English
新闻公告
More
化学进展 2023, Vol. 35 Issue (4): 593-605 DOI: 10.7536/PC220928 前一篇   后一篇

• 综述 •

多相双功能催化剂催化乙酰丙酸制备γ-戊内酯

邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋*()   

  1. 济南大学 材料科学与工程学院 济南 250022
  • 收稿日期:2022-09-26 修回日期:2022-11-10 出版日期:2023-04-24 发布日期:2023-02-20
  • 作者简介:

    胡 勋 济南大学教授、博导,国家海外高层次人才引进计划青年项目获得者。团队目前的研究包括固体废弃物资源化利用、生物质炭材料制备和应用、多相催化(水蒸气重整制氢、加氢和酸催化等)。团队在Nature Communication, Chemical Communications, ChemSusChem, AICHE Journal, Green Chemistry,ACS Sustainable Chemistry & Engineering和Applied Catalysis B: Environmental等本领域重要期刊发表论文200余篇,文章被引12 000余次。

  • 基金资助:
    国家自然科学基金项目(51906084); 山东省泰山学者资助项目; 山东省八三石墨新材料厂研发项目; 吉林省科学技术发展项目(S202110427093)

Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone

Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu()   

  1. School of Material Science and Engineering, University of Jinan,Jinan 250022, China
  • Received:2022-09-26 Revised:2022-11-10 Online:2023-04-24 Published:2023-02-20
  • Contact: *e-mail: xun.hu@outlook.com
  • Supported by:
    National Natural Science Foundation of China(51906084); Program for Taishan Scholars of Shandong Province Government; R&D program of Shandong Basan Graphite New Material Plant and Innovation; Entrepreneurship Training Program for College Students of Shandong Province(S202110427093)

乙酰丙酸是重要的生物质衍生物,通过多相双功能催化剂催化转化其制备γ-戊内酯(GVL)成为生物精炼领域的研究热点。本文综述了近年来贵金属以及非贵金属双功能催化剂催化乙酰丙酸及其酯直接加氢制备GVL,以及金属负载型、改性分子筛和混合金属氧化物等双功能催化剂催化乙酰丙酸及其酯转移加氢制备GVL。在双功能催化剂作用下,乙酰丙酸及其酯通过羰基加氢和后续内酯化反应两个过程生成GVL。本文详细研究了不同双功能催化剂中活性位点在反应路径中的重要性,讨论了不同双功能催化剂在乙酰丙酸加氢转化过程中存在的优势和问题,并对未来双功能催化剂的开发和GVL的合成进行展望。

Levulinic acid is important biomass-derived compounds, and catalytic conversion of them to γ-valerolactone (GVL) over heterogeneous bifunctional catalysts has become a hot focus in the field of biorefining. In this paper, the direct hydrogenation of levulinic acid and its esters to GVL catalyzed by noble and non-noble metal bifunctional catalysts, and the transfer hydrogenation of levulinic acid and its esters to GVL catalyzed by the bifunctional catalysts, such as metal-supported catalysts, modified zeolite, and mixed metal oxides, are reviewed. Conversion of levulinic acid and its esters to GVL over bifunctional catalysts involves two steps, including hydrogenation of carbonyl group and subsequent lactonization reaction. In addition, the importance of active sites of various bifunctional catalysts in conversion of levulinic acid and its esters is studied in this paper, and the advantages and problems of different catalysts during the conversion of levulinic acid/esters are discussed. Finally, the development of bifunctional catalysts and the synthesis of GVL in the future are prospected.

()
图1 木质纤维素生物质催化转化制备γ-戊内酯反应路线
Fig.1 Reaction routes for catalytic conversion of lignocellulosic biomass to γ-valerolactone
图2 金属双功能催化剂催化转化乙酰丙酸及其酯制备γ-戊内酯
Fig.2 Conversion of levulinic acid and its esters to γ-valerolactone catalyzed by metal bifunctional catalysts
表1 不同贵金属双功能催化剂催化转化乙酰丙酸及其酯制备γ-戊内酯
Table 1 Conversion of levulinic acid and its esters to γ-valerolactone catalyzed by different noble metal bifunctional catalysts
表2 不同非贵金属双功能催化剂催化转化乙酰丙酸及其酯制备γ-戊内酯
Table 2 Conversion of levulinic acid and its esters to γ-valerolactone catalyzed by different non-noble metal bifunctional catalysts
图3 双功能催化剂催化乙酰丙酸及其酯转移加氢制备γ-戊内酯
Fig.3 Transfer hydrogenation of levulinic acid and its ester to γ-valerolactone catalyzed by bifunctional catalysts
表3 不同双功能催化剂催化乙酰丙酸及其酯转移加氢制备γ-戊内酯
Table 3 Transfer hydrogenation of levulinic acid and its ester to γ-valerolactone catalyzed by different bifunctional catalysts
图4 双功能催化剂中活性位点在催化乙酰丙酸及其酯 (a)直接加氢和 (b)转移加氢制备γ-戊内酯的重要性
Fig.4 Importance of active sites in bifunctional catalysts in catalyzing (a) direct hydrogenation and (b) transfer hydrogenation of levulinic acid and its esters to γ-valerolactone
[1]
Yang H P, Yan R, Chen H P, Lee D H, Zheng C G. Fuel, 2007, 86(12/13): 1781.

doi: 10.1016/j.fuel.2006.12.013     URL    
[2]
Huang X, Ren J, Ran J Y, Qin C L, Yang Z Q, Cao J P. Fuel Process. Technol., 2022, 229: 107175.

doi: 10.1016/j.fuproc.2022.107175     URL    
[3]
Jing Y X, Guo Y, Xia Q N, Liu X H, Wang Y Q. Chem, 2019, 5(10): 2520.

doi: 10.1016/j.chempr.2019.05.022     URL    
[4]
Yan K, Jarvis C, Gu J, Yan Y. Renew. Sustain. Energy Rev., 2015, 51: 986.

doi: 10.1016/j.rser.2015.07.021     URL    
[5]
Hu X, Jiang S J, Wu L P, Wang S, Li C Z. Chem. Commun., 2017, 53(20): 2938.

doi: 10.1039/C7CC01078H     URL    
[6]
Gao W R, Wu G, Zhu X, Asif Akhtar M, Lin G Y, Hu X, Huang Y, Zhang S, Zhang H. Bioresour. Technol., 2022, 347: 126436.

doi: 10.1016/j.biortech.2021.126436     URL    
[7]
Hu X, Li C Z. Green Chem., 2011, 13(7): 1676.

doi: 10.1039/c1gc15272f     URL    
[8]
Wang J H, Cui H Y, Wang J G, Li Z H, Wang M, Yi W M. Chem. Eng. J., 2021, 415: 128922.

doi: 10.1016/j.cej.2021.128922     URL    
[9]
Hu X, Song Y, Wu L P, Gholizadeh M, Li C Z. ACS Sustainable Chem. Eng., 2013, 1(12): 1593.

doi: 10.1021/sc400229w     URL    
[10]
Wang J H, Xiang Z Y, Huang Z X, Xu Q, Yin D L. Front. Chem., 2022, 10: 959572.

doi: 10.3389/fchem.2022.959572     URL    
[11]
Liguori F, Moreno-Marrodan C, Barbaro P. ACS Catal., 2015, 5(3): 1882.

doi: 10.1021/cs501922e     URL    
[12]
Liu Y X, Liu X X, Li M R, Meng Y, Li J, Zhang Z H, Zhang H. Front. Chem., 2021, 9: 812331.

doi: 10.3389/fchem.2021.812331     URL    
[13]
Yu Z H, Lu X B, Xiong J, Ji N. ChemSusChem, 2019, 12(17): 3915.

doi: 10.1002/cssc.v12.17     URL    
[14]
Alonso D M, Wettstein S G, Dumesic J A. Green Chem., 2013, 15(3): 584.

doi: 10.1039/c3gc37065h     URL    
[15]
Dutta S, Yu I K M, Tsang D C W, Ng Y H, Ok Y S, Sherwood J, Clark J H. Chem. Eng. J., 2019, 372: 992.

doi: 10.1016/j.cej.2019.04.199     URL    
[16]
He J, Li H, Xu Y F, Yang S. Renew. Energy, 2020, 146: 359.

doi: 10.1016/j.renene.2019.06.105     URL    
[17]
Winoto H P, Ahn B S, Jae J. J. Ind. Eng. Chem., 2016, 40: 62.

doi: 10.1016/j.jiec.2016.06.007     URL    
[18]
Li W K, Cai Z, Li H, Shen Y, Zhu Y Q, Li H C, Zhang X B, Wang F M. Mol. Catal., 2019, 472: 17.
[19]
Winoto H P, Ali Fikri Z, Ha J M, Park Y K, Lee H, Suh D J, Jae J. Appl. Catal. B Environ., 2019, 241: 588.

doi: 10.1016/j.apcatb.2018.09.031     URL    
[20]
Chen B F, Li F B, Huang Z J, Yuan G Q. J. Energy Chem., 2016, 25(5): 888.

doi: 10.1016/j.jechem.2016.06.007     URL    
[21]
Zhu S H, Cen Y L, Guo J, Chai J C, Wang J G, Fan W B. Green Chem., 2016, 18(20): 5667.

doi: 10.1039/C6GC01736C     URL    
[22]
Wang Y, Rong Z M, Wang Y, Wang T, Du Q Q, Wang Y, Qu J P. ACS Sustainable Chem. Eng., 2017, 5(2): 1538.

doi: 10.1021/acssuschemeng.6b02244     URL    
[23]
Galletti A M R, Antonetti C, De Luise V, Martinelli M. Green Chem., 2012, 14(3): 688.

doi: 10.1039/c2gc15872h     URL    
[24]
Villa A, Schiavoni M, Chan-Thaw C E, Fulvio P F, Mayes R T, Dai S, More K L, Veith G M, Prati L. ChemSusChem, 2015, 8(15): 2520.

doi: 10.1002/cssc.201500331     URL    
[25]
Pan J P, Xu Q H, Fang L, Tu G M, Fu Y H, Chen G H, Zhang F M, Zhu W D. Catal. Commun., 2019, 128: 105710.

doi: 10.1016/j.catcom.2019.105710     URL    
[26]
Meng Z, Liu Y, Yang G X, Cao Y H, Wang H J, Peng F, Liu P F, Yu H. ACS Sustainable Chem. Eng., 2019, 7(19): 16501.

doi: 10.1021/acssuschemeng.9b03742     URL    
[27]
Moreno-Marrodan C, Barbaro P. Green Chem., 2014, 16(7): 3434.

doi: 10.1039/c4gc00298a     URL    
[28]
Li W L, Li F, Chen J W, Betancourt L E, Tu C Y, Liao M J, Ning X, Zheng J J, Li R F. Ind. Eng. Chem. Res., 2020, 59(39): 17338.

doi: 10.1021/acs.iecr.0c01318     URL    
[29]
Li W L, Li F, Ning X, Deng K X, Chen J W, Zheng J J, Li R F. Carbon Resour. Convers., 2022, 5(3): 185.

doi: 10.1016/j.crcon.2022.05.003     URL    
[30]
Kuwahara Y, Magatani Y, Yamashita H. Catal. Today, 2015, 258: 262.

doi: 10.1016/j.cattod.2015.01.015     URL    
[31]
Lu Y W, Wang Y X, Wang Y H, Cao Q E, Xie X G, Fang W H. Mol. Catal., 2020, 493: 111097.
[32]
Mani M, Mariyaselvakumar M, Samikannu A, Panda A B, Konwar L J, Mikkola J P. Appl. Catal. A Gen., 2022, 643: 118744.

doi: 10.1016/j.apcata.2022.118744     URL    
[33]
Ruppert A M, Grams J, Jędrzejczyk M, Matras-Michalska J, Keller N, Ostojska K, Sautet P. ChemSusChem, 2015, 8(9): 1497.

doi: 10.1002/cssc.201500305     URL    
[34]
Guo Y Y, Li Y L, Chen J Z, Chen L M. Catal. Lett., 2016, 146(10): 2041.

doi: 10.1007/s10562-016-1819-1     URL    
[35]
Yao Y R, Wang Z Q, Zhao S, Wang D H, Wu Z J, Zhang M H. Catal. Today, 2014, 234: 245.

doi: 10.1016/j.cattod.2014.01.020     URL    
[36]
Sudhakar M, Lakshmi Kantam M, Swarna Jaya V, Kishore R, Ramanujachary K V, Venugopal A. Catal. Commun., 2014, 50: 101.

doi: 10.1016/j.catcom.2014.03.005     URL    
[37]
Zhang Y, Chen C, Gong W B, Song J Y, Zhang H M, Zhang Y X, Wang G Z, Zhao H J. Catal. Commun., 2017, 93: 10.

doi: 10.1016/j.catcom.2017.01.008     URL    
[38]
Gupta N, Dimitratos N, Su D S, Villa A. Energy Technol., 2019, 7(2): 269.

doi: 10.1002/ente.v7.2     URL    
[39]
Liu Y, Xin Q H, Yin D F, Liu S W, Li L, Xie C X, Yu S T. Catal. Lett., 2020, 150(12): 3437.

doi: 10.1007/s10562-020-03245-5    
[40]
Yan K, Lafleur T, Jarvis C, Wu G S. J. Clean. Prod., 2014, 72: 230.

doi: 10.1016/j.jclepro.2014.02.056     URL    
[41]
Vu H T, Harth F M, Goepel M, Linares N, García-Martínez J, Gläser R. Chem. Eng. J., 2022, 430: 132763.

doi: 10.1016/j.cej.2021.132763     URL    
[42]
Jiang L, Xu G Y, Fu Y. Green Chem., 2021, 23(18): 7065.

doi: 10.1039/D1GC01732B     URL    
[43]
Balla P, Seelam P K, Balaga R, Rajesh R, Perupogu V, Liang T X. J. Environ. Chem. Eng., 2021, 9(6): 106530.

doi: 10.1016/j.jece.2021.106530     URL    
[44]
Xu H, Hu D, Yi Z X, Wu Z T, Zhang M, Yan K. ACS Appl. Energy Mater., 2019, 2(10): 6979.

doi: 10.1021/acsaem.9b01439     URL    
[45]
Pinto B P, Fortuna A L L, Cardoso C P, Mota C J A. Catal. Lett., 2017, 147(3): 751.

doi: 10.1007/s10562-017-1977-9     URL    
[46]
Popova M, Djinović P, Ristić A, Lazarova H, Dražić G, Pintar A, Balu A M, Novak Tušar N. Front. Chem., 2018, 6: 285.

doi: 10.3389/fchem.2018.00285     URL    
[47]
Hengst K, Schubert M, Carvalho H W P, Lu C B, Kleist W, Grunwaldt J D. Appl. Catal. A Gen., 2015, 502: 18.

doi: 10.1016/j.apcata.2015.05.007     URL    
[48]
Jiang K, Sheng D, Zhang Z H, Fu J, Hou Z Y, Lu X Y. Catal. Today, 2016, 274: 55.

doi: 10.1016/j.cattod.2016.01.056     URL    
[49]
Gundekari S, Srinivasan K. Catal. Lett., 2019, 149(1): 215.

doi: 10.1007/s10562-018-2618-7    
[50]
Shao Y W, Sun K, Fan M J, Wang J Z, Gao G M, Zhang L J, Zhang S, Hu X. Chem. Eng. Sci., 2022, 248: 117258.

doi: 10.1016/j.ces.2021.117258     URL    
[51]
Liang B F, Liu C, Jing F L, Luo S Z. J. Environ. Chem. Eng., 2022, 10(3): 107760.

doi: 10.1016/j.jece.2022.107760     URL    
[52]
Gan L J, Deng C Q, Deng J. Green Chem., 2022, 24(8): 3143.

doi: 10.1039/D2GC00518B     URL    
[53]
Wang D W, Luo M Y, Yue L H, Wei J, Zhang X Y, Cai J J. Fuel, 2022, 329: 125364.

doi: 10.1016/j.fuel.2022.125364     URL    
[54]
Barla M K, Velagala R R, Minpoor S, Madduluri V R, Srinivasu P. J. Hazard. Mater., 2021, 405: 123335.

doi: 10.1016/j.jhazmat.2020.123335     URL    
[55]
Murugesan K, Alshammari A S, Sohail M, Jagadeesh R V. ACS Sustainable Chem. Eng., 2019, 7(17): 14756.

doi: 10.1021/acssuschemeng.9b02692     URL    
[56]
Novodárszki G, Solt H E, Valyon J, LÓnyi F, HancsÓk J, Deka D, Tuba R, Mihályi M R. Catal. Sci. Technol., 2019, 9(9): 2291.

doi: 10.1039/C9CY00168A     URL    
[57]
Shao Y W, Ba S J, Sun K, Gao G M, Fan M J, Wang J Z, Fan H L, Zhang L J, Hu X. Chem. Eng. J., 2022, 429: 132433.

doi: 10.1016/j.cej.2021.132433     URL    
[58]
Li J F, Li M J, Zhang C X, Liu C L, Yang R Z, Dong W S. J. Catal., 2020, 381: 163.

doi: 10.1016/j.jcat.2019.10.031     URL    
[59]
Shao Y W, Sun K, Li Q Y, Liu Q H, Zhang S, Liu Q, Hu G Z, Hu X. Green Chem., 2019, 21(16): 4499.

doi: 10.1039/C9GC01706B     URL    
[60]
Mitta H, Perupogu V, Boddula R, Ginjupalli S R, Inamuddin , Asiri A M. Int. J. Hydrog. Energy, 2020, 45(50): 26445.

doi: 10.1016/j.ijhydene.2019.11.149     URL    
[61]
Zhang R H, Ma Y B, You F, Peng T, He Z C, Li K N. Int. J. Hydrog. Energy, 2017, 42(40): 25185.

doi: 10.1016/j.ijhydene.2017.08.121     URL    
[62]
Zhang J, Chen J Z, Guo Y Y, Chen L M. ACS Sustainable Chem. Eng., 2015, 3(8): 1708.

doi: 10.1021/acssuschemeng.5b00535     URL    
[63]
Raguindin R Q, Desalegn B Z, Gebresillase M N, Seo J G. Renew. Energy, 2022, 191: 763.

doi: 10.1016/j.renene.2022.04.078     URL    
[64]
Xie Z B, Chen B F, Wu H R, Liu M Y, Liu H Z, Zhang J L, Yang G Y, Han B X. Green Chem., 2019, 21(3): 606.

doi: 10.1039/C8GC02914H     URL    
[65]
Li Y F, Lan X C, Liu B Y, Wang T F. J. Ind. Eng. Chem., 2022, 107: 215.

doi: 10.1016/j.jiec.2021.11.048     URL    
[66]
Cai B, Zhang Y J, Feng J F, Huang C, Ma T Y, Pan H. Renew. Energy, 2021, 177: 652.

doi: 10.1016/j.renene.2021.05.159     URL    
[67]
Kuwahara Y, Kaburagi W, Fujitani T. RSC Adv., 2014, 4(86): 45848.

doi: 10.1039/C4RA08074B     URL    
[68]
Chen H, Xu Q, Li H, Liu J, Liu X X, Huang G, Yin D L. Catal. Lett., 2021, 151(2): 538.

doi: 10.1007/s10562-020-03326-5    
[69]
Yu N X, Lu H F, Yang W, Zheng Y X, Hu Q, Liu Y Y, Wu K J, Liang B. Biomass Convers. Biorefinery, 2022,DOI:10.1007/s13399-022-02887-2.
[70]
Yu Z Q, Meng F X, Wang Y, Sun Z C, Liu Y Y, Shi C, Wang W, Wang A J. Ind. Eng. Chem. Res., 2020, 59(16): 7416.

doi: 10.1021/acs.iecr.0c00257     URL    
[71]
Sakakibara K, Endo K, Osawa T. Catal. Commun., 2019, 125: 52.

doi: 10.1016/j.catcom.2019.03.021    
[72]
Gong W B, Chen C, Fan R Y, Zhang H M, Wang G Z, Zhao H J. Fuel, 2018, 231: 165.

doi: 10.1016/j.fuel.2018.05.075     URL    
[73]
Jori P K, Jadhav V H. Catal. Lett., 2020, 150(7): 2038.

doi: 10.1007/s10562-020-03119-w    
[74]
Wang J, Jaenicke S, Chuah G K. RSC Adv., 2014, 4(26): 13481.

doi: 10.1039/C4RA01120A     URL    
[75]
LÓpez-Aguado C, del Monte D M, Paniagua M, Morales G, Melero J A. Ind. Eng. Chem. Res., 2022, 61(16): 5547.

doi: 10.1021/acs.iecr.1c04644     URL    
[76]
Xu S D, Yu D Q, Ye T, Tian P P. RSC Adv., 2017, 7(2): 1026.

doi: 10.1039/C6RA25594A     URL    
[77]
Wan F F, Yang B, Zhu J K, Jiang D B, Zhang H H, Zhang Q, Chen S N, Zhang C, Liu Y C, Fu Z H. Green Chem., 2021, 23(9): 3428.

doi: 10.1039/D1GC00209K     URL    
[78]
Kuwahara Y, Kaburagi W, Osada Y, Fujitani T, Yamashita H. Catal. Today, 2017, 281: 418.

doi: 10.1016/j.cattod.2016.05.016     URL    
[79]
Li H, Fang Z, Yang S. ACS Sustainable Chem. Eng., 2016, 4(1): 236.

doi: 10.1021/acssuschemeng.5b01480     URL    
[80]
Mei C A, Dumesic J A. Chem. Commun., 2011, 47(44): 12233.

doi: 10.1039/c1cc14748j     URL    
[81]
Gu J, Zhang J, Wang Y Z, Li D N, Huang H Y, Yuan H R, Chen Y. Ind. Crops Prod., 2020, 145: 112133.

doi: 10.1016/j.indcrop.2020.112133     URL    
[82]
Wang J Y, Zhang G Y, Liu M Y, Xia Q, Yu X, Zhang W X, Shen J, Yang C H, Jin X. Chem. Eng. Sci., 2020, 222: 115721.

doi: 10.1016/j.ces.2020.115721     URL    
[83]
Yun W C, Yang M T, Lin K Y A. J. Colloid Interface Sci., 2019, 543: 52.

doi: 10.1016/j.jcis.2019.02.036     URL    
[84]
Xiao Z H, Zhou H C, Hao J M, Hong H L, Song Y M, He R X, Zhi K D, Liu Q S. Fuel, 2017, 193: 322.

doi: 10.1016/j.fuel.2016.12.072     URL    
[85]
Kuwahara Y, Kango H, Yamashita H. ACS Sustainable Chem. Eng., 2017, 5(1): 1141.

doi: 10.1021/acssuschemeng.6b02464     URL    
[86]
Li J, Zhao S H, Li Z, Liu D, Chi Y N, Hu C W. Inorg. Chem., 2021, 60(11): 7785.

doi: 10.1021/acs.inorgchem.1c00185     URL    
[87]
Shao Y W, Sun K, Zhang L J, Xu Q, Zhang Z M, Li Q Y, Zhang S, Wang Y, Liu Q, Hu X. Green Chem., 2019, 21(24): 6634.

doi: 10.1039/C9GC03056E     URL    
[88]
Cao J P, Xie T, Zhao X Y, Zhu C, Jiang W, Zhao M, Zhao Y P, Wei X Y. Fuel, 2021, 284: 119027.

doi: 10.1016/j.fuel.2020.119027     URL    
[89]
Osatiashtiani A, Lee A F, Wilson K. J. Chem. Technol. Biotechnol, 2017, 92(6): 1125.
[1] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[2] 钱丽华, 蓝国钧, 刘晓艳, 叶清枫, 李瑛. 生物质基分子水相催化加氢反应及多相催化剂[J]. 化学进展, 2019, 31(8): 1075-1085.
[3] 纪娜, 宋静静, 刁新勇, 宋春风, 刘庆岭*, 郑明远*. 硫化物催化木质素及其模型化合物转化制备高附加值化学品[J]. 化学进展, 2017, 29(5): 563-578.
[4] 张兴华, 陈伦刚, 张琦, 龙金星, 王铁军, 马隆龙. 木质素基酚类化合物加氢脱氧制取碳氢燃料[J]. 化学进展, 2014, 26(12): 1997-2006.
[5] 张云飞, 杨波, 张鸿, 余刚, 邓述波, 刘剑洪. 负载型催化剂用于卤代有机污染物氢解去除[J]. 化学进展, 2013, 25(12): 2159-2168.
[6] 唐兴, 胡磊, 孙勇, 曾宪海, 林鹿. 生物质基乙酰丙酸选择性还原制备新型平台化合物γ-戊内酯[J]. 化学进展, 2013, 25(11): 1906-1914.
[7] 张淑芳, 白赢, 彭家建, 胡应乾*, 来国桥*. 聚苯乙烯固载过渡金属催化剂在硅氢加成和加氢反应中的应用[J]. 化学进展, 2013, 25(05): 707-716.
[8] 刘宁, 王旭珍*, 徐文亚, 郭德才, 汤济洲, 张宝禄. 纳/微米二硫化钼的化学制备及其催化加氢脱硫应用[J]. 化学进展, 2013, 25(05): 726-734.
[9] 徐莹莹, 李钊, Maxim Borzov, 聂万丽*. 空间受阻型Lewis酸碱对在小分子活化中的应用[J]. 化学进展, 2012, 24(08): 1526-1532.
[10] 尹海亮, 周同娜, 柴永明, 柳云骐, 刘晨光*. 分子筛在加氢脱硫催化剂深度脱硫方面的应用[J]. 化学进展, 2012, 24(07): 1252-1261.
[11] 宋华, 代敏, 宋华林. Ni2P加氢脱硫催化剂[J]. 化学进展, 2012, 24(05): 757-768.
[12] 彭林才, 林鹿, 李辉. 生物质转化合成新能源化学品乙酰丙酸酯[J]. 化学进展, 2012, 24(05): 801-809.
[13] 陈萍, 谢冠群, 罗孟飞. 巴豆醛气相选择性加氢催化剂[J]. 化学进展, 2012, 24(01): 17-30.
[14] 刘理华 李广慈 刘迪 柳云骐 刘晨光. 过渡金属磷化物的制备和催化性能研究*[J]. 化学进展, 2010, 22(09): 1701-1708.
[15] 李永涛 周广有 方方 陈国荣 桑革 孙大林. 孔性介质负载下的络合氢化物及其储氢特性*[J]. 化学进展, 2010, 22(01): 241-247.