English
新闻公告
More
化学进展 2023, Vol. 35 Issue (6): 928-939 DOI: 10.7536/PC221226 前一篇   后一篇

• 综述 •

金属/金属氧化物催化剂的SMSI效应

秦学涛, 周子乔, 马丁*()   

  1. 北京大学化学与分子工程学院 北京 100871
  • 修回日期:2023-05-17 出版日期:2023-06-24 发布日期:2023-05-25
  • 作者简介:

    马 丁 北京大学化学与分子工程学院教授。针对能源催化领域的非均相连续工艺催化剂设计,以能源化学品的生产和转化过程中C—O键、C—H键、H—O键的活化和重组等具有挑战性的科学前沿问题为目标,围绕氢气的制备和输运以及基于C1化学的定向转化和高值化学品的合成取得了一系列进展。

  • 基金资助:
    国家自然科学基金项目(22102007); 国家自然科学基金项目(21991150); 国家自然科学基金项目(22172150); 国家自然科学基金项目(21821004); 国家自然科学基金项目(22072090)

Strong Metal-Support Interactions of Metal/Meatal Oxide Catalysts

Xuetao Qin, Ziqiao Zhou, Ding Ma()   

  1. College of Chemistry and Molecular Engineering, Peking University,Beijing 100871, China
  • Revised:2023-05-17 Online:2023-06-24 Published:2023-05-25
  • Contact: *e-mail: dma@pku.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(22102007); The National Natural Science Foundation of China(21991150); The National Natural Science Foundation of China(22172150); The National Natural Science Foundation of China(21821004); The National Natural Science Foundation of China(22072090)

催化化学在现代化学工业中占有举足轻重的作用,开发高效催化剂是催化领域中的重要研究目标。具有金属-载体强相互作用(Strong metal-support interactions, SMSI)的催化剂表现出优异的催化性能,这使SMSI成为催化研究中的一个重要科学问题。SMSI现象涉及催化剂载体对其表面金属纳米颗粒的包覆,在提高纳米颗粒稳定性的同时,还在纳米颗粒与载体间产生了新的相互作用并以此改变了催化剂的反应性能。目前研究者们已设计出众多具有SMSI效应的催化剂,其中部分已投入实际生产当中,同时也衍生了大量有关SMSI的研究,特别是那些以金属氧化物为载体的负载型金属/金属氧化物催化剂。然而由于SMSI的复杂性,关于其形成的驱动力的争论仍然存在,同时SMSI的本质和催化机制也有待进一步的研究。该综述总结了SMSI的最新进展,其对催化剂的影响和调控SMSI的方法,希望能从凝聚态化学的角度理解和认识SMSI,并提供一种新的催化剂设计策略。

Catalysis plays an important role in the modern chemical industry, and developing catalyst with high efficiency is one of the important targets in catalysis research. Due to the outstanding activity of those catalysts with strong metal-support interactions (SMSI), SMSI has become an important scientific topic in catalysis research. The SMSI phenomenon involves the encapsulation of the metal nanoparticles (NPs) by support, resulting in the improved stabilization of NPs, and the different catalytic performances due to the new interaction between NPs and the support. Currently, a great number of catalysts with SMSI have been designed and partially applied, also there are considerable literatures focusing on SMSI of supported catalysts, especially those using metal oxide for support. However due to the complexity, the nature of SMSI and the catalytic mechanism of SMSI deserve further study, and the argument about the driving force of SMSI formation still exists. This review summarizes the recent progress, effect, and the regulation of SMSI, hopefully providing the understanding of SMSI from the perspective of condensed matter chemistry, and a new strategy of catalyst design.

Contents

1 Introduction

2 Research progress in SMSI

2.1 Research history of SMSI

2.2 New types of SMSI

3 Influence of SMSI on catalytic performance

3.1 Activity and stability enhancement

3.2 Selectivity tuning

4 Modulating of SMSI

4.1 Pre-treatment conditions

4.2 Supports

4.3 Metal nanoparticles

5 Conclusion and outlook

()
图1 SMSI研究发展历程
Fig.1 Research progress in SMSI
图2 (a)模型Pt/CeO2(111)催化剂WGS活性随金属覆盖度的变化规律[5];(b)氧化铈负载的铂簇上吸附H2O解离的反应路径计算结果[6]
Fig.2 (a) WGS activities of model Pt/CeO2(111) catalysts as a function of admetal coverage[5]; (b) Calculated reaction path for the dissociation of adsorbed H2O on a ceria-supported Pt cluster[6]
图3 (a)Pt1/Co3O4、Pt1/CeO2、Pt1/ZrO2、Pt1/石墨烯、Pt箔以及PtO2的样品在Pt L3边的XANES谱;(b)傅里叶变换EXAFS谱;(c)Pt1/Co3O4、Pt1/CeO2、Pt1/ZrO2三个样品的漫反射红外CO吸收谱;(d)Pt1/Co3O4、Pt1/CeO2、Pt1/ZrO2、Pt1/石墨烯和PtO2样品在Pt 4f区域内的XPS谱图[42]
Fig.3 (a) XANES spectra of Pt1/Co3O4, Pt1/CeO2, Pt1/ZrO2, and Pt1/graphene SACs as well as the Pt foil and PtO2 reference at the Pt L3-edge; (b) the corresponding K2-weighted Fourier transform spectra; (c) DRIFTS of CO chemisorption on Pt1/Co3O4, Pt1/CeO2, and Pt1/ZrO2 at the saturation coverage; (d) XPS spectra of Pt1/Co3O4, Pt1/CeO2, Pt1/ZrO2, Pt1/graphene, and PtO2 in the Pt 4f region[42]
图4 SMSI及A-SMSI的包覆结构及催化行为[8]
Fig.4 Structure and catalytic behavior of SMSI and A-SMSI[8]
图5 Ni/h-BN催化剂中反应诱导的金属-载体强相互作用[50]
Fig.5 Reaction-induced strong metal-support interactions in Ni/h-BN catalyst[50]
图6 Au与碳化物间的SMSI效应[51]
Fig.6 Schematic illustration of the SMSI effect between Au overlayers and carbide supports[51]
图7 (a)Ir—Ir和Ir—O配位数和反应选择性关系;(b)Ir/Ce-used催化剂Ir L3 EXAFS图;(c)Ir/Ce-used催化剂的XPS图[60]
Fig.7 (a) The coordination number (CN) of Ir—Ir and Ir—O shells (data, right axis) relative to catalytic selectivity (bars, left axis) with Ir/Ce catalysts with different Ir loadings; (b) Ir L3-edge EXAFS of the Ir/Ce-used catalysts; (c) XPS analysis of the Ir/Ce-used catalysts[60]
图8 HRTEM和EELS谱图(A~F):RR2Ti-fresh, RR2Ti-H200, RR2Ti-H300, RR2Ti-H400, RR2Ti-H500, RR2Ti-(H500+O400); (G) RR2Ti-H500样品的EELS谱图[61]
Fig.8 HRTEM images and EELS spectra. (A-F) HRTEM images of RR2Ti-fresh, RR2Ti-H200, RR2Ti-H300, RR2Ti-H400, RR2Ti-H500, and RR2Ti-(H500+O400); (G) EELS spectra of the RR2Ti-H500 sample[61]
[1]
Xu R R, Wang K, Chen G, Yan W F. Natl. Sci. Rev., 2019, 6(2): 191.

doi: 10.1093/nsr/nwy128     URL    
[2]
Xu R R. Natl. Sci. Rev., 2018, 5: 1.

doi: 10.1093/nsr/nwx155     URL    
[3]
Xu R R, Yu J H, Yan W F. Progress in Chemistry, 2020, 32(8):1017.
( 徐如人, 于吉红, 闫文付. 化学进展, 2020, 32(8):1017.).

doi: 10.7536/PC200428    
[4]
Tauster S J, Fung S C, Garten R L. J. Am. Chem. Soc., 1978, 100(1): 170.

doi: 10.1021/ja00469a029     URL    
[5]
Bruix A, Rodriguez J A, Ramírez P J, Senanayake S D, Evans J, Park J B, Stacchiola D, Liu P, Hrbek J, Illas F. J. Am. Chem. Soc., 2012, 134(21): 8968.

doi: 10.1021/ja302070k     URL    
[6]
Campbell C T. Nat. Chem., 2012, 4(8): 597.

doi: 10.1038/nchem.1412     pmid: 22824888
[7]
Qiao B T, Liang J X, Wang A Q, Xu C Q, Li J, Zhang T, Liu J J. Nano Res., 2015, 8(9): 2913.

doi: 10.1007/s12274-015-0796-9     URL    
[8]
Matsubu J C, Zhang S Y, DeRita L, Marinkovic N S, Chen J G, Graham G W, Pan X Q, Christopher P. Nat. Chem., 2017, 9(2): 120.

doi: 10.1038/nchem.2607     pmid: 28282057
[9]
Liu X Y, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H K, Chen J M, Lee J F, Lin T S. J. Am. Chem. Soc., 2012, 134(24): 10251.

doi: 10.1021/ja3033235     URL    
[10]
Friedrich M, Penner S, Heggen M, Armbrüster M. Angew. Chem. Int. Ed., 2013, 52(16): 4389.

doi: 10.1002/anie.201209587     pmid: 23494806
[11]
Smith J S, Thrower P A, Vannice M A. J. Catal., 1981, 68: 270.

doi: 10.1016/0021-9517(81)90097-X     URL    
[12]
Bradford M C J, Albert Vannice M. Appl. Catal. A Gen., 1996, 142(1): 73.

doi: 10.1016/0926-860X(96)00065-8     URL    
[13]
Tauster S J, Fung S C, Baker R T K, Horsley J A. Science, 1981, 211(4487): 1121.

doi: 10.1126/science.211.4487.1121     pmid: 17755135
[14]
Sakellson S, McMillan M, Haller G L. J. Phys. Chem., 1986, 90(9): 1733.

doi: 10.1021/j100400a001     URL    
[15]
Zhao E W, Zheng H B, Ludden K, Xin Y, Hagelin-Weaver H E, Bowers C R. ACS Catal., 2016, 6(2): 974.

doi: 10.1021/acscatal.5b02632     URL    
[16]
Gunasooriya G T K K, Seebauer E G, Saeys M. ACS Catal., 2017, 7(3): 1966.

doi: 10.1021/acscatal.6b02906     URL    
[17]
Chen P R, Khetan A, Yang F K, Migunov V, Weide P, Stürmer S P, Guo P H, Kähler K, Xia W, Mayer J, Pitsch H, Simon U, Muhler M. ACS Catal., 2017, 7(2): 1197.

doi: 10.1021/acscatal.6b02963     URL    
[18]
Masoud N, Delannoy L, Schaink H, van der Eerden A, de Rijk J W, Silva T A G, Banerjee D, Meeldijk J D, de Jong K P, Louis C, de Jongh P E. ACS Catal., 2017, 7(9): 5594.

doi: 10.1021/acscatal.7b01424     URL    
[19]
Baker L R, Kennedy G, Van Spronsen M, Hervier A, Cai X J, Chen S Y, Wang L W, Somorjai G A. J. Am. Chem. Soc., 2012, 134(34): 14208.

doi: 10.1021/ja306079h     URL    
[20]
Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M. J. Am. Chem. Soc., 2017, 139(33): 11493.

doi: 10.1021/jacs.7b04481     pmid: 28759206
[21]
Corma A, Serna P, ConcepciÓn P, Calvino J J. J. Am. Chem. Soc., 2008, 130(27): 8748.

doi: 10.1021/ja800959g     URL    
[22]
Boronat M, ConcepciÓn P, Corma A, González S, Illas F, Serna P. J. Am. Chem. Soc., 2007, 129(51): 16230.

pmid: 18052067
[23]
Wang Y C, Widmann D, Behm R J. ACS Catal., 2017, 7(4): 2339.

doi: 10.1021/acscatal.7b00251     URL    
[24]
Wang L, Zhang J, Zhu Y H, Xu S D, Wang C T, Bian C Q, Meng X J, Xiao F S. ACS Catal., 2017, 7(11): 7461.

doi: 10.1021/acscatal.7b01947     URL    
[25]
Hu P P, Huang Z W, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y X, Gu X, Tang X F. Angew. Chem. Int. Ed., 2014, 53(13): 3418.

doi: 10.1002/anie.201309248     URL    
[26]
Guan H L, Lin J, Qiao B T, Yang X F, Li L, Miao S, Liu J Y, Wang A Q, Wang X D, Zhang T. Angew. Chem. Int. Ed., 2016, 55(8): 2820.

doi: 10.1002/anie.201510643     URL    
[27]
Tang H L, Liu F, Wei J K, Qiao B T, Zhao K F, Su Y, Jin C Z, Li L, Liu J J, Wang J H, Zhang T. Angew. Chem. Int. Ed., 2016, 55(36): 10606.

doi: 10.1002/anie.v55.36     URL    
[28]
Bonanni S, Aït-Mansour K, Brune H, Harbich W. ACS Catal., 2011, 1(4): 385.

doi: 10.1021/cs200001y     URL    
[29]
Lee Y J, He G H, Akey A J, Si R, Flytzani-Stephanopoulos M, Herman I P. J. Am. Chem. Soc., 2011, 133(33): 12952.

doi: 10.1021/ja204479j     URL    
[30]
Comotti M, Li W C, Spliethoff B, Schüth F. J. Am. Chem. Soc., 2006, 128(3): 917.

doi: 10.1021/ja0561441     URL    
[31]
Lin L L, Zhou W, Gao R, Yao S Y, Zhang X, Xu W Q, Zheng S J, Jiang Z, Yu Q L, Li Y W, Shi C, Wen X D, Ma D. Nature, 2017, 544(7648): 80.

doi: 10.1038/nature21672    
[32]
Plata J J, Graciani J, Evans J, Rodriguez J A, Sanz J F. ACS Catal., 2016, 6(7): 4608.

doi: 10.1021/acscatal.6b00948     URL    
[33]
Carrasco J, LÓpez-Durán D, Liu Z Y, Duchoñ T, Evans J, Senanayake S D, Crumlin E J, Matolín V, Rodríguez J A, Ganduglia-Pirovano M V. Angew. Chem. Int. Ed., 2015, 54(13): 3917.

doi: 10.1002/anie.201410697     pmid: 25651288
[34]
Carrasco J, Barrio L, Liu P, Rodriguez J A, Ganduglia-Pirovano M V. J. Phys. Chem. C, 2013, 117(16): 8241.

doi: 10.1021/jp400430r     URL    
[35]
Zhang X, Zhang M T, Deng Y C, Xu M Q, Artiglia L, Wen W, Gao R, Chen B B, Yao S Y, Zhang X C, Peng M, Yan J, Li A W, Jiang Z, Gao X Y, Cao S F, Yang C, Kropf A J, Shi J N, Xie J L, Bi M S, van Bokhoven J A, Li Y W, Wen X D, Flytzani-Stephanopoulos M, Shi C, Zhou W, Ma D. Nature, 2021, 589(7842): 396.

doi: 10.1038/s41586-020-03130-6    
[36]
Yeung C M Y, Yu K M K, Fu Q J, Thompsett D, Petch M I, Tsang S C. J. Am. Chem. Soc., 2005, 127(51): 18010.

doi: 10.1021/ja056102c     URL    
[37]
Yao S Y, Zhang X, Zhou W, Gao R, Xu W Q, Ye Y F, Lin L L, Wen X D, Liu P, Chen B B, Crumlin E, Guo J H, Zuo Z J, Li W Z, Xie J L, Lu L, Kiely C J, Gu L, Shi C, Rodriguez J A, Ma D. Science, 2017, 357(6349): 389.

doi: 10.1126/science.aah4321     URL    
[38]
Yang L F, Shan S Y, Loukrakpam R, Petkov V, Ren Y, Wanjala B N, Engelhard M H, Luo J, Yin J, Chen Y S, Zhong C J. J. Am. Chem. Soc., 2012, 134(36): 15048.

doi: 10.1021/ja3060035     URL    
[39]
Ma J W, Habrioux A, Morais C, Lewera A, Vogel W, Verde-GÓmez Y, Ramos-Sanchez G, Balbuena P B, Alonso-Vante N. ACS Catal., 2013, 3(9): 1940.

doi: 10.1021/cs4003222     URL    
[40]
Mori K, Taga T, Yamashita H. ACS Catal., 2017, 7(5): 3147.

doi: 10.1021/acscatal.7b00312     URL    
[41]
Wang L B, Li H L, Zhang W B, Zhao X, Qiu J X, Li A W, Zheng X S, Hu Z P, Si R, Zeng J. Angew. Chem. Int. Ed., 2017, 56(17): 4712.

doi: 10.1002/anie.201701089     URL    
[42]
Li J J, Guan Q Q, Wu H, Liu W, Lin Y, Sun Z H, Ye X X, Zheng X S, Pan H B, Zhu J F, Chen S, Zhang W H, Wei S Q, Lu J L. J. Am. Chem. Soc., 2019, 141(37): 14515.

doi: 10.1021/jacs.9b06482     URL    
[43]
Wang Q, Huang X, Zhao Z L, Wang M Y, Xiang B, Li J, Feng Z X, Xu H, Gu M. J. Am. Chem. Soc., 2020, 142(16): 7425.

doi: 10.1021/jacs.9b12642     pmid: 32174114
[44]
Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C L, Li J J, Wei S Q, Lu J L. J. Am. Chem. Soc., 2015, 137(33): 10484.

doi: 10.1021/jacs.5b06485     URL    
[45]
Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S, Han C P, Li Y D, Gogotsi Y, Wang G X. Nat. Catal., 2018, 1(12): 985.

doi: 10.1038/s41929-018-0195-1    
[46]
Wang X Y, Liu Y, Peng X B, Lin B Y, Cao Y N, Jiang L L. ACS Appl. Energy Mater., 2018, 1(4): 1408.

doi: 10.1021/acsaem.8b00049     URL    
[47]
Tang H L, Wei J K, Liu F, Qiao B T, Pan X L, Li L, Liu J Y, Wang J H, Zhang T. J. Am. Chem. Soc., 2016, 138(1): 56.

doi: 10.1021/jacs.5b11306     URL    
[48]
Tang H L, Su Y, Guo Y L, Zhang L L, Li T B, Zang K T, Liu F, Li L, Luo J, Qiao B T, Wang J H. Chem. Sci., 2018, 9(32): 6679.

doi: 10.1039/C8SC01392F     URL    
[49]
Du X R, Tang H L, Qiao B T. Catalysts, 2021, 11(8): 896.

doi: 10.3390/catal11080896     URL    
[50]
Dong J H, Fu Q, Li H B, Xiao J P, Yang B, Zhang B S, Bai Y X, Song T Y, Zhang R K, Gao L J, Cai J, Zhang H, Liu Z, Bao X H. J. Am. Chem. Soc., 2020, 142(40): 17167.

doi: 10.1021/jacs.0c08139     URL    
[51]
Dong J H, Fu Q, Jiang Z, Mei B B, Bao X H. J. Am. Chem. Soc., 2018, 140(42): 13808.

doi: 10.1021/jacs.8b08246     URL    
[52]
Zhang J, Wang H, Wang L, Ali S, Wang C T, Wang L X, Meng X J, Li B, Su D S, Xiao F S. J. Am. Chem. Soc., 2019, 141(7): 2975.

doi: 10.1021/jacs.8b10864     pmid: 30677301
[53]
Han B, Guo Y L, Huang Y K, Xi W, Xu J, Luo J, Qi H F, Ren Y J, Liu X Y, Qiao B T, Zhang T. Angew. Chem. Int. Ed., 2020, 59(29): 11824.

doi: 10.1002/anie.v59.29     URL    
[54]
Braunschweig E. J. Catal., 1989, 118(1): 227.

doi: 10.1016/0021-9517(89)90313-8     URL    
[55]
Monai M, Jenkinson K, Melcherts A E M, Louwen J N, Irmak E A, Van Aert S, Altantzis T, Vogt C, van der Stam W, Duchoñ T, Šmíd B, Groeneveld E, Berben P, Bals S, Weckhuysen B M. Science, 2023, 380(6645): 644.

doi: 10.1126/science.adf6984     URL    
[56]
Chen A L, Yu X J, Zhou Y, Miao S, Li Y, Kuld S, Sehested J, Liu J Y, Aoki T, Hong S, Camellone M F, Fabris S, Ning J, Jin C C, Yang C W, Nefedov A, Wöll C, Wang Y M, Shen W J. Nat. Catal., 2019, 2(4): 334.

doi: 10.1038/s41929-019-0226-6    
[57]
Xu M, Yao S Y, Rao D M, Niu Y M, Liu N, Peng M, Zhai P, Man Y, Zheng L R, Wang B, Zhang B S, Ma D, Wei M. J. Am. Chem. Soc., 2018, 140(36): 11241.

doi: 10.1021/jacs.8b03117     URL    
[58]
Lykhach Y, Kozlov S M, Skála T, Tovt A, Stetsovych V, Tsud N, Dvořák F, Johánek V, Neitzel A, Mysliveček J, Fabris S, Matolín V, Neyman K M, Libuda J. Nat. Mater., 2016, 15(3): 284.

doi: 10.1038/nmat4500    
[59]
Lee J, Burt S P, Carrero C A, Alba-Rubio A C, Ro I, O’Neill B J, Kim H J, Jackson D H K, Kuech T F, Hermans I, Dumesic J A, Huber G W. J. Catal., 2015, 330: 19.

doi: 10.1016/j.jcat.2015.07.003     URL    
[60]
Li S W, Xu Y, Chen Y F, Li W Z, Lin L L, Li M Z, Deng Y C, Wang X P, Ge B H, Yang C, Yao S Y, Xie J L, Li Y W, Liu X, Ma D. Angew. Chem. Int. Ed., 2017, 56(36): 10761.

doi: 10.1002/anie.201705002     URL    
[61]
Tang H L, Su Y, Zhang B S, Lee A F, Isaacs M A, Wilson K, Li L, Ren Y G, Huang J H, Haruta M, Qiao B T, Liu X, Jin C Z, Su D S, Wang J H, Zhang T. Sci. Adv., 2017, 3(10): e1700231.

doi: 10.1126/sciadv.1700231     URL    
[62]
Li J, Lin Y P, Pan X L, Miao D Y, Ding D, Cui Y, Dong J H, Bao X H. ACS Catal., 2019, 9(7): 6342.

doi: 10.1021/acscatal.9b00401     URL    
[63]
Chandler B D. Nat. Chem., 2017, 9(2): 108.

doi: 10.1038/nchem.2724     pmid: 28282056
[64]
Kumar A, Ramani V. ACS Catal., 2014, 4(5): 1516.

doi: 10.1021/cs500116h     URL    
[1] 马云华, 邵晗, 蔺腾龙, 邓钦月. 基于多齿钯化合物的磁性纳米颗粒催化材料的设计合成及应用[J]. 化学进展, 2023, 35(9): 1369-1388.
[2] 王远, 于聿律, 谭心. 二氧化碳氢化制多碳化合物金属纳米簇催化[J]. 化学进展, 2023, 35(6): 918-927.
[3] 李庆贺, 乔波涛, 张涛. 单原子催化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 821-838.
[4] 郑跃楠, 杨佳奇, 乔振安. 凝聚态化学视角下的多孔材料缺陷工程[J]. 化学进展, 2023, 35(6): 954-967.
[5] 王男, 魏迎旭, 刘中民. 甲醇制烯烃反应中的凝聚态化学[J]. 化学进展, 2023, 35(6): 839-860.
[6] 王海, 王成涛, 周航, 王亮, 肖丰收. 小分子催化转化中的凝聚态化学[J]. 化学进展, 2023, 35(6): 861-885.
[7] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[8] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[9] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[10] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[13] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[14] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[15] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.