English
新闻公告
More
化学进展 2023, Vol. 35 Issue (4): 643-654 DOI: 10.7536/PC221103 前一篇   

• 综述 •

在大电流密度电催化二氧化碳还原反应中的单原子催化剂

李佳烨, 张鹏, 潘原*()   

  1. 中国石油大学(华东)重质油国家重点实验室 青岛 266580
  • 收稿日期:2022-11-07 修回日期:2023-01-10 出版日期:2023-04-24 发布日期:2023-02-15
  • 作者简介:

    潘原 男,博士、副教授,泰山学者青年专家。主要从事绿色能源化工过程中的单原子催化新方法与新技术研究。以第一/通讯作者在J. Am. Chem. Soc.、Angew. Chem.、Nat. Commun.、Adv. Mater.等期刊发表论文80余篇,被引7700余次,H指数40。

  • 基金资助:
    国家自然科学基金项目(22108306); 泰山学者科研项目(tsqn201909065); 山东省优秀青年科学基金(ZR2021YQ15); 山东省自然科学基金(ZR2020QB174)

Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities

Jiaye Li, Peng Zhang, Yuan Pan()   

  1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China),Qingdao 266580, China
  • Received:2022-11-07 Revised:2023-01-10 Online:2023-04-24 Published:2023-02-15
  • Contact: *e-mail:panyuan@upc.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22108306); Taishan Scholars Research Project(tsqn201909065); Excellent Youth Science Foundation of Shandong Province(ZR2021YQ15); Shandong Provincial Natural Science Foundation, China(ZR2020QB174)

二氧化碳电还原(ECR)是一种环境友好的能源转换方式,可以将CO2转化为各种具有高附加值的燃料或化学品,但是在大电流密度下通常存在反应活性、产物选择性和长周期稳定性差的问题。单原子催化剂具有高选择性、高催化活性和高原子利用率等优点,在ECR过程中具有巨大的潜力。如何设计高活性、高选择性和长周期稳定性的单原子催化剂用于大电流密度下电催化CO2还原成为该领域的热点研究问题。本文综述一系列单原子催化剂在大电流密度下的ECR反应的研究进展,重点总结了增强单原子催化剂在大电流密度下ECR性能的活性、产物选择性及长周期稳定性调控机制,为系统设计和制备ECR单原子催化剂提供了思路,并对ECR单原子催化剂工业化应用的机遇与挑战进行了展望。

Electrocatalytic carbon dioxide reduction (ECR) is an environmentally friendly energy conversion method that can convert CO2 into various high value-added fuels or chemicals. However, it usually is subject to low catalytic activity, low selectivity and low macrocyclic stability at high current densities. Benefitting from the advantages of high selectivity, high catalytic activity and high atom utilization, single atom catalysts show great potential in ECR process. Therefore, how to design single atom catalysts with high activity, high selectivity and high macrocyclic stability has become a research hot issue in this field. This paper reviews the research progress of a series of single atom catalysts in electrocatalytic carbon dioxide reduction at high current densities, and focuses on the activity regulation mechanisms, product selectivity regulation mechanisms and macrocyclic stability regulation mechanisms to enhance the ECR performance of single atom catalysts, which provides ideas for the systematic design and synthesis of ECR single atom catalysts. The opportunities and challenges of ECR single atom catalysts are prospected.

()
图1 Ni-SAC的(a)合成、(b)测试用反应器、(c)TEM图像及(d)性能测试[15]
Fig.1 (a) Synthesis, (b) test reactor, (c)TEM image and (d) performance test of Ni-SAC[15]
图2 Co-N5/HNPCSs的合成、ECR性能测试及稳定性测试[31]
Fig.2 (a) Synthesis, (b) stability test and (c) ECR performance test of Co-N5/HNPCSs[31]
图3 Ni@C3N4-CN的(a)合成、(b)表征(TEM图)及(c)ECR稳定性[47]
Fig.3 Synthesis, characterization and ECR stability of Ni@C3N4-CN(a) synthesis; (b) TEM image; (c) ECR stability[47]
图4 Cu-APC的(a)制备、(b)表征(TEM 图)、(c)性能测试及(d)稳定性测试[49]
Fig.4 Synthesis, characterization and performance test of Cu-APC[49]:(a) synthesis; (b) TEM image; (c) performance test; (d) stability test
图5 CuO/Ni SA的(a)制备、作用机理示意图以及(b~d)产物选择性测试[53]
Fig.5 Synthesis of CuO/Ni SA, schematic diagram of action mechanism and product selectivity test[53].(a) Synthesis and mechanism; (b) C2+ selectivity test; (c) C2H4 selectivity test; (d) C2H5OH selectivity test
[1]
Jia C, Shi Z, Zhao C. Curr. Opin. Green Sustain. Chem., 2022, 37: 100651.
[2]
Wu J H, Huang Y, Ye W, Li Y G. Adv. Sci., 2017, 4(11): 1700194.

doi: 10.1002/advs.201700194     URL    
[3]
Liu J, Cai Y M, Song R B, Ding S C, Lyu Z Y, Chang Y C, Tian H Y, Zhang X, Du D, Zhu W L, Zhou Y, Lin Y H. Mater. Today, 2021, 48: 95.

doi: 10.1016/j.mattod.2021.02.005     URL    
[4]
Guo J Y, Zhang W L, Zhang L H, Chen D T, Zhan J Y, Wang X L, Shiju N R, Yu F S. Adv. Sci., 2021, 8(23): 2102884.

doi: 10.1002/advs.v8.23     URL    
[5]
Huang H W, Jia H H, Liu Z, Gao P F, Zhao J T, Luo Z L, Yang J L, Zeng J. Angew. Chem., 2017, 56(13): 3594.

doi: 10.1002/anie.v56.13     URL    
[6]
Ji Y F, NØrskov J K, Chan K R. J. Phys. Chem. C, 2019, 123(7): 4256.

doi: 10.1021/acs.jpcc.8b11628     URL    
[7]
Jiao Y, Zheng Y, Chen P, Jaroniec M, Qiao S Z. J. Am. Chem. Soc., 2017, 139(49): 18093.

doi: 10.1021/jacs.7b10817     pmid: 29151346
[8]
Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen B A, Haasch R, Abiade J, Yarin A L, Salehi-Khojin A. Nat. Commun., 2013, 4: 2819.

doi: 10.1038/ncomms3819    
[9]
Tornow C E, Thorson M R, Ma S C, Gewirth A A, Kenis P J A. J. Am. Chem. Soc., 2012, 134(48): 19520.

doi: 10.1021/ja308217w     URL    
[10]
Zhang P, Li J, Pan Y. Acta Energiae Solaris Sinica., 2022, 43(6): 306.

doi: 10.19912/j.0254-0096.tynxb.2022-0606    
[11]
Wang M M, Li M, Liu Y Q, Zhang C, Pan Y. Nano Res., 2022, 15(6): 4925.

doi: 10.1007/s12274-022-4175-z    
[12]
Qu M, Chen Z, Sun Z Y, Zhou D N, Xu W J, Tang H, Gu H F, Liang T, Hu P F, Li G W, Wang Y, Chen Z, Wang T, Jia B B. Nano Res., 2023, 16: 2170.

doi: 10.1007/s12274-022-4969-z    
[13]
Pan F P, Deng W, Justiniano C, Li Y. Appl. Catal. B, 2018, 226: 463.

doi: 10.1016/j.apcatb.2018.01.001     URL    
[14]
Ju W, Bagger A, Hao G P, Varela A S, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J, Strasser P. Nat. Commun., 2017, 8: 944.

doi: 10.1038/s41467-017-01035-z    
[15]
Fan Q K, Gao P F, Ren S, Qu Y T, Kong C C, Yang J, Wu Y E. Nano Res., 2023, 16: 2003.

doi: 10.1007/s12274-022-4472-6    
[16]
Yang F Q, Mao X Y, Ma M F, Jiang C, Zhang P X, Wang J, Deng Q, Zeng Z L, Deng S G. Carbon, 2020, 168: 528.

doi: 10.1016/j.carbon.2020.06.088     URL    
[17]
Yang H P, Lin Q, Wu Y, Li G D, Hu Q, Chai X Y, Ren X Z, Zhang Q L, Liu J H, He C X. Nano Energy, 2020, 70: 104454.

doi: 10.1016/j.nanoen.2020.104454     URL    
[18]
Jiang K, Siahrostami S, Akey A J, Li Y B, Lu Z Y, Lattimer J, Hu Y F, Stokes C, Gangishetty M, Chen G X, Zhou Y W, Hill W, Cai W B, Bell D, Chan K R, NØrskov J K, Cui Y, Wang H T. Chem, 2017, 3(6): 950.

doi: 10.1016/j.chempr.2017.09.014     URL    
[19]
Pang Y J, Li J, Wang Z Y, Tan C S, Hsieh P L, Zhuang T T, Liang Z Q, Zou C Q, Wang X, De Luna P, Edwards J P, Xu Y, Li F W, Dinh C T, Zhong M, Lou Y H, Wu D, Chen L J, Sargent E H, Sinton D. Nat. Catal., 2019, 2(3): 251.

doi: 10.1038/s41929-019-0225-7    
[20]
Li C W, Ciston J, Kanan M W. Nature, 2014, 508(7497): 504.

doi: 10.1038/nature13249    
[21]
Zhang N Q, Zhang X X, Tao L, Jiang P, Ye C L, Lin R, Huang Z W, Li A, Pang D W, Yan H, Wang Y, Xu P, An S F, Zhang Q H, Liu L C, Du S X, Han X D, Wang D S, Li Y D. Angew. Chem, 2021, 60(11): 6170.

doi: 10.1002/anie.v60.11     URL    
[22]
Rosen B A, Salehi-Khojin A, Thorson M R, Zhu W, Whipple D T, Kenis P J A, Masel R I. Science, 2011, 334(6056): 643.

doi: 10.1126/science.1209786     URL    
[23]
Zhang Q Q, Guan J Q. Adv. Funct. Mater., 2020, 30(31): 2000768.

doi: 10.1002/adfm.v30.31     URL    
[24]
Chen Y, Hu F, Hao Y N, Wang Y H, Xie Y Y, Wang H, Yin L J, Yu D S, Yang H C, Ma J, Kai D, Li L L, Peng S J. Nano Res., 2022, 15(4): 3283.

doi: 10.1007/s12274-021-3978-7    
[25]
He Q, Lee J H, Liu D B, Liu Y M, Lin Z X, Xie Z H, Hwang S, Kattel S, Song L, Chen J G. Adv. Funct. Mater., 2020, 30(17): 2000407.

doi: 10.1002/adfm.v30.17     URL    
[26]
Yuan X T, Zhang L, Li L L, Dong H, Chen S, Zhu W J, Hu C L, Deng W Y, Zhao Z J, Gong J L. J. Am. Chem. Soc., 2019, 141(12): 4791.

doi: 10.1021/jacs.8b11771     URL    
[27]
Bok J, Lee S Y, Lee B H, Kim C, Le Tri Nguyen D, Kim J W, Jung E, Lee C W, Jung Y, Lee H S, Kim J, Lee K, Ko W, Kim Y S, Cho S P, Yoo J S, Hyeon T, Hwang Y J. J. Am. Chem. Soc., 2021, 143(14): 5386.

doi: 10.1021/jacs.0c12696     URL    
[28]
Li Y, Adli N M, Shan W T, Wang M Y, Zachman M J, Hwang S, Tabassum H, Karakalos S, Feng Z X, Wang G F, Li Y C, Wu G. Energy Environ. Sci., 2022, 15(5): 2108.

doi: 10.1039/D2EE00318J     URL    
[29]
Gu J, Hsu C S, Bai L C, Chen H M, Hu X L. Science, 2019, 364(6445): 1091.

doi: 10.1126/science.aaw7515     URL    
[30]
Wang C, Ren H A, Wang Z H, Guan Q X, Liu Y P, Li W. Appl. Catal. B, 2022, 304: 120958.

doi: 10.1016/j.apcatb.2021.120958     URL    
[31]
Pan Y, Lin R, Chen Y. J. Am. Chem. Soc., 2018, 140(12): 4218.

doi: 10.1021/jacs.8b00814     URL    
[32]
Zhu C Z, Fu S F, Shi Q R, Du D, Lin Y H. Angew. Chem. Int. Ed., 2017, 56(45): 13944.

doi: 10.1002/anie.201703864     URL    
[33]
Chen S H, Wang B Q, Zhu J X, Wang L Q, Ou H H, Zhang Z D, Liang X, Zheng L R, Zhou L, Su Y Q, Wang D S, Li Y D. Nano Lett., 2021, 21(17): 7325.

doi: 10.1021/acs.nanolett.1c02502     URL    
[34]
Tan X, Tahini H A, Arandiyan H, Smith S C. Adv. Theory Simul., 2019, 2(3): 1800094.

doi: 10.1002/adts.v2.3     URL    
[35]
Hu C H, Wang Y J, Chen J M, Wang H F, Shen K, Tang K W, Chen L Y, Li Y W. Small, 2022, 18(22): 2201391.

doi: 10.1002/smll.v18.22     URL    
[36]
Shang H S, Wang T, Pei J J, Jiang Z L, Zhou D N, Wang Y, Li H J, Dong J C, Zhuang Z B, Chen W X, Wang D S, Zhang J T, Li Y D. Angew. Chem, 2020, 59(50): 22465.

doi: 10.1002/anie.v59.50     URL    
[37]
Lu P L, Tan X, Zhao H T, Xiang Q, Liu K L, Zhao X X, Yin X M, Li X Z, Hai X, Xi S B, Wee A T S, Pennycook S J, Yu X F, Yuan M L, Wu J B, Zhang G J, Smith S C, Yin Z Y. ACS Nano, 2021, 15(3): 5671.

doi: 10.1021/acsnano.1c00858     URL    
[38]
Chen Z, Gao M R, Duan N Q, Zhang J G, Zhang Y Q, Fan T T, Zhang J W, Dong Y Y, Li J H, Liu Q X, Yi X D, Luo J L. Appl. Catal. B Environ., 2020, 277: 119252.

doi: 10.1016/j.apcatb.2020.119252     URL    
[39]
Lee M Y, Ringe S, Kim H, Kang S, Kwon Y. ACS Energy Lett., 2020, 5(9): 2987.

doi: 10.1021/acsenergylett.0c01387     URL    
[40]
Wen G B, Ren B H, Park M G, Yang J, Dou H Z, Zhang Z, Deng Y P, Bai Z Y, Yang L, Gostick J, Botton G A, Hu Y F, Chen Z W. Angew. Chem. Int. Ed., 2020, 59(31): 13124.

doi: 10.1002/anie.v59.31     URL    
[41]
Ni W, Gao Y, Lin Y, Ma C, Guo X, Wang S, Zhang S. ACS Catalysis, 2021, 11(9): 5212.

doi: 10.1021/acscatal.0c05514     URL    
[42]
Wang Q Y, Liu K, Fu J W, Cai C, Li H, Long Y, Chen S Y, Liu B, Li H M, Li W Z, Qiu X Q, Zhang N, Hu J H, Pan H, Liu M. Angew. Chem., 2021, 60(48): 25241.

doi: 10.1002/anie.v60.48     URL    
[43]
Jia C, Li S N, Zhao Y, Hocking R K, Ren W H, Chen X J, Su Z, Yang W F, Wang Y, Zheng S S, Pan F, Zhao C. Adv. Funct. Mater., 2021, 31(51): 2107072.

doi: 10.1002/adfm.v31.51     URL    
[44]
Li Z, Wu R, Xiao S H, Yang Y C, Lai L, Chen J S, Chen Y. Chem. Eng. J., 2022, 430: 132882.

doi: 10.1016/j.cej.2021.132882     URL    
[45]
Sun X H, Tuo Y X, Ye C L, Chen C, Lu Q, Li G N, Jiang P, Chen S H, Zhu P, Ma M, Zhang J, Bitter J H, Wang D S, Li Y D. Angew. Chem. Int. Ed., 2021, 60(44): 23614.

doi: 10.1002/anie.v60.44     URL    
[46]
Li K, Zhang S B, Zhang X L, Liu S, Jiang H S, Jiang T L, Shen C Y, Yu Y, Chen W. Nano Lett., 2022, 22(4): 1557.

doi: 10.1021/acs.nanolett.1c04382     URL    
[47]
Wang Q Y, Liu K, Hu K M, Cai C, Li H, Li H M, Herran M, Lu Y R, Chan T S, Ma C, Fu J W, Zhang S G, Liang Y, CortÉs E, Liu M. Nat. Commun., 2022, 13: 6082.

doi: 10.1038/s41467-022-33692-0    
[48]
Hou J, Fan Z, Luo R, Zhang Y, Zhang B, Zhai P, Zhang Y, Wang C, Gao J, Zhou W, Sun L. Angew. Chem., 2023, 62(7),DOI:10.1002/anie.202216326.

doi: 10.1002/anie.202216326    
[49]
Jiao J Q, Lin R, Liu S J, Cheong W C, Zhang C, Chen Z, Pan Y, Tang J G, Wu K L, Hung S F, Chen H M, Zheng L R, Lu Q, Yang X, Xu B J, Xiao H, Li J, Wang D S, Peng Q, Chen C, Li Y D. Nat. Chem., 2019, 11(3): 222.

doi: 10.1038/s41557-018-0201-x    
[50]
Yi J D, Gao X, Zhou H, Chen W, Wu Y. Angew. Chem., 2022, 61(47),DOI:10.1002/anie.202212329.

doi: 10.1002/anie.202212329    
[51]
Zhang Z D, Zhu J X, Chen S H, Sun W M, Wang D S. Angew. Chem, 2023, 62(3),DOI:10.1002/anie.202215136.

doi: 10.1002/anie.202215136    
[52]
Zheng T T, Liu C X, Guo C X, Zhang M L, Li X, Jiang Q, Xue W Q, Li H L, Li A W, Pao C W, Xiao J P, Xia C, Zeng J. Nat. Nanotechnol., 2021, 16(12): 1386.

doi: 10.1038/s41565-021-00974-5    
[53]
Zhang Y, Li P, Zhao C M, Zhou G, Zhou F Y, Zhang Q T, Su C L, Wu Y E. Sci. Bull., 2022, 67(16): 1679.

doi: 10.1016/j.scib.2022.07.029     pmid: 36546047
[54]
Wei X F, Wei S X, Cao S F, Hu Y Y, Zhou S N, Liu S Y, Wang Z J, Lu X Q. Appl. Surf. Sci., 2021, 564: 150423.

doi: 10.1016/j.apsusc.2021.150423     URL    
[55]
Yang H P, Wu Y, Li G D, Lin Q, Hu Q, Zhang Q L, Liu J H, He C X. J. Am. Chem. Soc., 2019, 141(32): 12717.

doi: 10.1021/jacs.9b04907     URL    
[56]
Cai Y M, Fu J J, Zhou Y, Chang Y C, Min Q H, Zhu J J, Lin Y H, Zhu W L. Nat. Commun., 2021, 12: 586.

doi: 10.1038/s41467-020-20769-x    
[57]
Qi R, Zhu B E, Han Z K, Gao Y. ACS Catal., 2022, 12(14): 8269.

doi: 10.1021/acscatal.2c02149     URL    
[58]
Zhang J, Xu T S, Yuan D, Tian J L, Ma D W.J. CO2 Util., 2021, 43: 101367.
[59]
Gao Z Y, Meng Y, Koso A, Mishima J, Xie B, Ni Z M, Xia S J. Colloids Surf. A, 2022, 648: 129365.

doi: 10.1016/j.colsurfa.2022.129365     URL    
[60]
Zhao S Y, Wang T S, Zhou G M, Zhang L J, Lin C, Veder J P, Johannessen B, Saunders M, Yin L C, Liu C, De Marco R, Yang S Z, Zhang Q F, Jiang S P. ChemNanoMat, 2020, 6(7): 997.

doi: 10.1002/cnma.v6.7     URL    
[61]
Wang H, Chuai H, Chen X, Lin J, Zhang S, Ma X. ACS Appl. Mater. Interfaces. 2023, 15(1): 1376.

doi: 10.1021/acsami.2c19502     URL    
[62]
Zhang Z D, Wang D S. J. Mater. Chem. A, 2022, 10(11): 5863.

doi: 10.1039/D1TA07778C     URL    
[63]
Yang X F, Wang A Q, Qiao B T, Li J, Liu J Y, Zhang T. Acc. Chem. Res., 2013, 46(8): 1740.

doi: 10.1021/ar300361m     URL    
[64]
Ji S F, Chen Y J, Wang X L, Zhang Z D, Wang D S, Li Y D. Chem. Rev., 2020, 120(21): 11900.

doi: 10.1021/acs.chemrev.9b00818     URL    
[65]
Yang D X, Zhu Q G, Chen C J, Liu H Z, Liu Z M, Zhao Z J, Zhang X Y, Liu S J, Han B X. Nat. Commun., 2019, 10: 677.

doi: 10.1038/s41467-019-08653-9    
[66]
Sebastián-Pascual P, Mezzavilla S, Stephens I E L, Escudero-Escribano M. ChemCatChem, 2019, 11(16): 3626.

doi: 10.1002/cctc.v11.16     URL    
[67]
Burdyny T, Smith W A. Energy Environ. Sci., 2019, 12(5): 1442.

doi: 10.1039/C8EE03134G     URL    
[68]
Ampelli C, Genovese C, Errahali M, Gatti G, Marchese L, Perathoner S, Centi G. J. Appl. Electrochem., 2015, 45(7): 701.

doi: 10.1007/s10800-015-0847-7     URL    
[69]
Gabardo C M, Seifitokaldani A, Edwards J P, Dinh C T, Burdyny T, Kibria M G, O’Brien C P, Sargent E H, Sinton D. Energy Environ. Sci., 2018, 11(9): 2531.

doi: 10.1039/C8EE01684D     URL    
[70]
Zhang L X, Hu S Q, Zhu X F, Yang W S. J. Energy Chem., 2017, 26(4): 593.

doi: 10.1016/j.jechem.2017.04.004     URL    
[71]
Zhang X M, Song Y F, Wang G X, Bao X H. J. Energy Chem., 2017, 26(5): 839.

doi: 10.1016/j.jechem.2017.07.003     URL    
[72]
Salvatore D A, Weekes D M, He J F, Dettelbach K E, Li Y C, Mallouk T E, Berlinguette C P. ACS Energy Lett., 2018, 3(1): 149.

doi: 10.1021/acsenergylett.7b01017     URL    
[73]
Marepally B C, Ampelli C, Genovese C, Saboo T, Perathoner S, Wisser F M, Veyre L, Canivet J, Alessandra Quadrelli E, Centi G. ChemSusChem, 2017, 10(22): 4442.

doi: 10.1002/cssc.201701506     pmid: 28921891
[1] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[2] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[3] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[4] 吴文浩, 雷文, 王丽琼, 王森, 张海军. 单原子催化剂合成方法[J]. 化学进展, 2020, 32(1): 23-32.
[5] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[6] 郑亚楠, 王丹. 金属调控蛋白的结构、性质及应用[J]. 化学进展, 2019, 31(10): 1372-1383.