25 在不同催化剂上HCHO转化到CO2的动力学速率测定[108]
Fig.25 Kinetic rates of (r0) oxidation of HCHO to CO2, (r1) oxidation of HCHO to HCOOH and (r2) oxidation of HCOOH to CO2 over the (a) Pt/Beta-Si, (b) Pt/Beta-SDS, and (c) Pt/Beta-TEA catalysts[108]. Copyright 2020, Elsevier
图26 在AuPd@ZSM-5表面上修饰长链烷基,构建分子围栏,可以选择性地将所形成的双氧水保持于沸石晶体内部,与甲烷反应形成甲醇并穿透分子围栏,最终获得甲醇的高产率
Fig.26 Hydrophobic zeolite modification of organic silane leads to construction of molecular fence, which is to enhance the reaction probability between methane and the generated hydrogen peroxide inside of zeolite crystals
图27 在不同催化剂上甲烷与氢气和氧气反应的催化性能,图中的Cn代表的硅烷碳原子数目[109]
Fig.27 Data characterizing the oxidation of methane with H2 and O2 over various catalysts, Cn stands for the carbon number of the organosilances[109]. Copyright 2020, Science
图28 沸石分子筛有效促进烯烃脱附,提高合成气制烯烃产率[110]
Fig.28 Scheme showing the strategy to boost syngas-to-olefins (FTO) via shifting the chemical equilibrium on catalyst surface by selective adsorption of zeolite promoters[110]. Copyright 2022, Nature
图29 由聚乙烯大分子在沸石纳米片表面裂化的中间体可以快速凝聚于沸石微孔孔道并转化为C3~C6烯烃,并且几乎无法检测到积炭的形成,将废塑料高附加值化[119]
Fig.29 Polyethylene can be cracked into smaller intermediates, which can be condensed and transferred into C3~C6 olefins with undetectable coke formation[119]. Copyright 2022, ACS
[1]
Xu R, Pang W, Yu J H, Huo Q, Chen J S. Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley, 2007.
[2]
Xiao F S, Meng X J. Zeolites in Sustainable Chemistry. Heidelberg: Springer, 2016.
[3]
Barrer R M. Hydrothermal Chemistry of Zeolites. London: Academic Press, 1982.
[4]
Breck D. Zeolite Molecular sieves. Malabar: Krieger, 1984.
[5]
van Bekkum H H, Flanigen E E M, Jacobs P P A, Jansen K J C. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2001.
[6]
Rabo J. Zeolite Chemistry and Catalysis. Washington DC: ACS Monograph, 1976.
[7]
Corma A. Chem. Rev., 1995, 95(3): 559.

doi: 10.1021/cr00035a006     URL    
[8]
Davis M E. Nature, 2002, 417(6891): 813.

doi: 10.1038/nature00785    
[9]
Davis M E, Lobo R F. Chem. Mater., 1992, 4(4): 756.

doi: 10.1021/cm00022a005     URL    
[10]
Cundy C S, Cox P A. Chem. Rev., 2003, 103(3): 663.

doi: 10.1021/cr020060i     URL    
[11]
Bhatia S. Zeolite Catalysis: Principles and Applications. Boca Raton, Fla.: CRC Press, 1990.
[12]
Yang W. Handbook of Fluidization and Fluid-Particle Systems. New York: Marcel Dekker, 2003.
[13]
Xie Z K, et al. Light Olefins:Fundamentals of Catalytic Processes. Beijing: Sinopec Press, 2013.
( 谢在库, 等. 低碳烯烃催化技术基础. 北京: 中国石化出版社, 2013.).
[14]
Song C S. Catal. Today, 2003, 86(1/4): 211.

doi: 10.1016/S0920-5861(03)00412-7     URL    
[15]
Sadeghbeigi R. Fluid Catalytic Cracking Handbook. Amsterdam: Elsevier, 2012. 295.
[16]
Stocker M. Micropor. Mesopor. Mater., 1999, 29: 3.

doi: 10.1016/S1387-1811(98)00319-9     URL    
[17]
Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens T V W, Joensen F, Bordiga S, Lillerud K P. Angew. Chem. Int. Ed., 2012, 51(24): 5810.

doi: 10.1002/anie.201103657     pmid: 22511469
[18]
Keil F J. Micropor. Mesopor. Mater., 1999, 29: 49.

doi: 10.1016/S1387-1811(98)00320-5     URL    
[19]
Dusselier M, Davis M E. Chem. Rev., 2018, 118(11): 5265.

doi: 10.1021/acs.chemrev.7b00738     pmid: 29746122
[20]
Chen D, Moljord K, Holmen A. Microporous Mesoporous Mater., 2012, 164: 239.

doi: 10.1016/j.micromeso.2012.06.046     URL    
[21]
Yarulina I, Chowdhury A D, Meirer F, Weckhuysen B M, Gascon J. Nat. Catal., 2018, 1(6): 398.

doi: 10.1038/s41929-018-0078-5    
[22]
Li J H, Chang H Z, Ma L, Hao J M, Yang R T. Catal. Today, 2011, 175(1): 147.

doi: 10.1016/j.cattod.2011.03.034     URL    
[23]
Brandenberger S, Kröcher O, Tissler A, Althoff R. Catal. Rev., 2008, 50(4): 492.

doi: 10.1080/01614940802480122     URL    
[24]
Beale A M, Gao F, Lezcano-Gonzalez I, Peden C H F, Szanyi J. Chem. Soc. Rev., 2015, 44(20): 7371.

doi: 10.1039/c5cs00108k     pmid: 25913215
[25]
Guan B, Zhan R, Lin H, Huang Z. Appl. Therm. Eng., 2014, 66(1/2): 395.

doi: 10.1016/j.applthermaleng.2014.02.021     URL    
[26]
Gao F, Kwak J H, Szanyi J, Peden C H F. Top. Catal., 2013, 56(15/17): 1441.

doi: 10.1007/s11244-013-0145-8     URL    
[27]
Wang J H, Zhao H W, Haller G, Li Y D. Appl. Catal. B Environ., 2017, 202: 346.

doi: 10.1016/j.apcatb.2016.09.024     URL    
[28]
Martens J A, Vanbutsele G, Jacobs P A, Denayer J, Ocakoglu R, Baron G, Muñoz Arroyo J A, Thybaut J, Marin G B. Catal. Today, 2001, 65(2/4): 111.

doi: 10.1016/S0920-5861(00)00577-0     URL    
[29]
Wang W, Liu C J, Wu W. Catal. Sci. Technol., 2019, 9(16): 4162.

doi: 10.1039/c9cy00499h    
[30]
Okuhara T. J. Jpn. Petrol. Inst., 2004, 47(1): 1.

doi: 10.1627/jpi.47.1     URL    
[31]
Vogt E T C, Weckhuysen B M. Chem. Soc. Rev., 2015, 44(20): 7342.

doi: 10.1039/c5cs00376h     pmid: 26382875
[32]
Vuong G T, Hoang V T, Nguyen D T, Do T O. Appl. Catal. A Gen., 2010, 382(2): 231.

doi: 10.1016/j.apcata.2010.04.049     URL    
[33]
Komvokis V, Tan L X L, Clough M, Pan S S, Yilmaz B,. Xiao F S, Meng X J. Zeolite in Sustainable Chemistry. Eds.: Heidelberg: Springer, 2015, 271.
[34]
Catizzone E, Van Daele S, Bianco M, Di Michele A, Aloise A, Migliori M, Valtchev V, Giordano G. Appl. Catal. B Environ., 2019, 243: 273.

doi: 10.1016/j.apcatb.2018.10.060     URL    
[35]
Catizzone E, Bonura G, Migliori M, Frusteri F, Giordano G. Molecules, 2018, 23(1): 31.

doi: 10.3390/molecules23010031     URL    
[36]
Awala H, Gilson J P, Retoux R, Boullay P, Goupil J M, Valtchev V, Mintova S. Nat. Mater., 2015, 14(4): 447.

doi: 10.1038/nmat4173    
[37]
Tosheva L, Valtchev V P. Chem. Mater., 2005, 17(10): 2494.

doi: 10.1021/cm047908z     URL    
[38]
Mintova S, Jaber M, Valtchev V. Chem. Soc. Rev., 2015, 44(20): 7207.

doi: 10.1039/C5CS00210A     URL    
[39]
Mintova S, Gilson J P, Valtchev V. Nanoscale, 2013, 5(15): 6693.

doi: 10.1039/c3nr01629c     URL    
[40]
Lynch J, Raatz F, Dufresne P. Zeolites, 1987, 7(4): 333.

doi: 10.1016/0144-2449(87)90036-4     URL    
[41]
Triantafillidis C S, Vlessidis A G, Evmiridis N P. Ind. Eng. Chem. Res., 2000, 39(2): 307.

doi: 10.1021/ie990568k     URL    
[42]
Groen J C, Bach T, Ziese U, Paulaime-van Donk A M, de Jong K P, Moulijn J A, PÉrez-Ramírez J. J. Am. Chem. Soc., 2005, 127(31): 10792.

doi: 10.1021/ja052592x     URL    
[43]
Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. J. Am. Chem. Soc., 2000, 122(29): 7116.

doi: 10.1021/ja000744c     URL    
[44]
Pavlackova Z, Kosova G, Zilkova N, Zukal A, Cejka J. Stud. Surf. Sci. Catal., 2006, 162: 905.
[45]
Kustova M Y, Hasselriis P, Christensen C H. Catal. Lett., 2004, 96(3/4): 205.

doi: 10.1023/B:CATL.0000030122.37779.f4     URL    
[46]
Christensen C, Johannsen K, Tornqvist E, Schmidt I, Topsoe H, Christensen C,. Catal. Today, 2007, 128(3/4): 117.

doi: 10.1016/j.cattod.2007.06.082     URL    
[47]
Tao Y S, Kanoh H, Kaneko K. J. Am. Chem. Soc., 2003, 125(20): 6044.

doi: 10.1021/ja0299405     URL    
[48]
Tao Y S, Kanoh H, Kaneko K. J. Phys. Chem. B, 2003, 107(40): 10974.

doi: 10.1021/jp0356822     URL    
[49]
Tao Y S, Kanoh H, Kaneko K. Langmuir, 2005, 21(2): 504.

doi: 10.1021/la047686j     URL    
[50]
Li W C, Lu A H, Palkovits R, Schmidt W, Spliethoff B, Schüth F. J. Am. Chem. Soc., 2005, 127(36): 12595.

doi: 10.1021/ja052693v     URL    
[51]
Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Angew. Chem. Int. Ed., 2006, 45(19): 3090.

doi: 10.1002/(ISSN)1521-3773     URL    
[52]
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Nat. Mater., 2006, 5(9): 718.

doi: 10.1038/nmat1705    
[53]
Wang H, Pinnavaia T J. Angew. Chem. Int. Ed., 2006, 45(45): 7603.

doi: 10.1002/(ISSN)1521-3773     URL    
[54]
Zhu J, Zhu Y H, Zhu L K, Rigutto M, van der Made A, Yang C G, Pan S X, Wang L, Zhu L F, Jin Y Y, Sun Q, Wu Q M, Meng X J, Zhang D L, Han Y, Li J X, Chu Y Y, Zheng A M, Qiu S L, Zheng X M, Xiao F S. J. Am. Chem. Soc., 2014, 136(6): 2503.

doi: 10.1021/ja411117y     URL    
[55]
García-Martínez J, Johnson M, Valla J, Li K H, Ying J Y. Catal. Sci. Technol., 2012, 2(5): 987.

doi: 10.1039/c2cy00309k     URL    
[56]
Siddiqui M A B, Aitani A M, Saeed M R, Al-Yassir N, Al-Khattaf S. Fuel, 2011, 90(2): 459.

doi: 10.1016/j.fuel.2010.09.041     URL    
[57]
Park D, Kim S, Wang H, Pinnavaia T, Papapetrou M, Lappas A, Triantafyllidis K. Angew. Chem. Int. Ed., 2009, 48(41): 7645.

doi: 10.1002/anie.v48:41     URL    
[58]
Zhang H Y, Wang L, Zhang D L, Meng X J, Xiao F S. Microporous Mesoporous Mater., 2016, 233: 133.

doi: 10.1016/j.micromeso.2015.11.063     URL    
[59]
Zhang Y J, Che S A. Angew. Chem. Int. Ed., 2020, 59: 50.

doi: 10.1002/anie.v59.1     URL    
[60]
Shen X F, Mao W T, Ma Y H, Xu D D, Wu P, Terasaki O, Han L, Che S N. Angew. Chem. Int. Ed., 2018, 57(3): 724.

doi: 10.1002/anie.v57.3     URL    
[61]
Zhu H B, Liu Z C, Kong D J, Wang Y D, Xie Z K. J. Phys. Chem. C, 2008, 112(44): 17257.

doi: 10.1021/jp805766m     URL    
[62]
Chen L H, Li X Y, Rooke J C, Zhang Y H, Yang X Y, Tang Y, Xiao F S, Su B L. J. Mater. Chem., 2012, 22(34): 17381.

doi: 10.1039/c2jm31957h     URL    
[63]
Chen L H, Li X Y, Tian G, Li Y, Rooke J C, Zhu G S, Qiu S L, Yang X Y, Su B L. Angew. Chem. Int. Ed., 2011, 50(47): 11156.

doi: 10.1002/anie.v50.47     URL    
[64]
Wu L L, Degirmenci V, Magusin P C M M, Szyja B M, Hensen E J M. Chem. Commun., 2012, 48(76): 9492.

doi: 10.1039/c2cc33994c     URL    
[65]
PÉrez-Ramírez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37(11): 2530.

doi: 10.1039/b809030k     URL    
[66]
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461(7261): 246.

doi: 10.1038/nature08288    
[67]
Na K, Jo C, Kim J, Ahn W S, Ryoo R. ACS Catal., 2011, 1(8): 901.

doi: 10.1021/cs2002143     URL    
[68]
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. J. Am. Chem. Soc., 2010, 132(12): 4169.

doi: 10.1021/ja908382n     URL    
[69]
Zhang X Y, Liu D X, Xu D D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Science, 2012, 336(6089): 1684.

doi: 10.1126/science.1221111     URL    
[70]
Shan Z C, Wang H, Meng X J, Liu S Y, Wang L, Wang C Y, Li F, Lewis J P, Xiao F S. Chem. Commun., 2011, 47(3): 1048.

doi: 10.1039/C0CC03613G     URL    
[71]
Xu L, Ji X Y, Li S H, Zhou Z Y, Du X, Sun J L, Deng F, Che S N, Wu P. Chem. Mater., 2016, 28(12): 4512.

doi: 10.1021/acs.chemmater.6b02155     URL    
[72]
Liu L J, Wang H B, Wang R W, Sun C Y, Zeng S J, Jiang S, Zhang D L, Zhu L K, Zhang Z T. RSC Adv., 2014, 4(41): 21301.

doi: 10.1039/C4RA02022G     URL    
[73]
Xu H, Chen W, Zhang G Q, Wei P F, Wu Q M, Zhu L F, Meng X J, Li X J, Fei J H, Han S C, Zhu Q Y, Zheng A M, Ma Y H, Xiao F S. J. Mater. Chem. A, 2019, 7(28): 16671.

doi: 10.1039/C9TA04833B     URL    
[74]
Zhang F, Liu Y, Sun Q, Dai Z F, Gies H, Wu Q M, Pan S X, Bian C Q, Tian Z J, Meng X J, Zhang Y, Zou X D, Yi X F, Zheng A M, Wang L, Xiao F S. Chem. Commun., 2017, 53(36): 4942.

doi: 10.1039/C7CC01519D     URL    
[75]
Koekkoek A J J, Kim W, Degirmenci V, Xin H, Ryoo R, Hensen E J M. J. Catal., 2013, 299: 81.

doi: 10.1016/j.jcat.2012.12.002     URL    
[76]
Xu D D, Ma Y H, Jing Z F, Han L, Singh B, Feng J, Shen X F, Cao F L, Oleynikov P, Sun H, Terasaki O, Che S N. Nat. Commun., 2014, 5: 4262.

doi: 10.1038/ncomms5262    
[77]
Inayat A, Knoke I, Spiecker E, Schwieger W. Angew. Chem. Int. Ed., 2012, 51(8): 1962.

doi: 10.1002/anie.v51.8     URL    
[78]
Ren L M, Guo Q, Kumar P, Orazov M, Xu D D, Alhassan S M, Mkhoyan K A, Davis M E, Tsapatsis M. Angew. Chem. Int. Ed., 2015, 54(37): 10848.

doi: 10.1002/anie.201505334     URL    
[79]
Seo Y, Lee S, Jo C, Ryoo R. J. Am. Chem. Soc., 2013, 135: 8806.

doi: 10.1021/ja403580j     URL    
[80]
Zhou Y W, Mu Y Y, Hsieh M F, Kabius B, Pacheco C, Bator C, Rioux R M, Rimer J D. J. Am. Chem. Soc., 2020, 142(18): 8211.

doi: 10.1021/jacs.9b13596     URL    
[81]
Tian P, Wei Y X, Ye M, Liu Z M. ACS Catal., 2015, 5(3): 1922.

doi: 10.1021/acscatal.5b00007     URL    
[82]
Zhou Z Q, Liu H C, Chen Z Y, Zhu W L, Liu Z M. ACS Catal., 2021, 11(7): 4077.

doi: 10.1021/acscatal.1c00235     URL    
[83]
Yokoi T, Mochizuki H, Namba S, Kondo J N, Tatsumi T. J. Phys. Chem. C, 2015, 119(27): 15303.

doi: 10.1021/acs.jpcc.5b03289     URL    
[84]
Wu Q M, Xu C, Zhu L F, Meng X J, Xiao F S. Catal. Today, 2022, 390/391: 2.

doi: 10.1016/j.cattod.2022.01.020     URL    
[85]
Notari B. Advances in Catalysis. Amsterdam: Elsevier, 1996. 253.
[86]
Blasco T, Camblor M A, Corma A, Esteve P, Guil J M, Martínez A, PerdigÓn-MelÓn J A, Valencia S. J. Phys. Chem. B, 1998, 102(1): 75.

doi: 10.1021/jp973288w     URL    
[87]
Perego C, Carati A, Ingallina P, Mantegazza M A, Bellussi G. Appl. Catal. A Gen., 2001, 221(1/2): 63.

doi: 10.1016/S0926-860X(01)00797-9     URL    
[88]
Corma A, Nemeth L T, Renz M, Valencia S. Nature, 2001, 412(6845): 423.

doi: 10.1038/35086546    
[89]
Yang Z Y, Li H, Zhou H, Wang L, Wang L X, Zhu Q Y, Xiao J P, Meng X J, Chen J X, Xiao F S. J. Am. Chem. Soc., 2020, 142(38): 16429.

doi: 10.1021/jacs.0c07792     URL    
[90]
Zhou H, Yi X F, Hui Y, Wang L, Chen W, Qin Y C, Wang M, Ma J B, Chu X F, Wang Y Q, Hong X, Chen Z F, Meng X J, Wang H, Zhu Q Y, Song L J, Zheng A M, Xiao F S. Science, 2021, 372(6537): 76.

doi: 10.1126/science.abe7935     URL    
[91]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

doi: 10.1038/nchem.1095    
[92]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.

doi: 10.1021/ar300361m     URL    
[93]
Wang A Q, Li J, Zhang T. Nat. Rev. Chem., 2018, 2(6): 65.

doi: 10.1038/s41570-018-0010-1    
[94]
Kwak J H, Tonkyn R G, Kim D H, Szanyi J, Peden C H F. J. Catal., 2010, 275(2): 187.

doi: 10.1016/j.jcat.2010.07.031     URL    
[95]
Fickel D W, D’Addio E, Lauterbach J A, Lobo R F. Appl. Catal. B Environ., 2011, 102(3/4): 441.

doi: 10.1016/j.apcatb.2010.12.022     URL    
[96]
Paolucci C, Khurana I, Parekh A A, Li S C, Shih A J, Li H, Di Iorio J R, Albarracin-Caballero J D, Yezerets A, Miller J T, Delgass W N, Ribeiro F H, Schneider W F, Gounder R. Science, 2017, 357(6354): 898.

doi: 10.1126/science.aan5630    
[97]
Ren L M, Zhu L F, Yang C G, Chen Y M, Sun Q, Zhang H Y, Li C J, Nawaz F, Meng X J, Xiao F S. Chem. Commun., 2011, 47(35): 9789.

doi: 10.1039/c1cc12469b     URL    
[98]
Xie L J, Liu F D, Ren L M, Shi X Y, Xiao F S, He H. Environ. Sci. Technol., 2014, 48(1): 566.

doi: 10.1021/es4032002     URL    
[99]
Tao S, Li X L, Lv G, Wang C X, Xu R S, Ma H J, Tian Z J. Catal. Sci. Technol., 2017, 7(23): 5775.

doi: 10.1039/C7CY01819C     URL    
[100]
Chen C Y, Wang X, Zhang J, Bian C Q, Pan S X, Chen F, Meng X J, Zheng X M, Gao X H, Xiao F S. Catal. Today, 2015, 258: 190.

doi: 10.1016/j.cattod.2015.02.006     URL    
[101]
Zhang J, Wang L, Zhang B S, Zhao H S, Kolb U, Zhu Y H, Liu L M, Han Y, Wang G X, Wang C T, Su D S, Gates B C, Xiao F S. Nat. Catal., 2018, 1(7): 540.

doi: 10.1038/s41929-018-0098-1    
[102]
Wang L, Xiao F S. ChemCatChem, 2014, 6(11): 3048.

doi: 10.1002/cctc.201402437     URL    
[103]
Yang G J, Wei Y X, Xu S T, Chen J R, Li J Z, Liu Z M, Yu J H, Xu R R. J. Phys. Chem. C, 2013, 117(16): 8214.

doi: 10.1021/jp312857p     URL    
[104]
Sun Q M, Wang N, Xi D Y, Yang M, Yu J H. Chem. Commun., 2014, 50(49): 6502.

doi: 10.1039/c4cc02050b     URL    
[105]
Weissenberger T, Reiprich B, Machoke A G F, Klühspies K, Bauer J, Dotzel R, Casci J L, Schwieger W. Catal. Sci. Technol., 2019, 9(12): 3259.

doi: 10.1039/c9cy00368a    
[106]
Yang C G, Ren L M, Zhang H Y, Zhu L F, Wang L, Meng X J, Xiao F S. J. Mater. Chem., 2012, 22(24): 12238.

doi: 10.1039/c2jm31479g     URL    
[107]
Lei C, Dong Z Y, Martinez C, Martinez-Triguero J, Chen W, Wu Q M, Meng X J, Parvulescu A N, De Baerdemaeker T, Muller U, Zheng A M, Ma Y H, Zhang W P, Yokoi T, Marler B, De Vos D E, Kolb U, Corma A, Xiao F S. Angew. Chem. Int. Ed., 2020, 59: 15649.

doi: 10.1002/anie.v59.36     URL    
[108]
Zhang L, Jiang Y W, Chen B B, Shi C, Li Y B, Wang C Y, Han S C, Pan S X, Wang L, Meng X J, Xiao F S. Catal. Today, 2020, 339: 174.

doi: 10.1016/j.cattod.2019.01.016     URL    
[109]
Jin Z, Wang L, Zuidema E, Mondal K, Zhang M, Zhang J, Wang C T, Meng X J, Yang H Q, Mesters C, Xiao F S. Science, 2020, 367(6474): 193.

doi: 10.1126/science.aaw1108     URL    
[110]
Wang C T, Fang W, Liu Z Q, Wang L, Liao Z W, Yang Y R, Li H J, Liu L, Zhou H, Qin X D, Xu S D, Chu X F, Wang Y Q, Zheng A M, Xiao F S. Nat. Nanotechnol., 2022, 17(7): 714.

doi: 10.1038/s41565-022-01154-9    
[111]
Loewenstein W. Am. Mineral, 1954, 39: 92.
[112]
Wu Q M, Luan H M, Xiao F S. Natl. Sci. Rev., 2022, 9(9): nwac023.

doi: 10.1093/nsr/nwac023     URL    
[113]
Wang H, Wang L, Xiao F S. ACS Cent. Sci., 2020, 6(10): 1685.

doi: 10.1021/acscentsci.0c01130     URL    
[114]
Ma R Y, Wang L, Wang S, Wang C T, Xiao F S. Appl. Catal. B Environ., 2017, 212: 193.

doi: 10.1016/j.apcatb.2017.04.071     URL    
[115]
Xie B, Song J W, Ren L M, Ji Y Y, Li J X, Xiao F S. Chem. Mater., 2008, 20(14): 4533.

doi: 10.1021/cm801167e     URL    
[116]
Ren L M, Wu Q M, Yang C G, Zhu L F, Li C J, Zhang P L, Zhang H Y, Meng X J, Xiao F S. J. Am. Chem. Soc., 2012, 134(37): 15173.

doi: 10.1021/ja3044954     URL    
[117]
Meng X J, Xiao F S. Chem. Rev., 2014, 114(2): 1521.

doi: 10.1021/cr4001513     URL    
[118]
Wu Q M, Meng X J, Gao X H, Xiao F S. Acc. Chem. Res., 2018, 51(6): 1396.

doi: 10.1021/acs.accounts.8b00057     URL    
[119]
Duan J D, Chen W, Wang C T, Wang L, Liu Z Q, Yi X F, Fang W, Wang H, Wei H, Xu S D, Yang Y W, Yang Q W, Bao Z B, Zhang Z G, Ren Q L, Zhou H, Qin X D, Zheng A M, Xiao F S. J. Am. Chem. Soc., 2022, 144(31): 14269.

doi: 10.1021/jacs.2c05125     URL    
[120]
Xiong H, Liu Z Q, Chen X, Wang H Q, Qian W Z, Zhang C X, Zheng A M, Wei F. Science, 2022, 376(6592): 491.

doi: 10.1126/science.abn7667     pmid: 35482872
[1] 郑跃楠, 杨佳奇, 乔振安. 凝聚态化学视角下的多孔材料缺陷工程[J]. 化学进展, 2023, 35(6): 954-967.
[2] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[3] 王海, 王成涛, 周航, 王亮, 肖丰收. 小分子催化转化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 861-885.
[4] 徐如人, 闫文付. 气体分子反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 808-820.
[5] 秦学涛, 周子乔, 马丁. 金属/金属氧化物催化剂的SMSI效应[J]. 化学进展, 2023, 35(6): 928-939.
[6] 王雪丽, 王倩茹, 李缔, 魏俊年, 郭建平, 于良, 邓德会, 陈萍, 席振峰. 固氮反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 904-917.
[7] 李庆贺, 乔波涛, 张涛. 单原子催化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 821-838.
[8] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 闫文付, 徐如人. 凝聚液态水溶液中的化学反应[J]. 化学进展, 2022, 34(7): 1454-1491.
[11] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[12] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[13] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[14] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[15] 徐如人, 于吉红, 闫文付. 凝聚态化学的研究对象与主要科学问题[J]. 化学进展, 2020, 32(8): 1017-1048.
阅读次数
全文


摘要

分子筛催化反应中的凝聚态化学